--- version: 1.0.0 license: cc-by-sa-4.0 task_categories: - tabular-classification language: - en pretty_name: MolData size_categories: - 1M>> import datasets and load the `MolData` datasets, e.g., >>> MolData = datasets.load_dataset("maomlab/MolData", name = "MolData") Generating train split: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 138547273/138547273 [02:07<00:00, 1088043.12 examples/s] Generating test split: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 17069726/17069726 [00:16<00:00, 1037407.67 examples/s] Generating validation split: 100%|████████████████████████████████████████████████████████████████████████████████████████| 12728449/12728449 [00:11<00:00, 1093675.24 examples/s] and inspecting the loaded dataset >>> MolData DatasetDict({ train: Dataset({ features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'], num_rows: 138547273 }) test: Dataset({ features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'], num_rows: 17069726 }) validation: Dataset({ features: ['SMILES', 'PUBCHEM_CID', 'split', 'AID', 'Y'], num_rows: 12728449 }) }) ### Use a dataset to train a model One way to use the dataset is through the [MolFlux](https://exscientia.github.io/molflux/) package developed by Exscientia. First, from the command line, install `MolFlux` library with `catboost` and `rdkit` support pip install 'molflux[catboost,rdkit]' then load, featurize, split, fit, and evaluate the catboost model import json from datasets import load_dataset from molflux.datasets import featurise_dataset from molflux.features import load_from_dicts as load_representations_from_dicts from molflux.splits import load_from_dict as load_split_from_dict from molflux.modelzoo import load_from_dict as load_model_from_dict from molflux.metrics import load_suite Split and evaluate the catboost model split_dataset = load_dataset('maomlab/MolData', name = 'MolData') split_featurised_dataset = featurise_dataset( split_dataset, column = "SMILES", representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}])) model = load_model_from_dict({ "name": "cat_boost_classifier", "config": { "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'], "y_features": ['Y']}}) model.train(split_featurised_dataset["train"]) preds = model.predict(split_featurised_dataset["test"]) classification_suite = load_suite("classification") scores = classification_suite.compute( references=split_featurised_dataset["test"]['Y'], predictions=preds["cat_boost_classifier::Y"]) ### Citation @article{KeshavarziArshadi2022, title = {MolData, a molecular benchmark for disease and target based machine learning}, volume = {14}, ISSN = {1758-2946}, url = {http://dx.doi.org/10.1186/s13321-022-00590-y}, DOI = {10.1186/s13321-022-00590-y}, number = {1}, journal = {Journal of Cheminformatics}, publisher = {Springer Science and Business Media LLC}, author = {Keshavarzi Arshadi, Arash and Salem, Milad and Firouzbakht, Arash and Yuan, Jiann Shiun}, year = {2022}, month = mar }