Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
version: 1.0.0
|
3 |
license: cc-by-sa-4.0
|
4 |
task_categories:
|
5 |
-
- tabular-
|
6 |
language:
|
7 |
- en
|
8 |
pretty_name: MolData
|
@@ -42,6 +42,8 @@ dataset_info:
|
|
42 |
dtype: string
|
43 |
- name: 'Y'
|
44 |
dtype: int64
|
|
|
|
|
45 |
splits:
|
46 |
- name: train
|
47 |
num_bytes: 12634275804
|
@@ -76,8 +78,9 @@ This is a mirror of the [Official Github repo](https://github.com/LumosBio/MolDa
|
|
76 |
|
77 |
We utilized the raw data uploaded on [Github](https://github.com/LumosBio/MolData) and performed several preprocessing:
|
78 |
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
|
79 |
-
2.
|
80 |
-
3.
|
|
|
81 |
|
82 |
If you would like to try these processes with the original dataset,
|
83 |
please follow the instructions in the [Preprocessing Script.py](address) file located in our MolData repository.
|
@@ -145,9 +148,9 @@ Split and evaluate the catboost model
|
|
145 |
split_dataset,
|
146 |
column = "SMILES",
|
147 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
148 |
-
|
149 |
model = load_model_from_dict({
|
150 |
-
"name": "
|
151 |
"config": {
|
152 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
153 |
"y_features": ['Y']}})
|
@@ -155,11 +158,11 @@ Split and evaluate the catboost model
|
|
155 |
model.train(split_featurised_dataset["train"])
|
156 |
preds = model.predict(split_featurised_dataset["test"])
|
157 |
|
158 |
-
|
159 |
|
160 |
-
scores =
|
161 |
references=split_featurised_dataset["test"]['Y'],
|
162 |
-
predictions=preds["
|
163 |
|
164 |
|
165 |
### Citation
|
|
|
2 |
version: 1.0.0
|
3 |
license: cc-by-sa-4.0
|
4 |
task_categories:
|
5 |
+
- tabular-classification
|
6 |
language:
|
7 |
- en
|
8 |
pretty_name: MolData
|
|
|
42 |
dtype: string
|
43 |
- name: 'Y'
|
44 |
dtype: int64
|
45 |
+
description: >-
|
46 |
+
Binary classification (0/1)
|
47 |
splits:
|
48 |
- name: train
|
49 |
num_bytes: 12634275804
|
|
|
78 |
|
79 |
We utilized the raw data uploaded on [Github](https://github.com/LumosBio/MolData) and performed several preprocessing:
|
80 |
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
|
81 |
+
2. Formatting (from wide form to long form)
|
82 |
+
3. Rename the columns
|
83 |
+
4. Split the dataset (train, test, validation)
|
84 |
|
85 |
If you would like to try these processes with the original dataset,
|
86 |
please follow the instructions in the [Preprocessing Script.py](address) file located in our MolData repository.
|
|
|
148 |
split_dataset,
|
149 |
column = "SMILES",
|
150 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
151 |
+
|
152 |
model = load_model_from_dict({
|
153 |
+
"name": "cat_boost_classifier",
|
154 |
"config": {
|
155 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
156 |
"y_features": ['Y']}})
|
|
|
158 |
model.train(split_featurised_dataset["train"])
|
159 |
preds = model.predict(split_featurised_dataset["test"])
|
160 |
|
161 |
+
classification_suite = load_suite("classification")
|
162 |
|
163 |
+
scores = classification_suite.compute(
|
164 |
references=split_featurised_dataset["test"]['Y'],
|
165 |
+
predictions=preds["cat_boost_classifier::Y"])
|
166 |
|
167 |
|
168 |
### Citation
|