File size: 10,384 Bytes
a3a12c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""
Original code: https://github.com/swz30/Restormer/blob/main/Defocus_Deblurring/generate_patches_dpdd.py
by Syed Waqas Zamir
"""
##### Data preparation file for training Restormer on the DPDD Dataset ########

import cv2
import numpy as np
from glob import glob
from natsort import natsorted
import os
from tqdm import tqdm
from copy import deepcopy
from joblib import Parallel, delayed


def shapness_measure(img_temp,kernel_size):
    conv_x = cv2.Sobel(img_temp,cv2.CV_64F,1,0,ksize=kernel_size)
    conv_y = cv2.Sobel(img_temp,cv2.CV_64F,0,1,ksize=kernel_size)
    temp_arr_x=deepcopy(conv_x*conv_x)
    temp_arr_y=deepcopy(conv_y*conv_y)
    temp_sum_x_y=temp_arr_x+temp_arr_y
    temp_sum_x_y=np.sqrt(temp_sum_x_y)
    return np.sum(temp_sum_x_y)

def filter_patch_sharpness(patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp):
    patches_src_c, patches_trg_c, patches_src_l, patches_src_r = [], [], [], []
    fitnessVal_3=[]
    fitnessVal_7=[]
    fitnessVal_11=[]
    fitnessVal_15=[]
    num_of_img_patches=len(patches_trg_c_temp)
    for i in range(num_of_img_patches):
        fitnessVal_3.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),3))
        fitnessVal_7.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),7))
        fitnessVal_11.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),11))
        fitnessVal_15.append(shapness_measure(cv2.cvtColor(patches_trg_c_temp[i], cv2.COLOR_BGR2GRAY),15))
    fitnessVal_3=np.asarray(fitnessVal_3)
    fitnessVal_7=np.asarray(fitnessVal_7)
    fitnessVal_11=np.asarray(fitnessVal_11)
    fitnessVal_15=np.asarray(fitnessVal_15)
    fitnessVal_3=(fitnessVal_3-np.min(fitnessVal_3))/np.max((fitnessVal_3-np.min(fitnessVal_3)))
    fitnessVal_7=(fitnessVal_7-np.min(fitnessVal_7))/np.max((fitnessVal_7-np.min(fitnessVal_7)))
    fitnessVal_11=(fitnessVal_11-np.min(fitnessVal_11))/np.max((fitnessVal_11-np.min(fitnessVal_11)))
    fitnessVal_15=(fitnessVal_15-np.min(fitnessVal_15))/np.max((fitnessVal_15-np.min(fitnessVal_15)))
    fitnessVal_all=fitnessVal_3*fitnessVal_7*fitnessVal_11*fitnessVal_15
    
    to_remove_patches_number=int(to_remove_ratio*num_of_img_patches)
    
    for itr in range(to_remove_patches_number):
        minArrInd=np.argmin(fitnessVal_all)
        fitnessVal_all[minArrInd]=2
    for itr in range(num_of_img_patches):
        if fitnessVal_all[itr]!=2:
            patches_src_c.append(patches_src_c_temp[itr])
            patches_trg_c.append(patches_trg_c_temp[itr])
            patches_src_l.append(patches_src_l_temp[itr])
            patches_src_r.append(patches_src_r_temp[itr])
    
    return patches_src_c, patches_trg_c, patches_src_l, patches_src_r

def slice_stride(_img_src_c, _img_trg_c, _img_src_l, _img_src_r):
    coordinates_list=[]
    coordinates_list.append([0,0,0,0])
    patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp = [], [], [], []
    for r in range(0,_img_src_c.shape[0],stride[0]):
        for c in range(0,_img_src_c.shape[1],stride[1]):
            if (r+patch_size[0]) <= _img_src_c.shape[0] and (c+patch_size[1]) <= _img_src_c.shape[1]:
                patches_src_c_temp.append(_img_src_c[r:r+patch_size[0],c:c+patch_size[1]])
                patches_trg_c_temp.append(_img_trg_c[r:r+patch_size[0],c:c+patch_size[1]])
                patches_src_l_temp.append(_img_src_l[r:r+patch_size[0],c:c+patch_size[1]])
                patches_src_r_temp.append(_img_src_r[r:r+patch_size[0],c:c+patch_size[1]])

            elif (r+patch_size[0]) <= _img_src_c.shape[0] and not ([r,r+patch_size[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]] in coordinates_list):
                patches_src_c_temp.append(_img_src_c[r:r+patch_size[0],_img_src_c.shape[1]-patch_size[1]:_img_src_c.shape[1]])
                patches_trg_c_temp.append(_img_trg_c[r:r+patch_size[0],_img_trg_c.shape[1]-patch_size[1]:_img_trg_c.shape[1]])
                patches_src_l_temp.append(_img_src_l[r:r+patch_size[0],_img_src_l.shape[1]-patch_size[1]:_img_src_l.shape[1]])
                patches_src_r_temp.append(_img_src_r[r:r+patch_size[0],_img_src_r.shape[1]-patch_size[1]:_img_src_r.shape[1]])
                coordinates_list.append([r,r+patch_size[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]])
                
            elif (c+patch_size[1]) <= _img_src_c.shape[1] and not ([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],c,c+patch_size[1]] in coordinates_list):
                patches_src_c_temp.append(_img_src_c[_img_src_c.shape[0]-patch_size[0]:_img_src_c.shape[0],c:c+patch_size[1]])
                patches_trg_c_temp.append(_img_trg_c[_img_trg_c.shape[0]-patch_size[0]:_img_trg_c.shape[0],c:c+patch_size[1]])
                patches_src_l_temp.append(_img_src_l[_img_src_l.shape[0]-patch_size[0]:_img_src_l.shape[0],c:c+patch_size[1]])
                patches_src_r_temp.append(_img_src_r[_img_src_r.shape[0]-patch_size[0]:_img_src_r.shape[0],c:c+patch_size[1]])
                coordinates_list.append([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],c,c+patch_size[1]])
                
            elif not ([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]] in coordinates_list):
                patches_src_c_temp.append(_img_src_c[_img_src_c.shape[0]-patch_size[0]:_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1]:_img_src_c.shape[1]])
                patches_trg_c_temp.append(_img_trg_c[_img_trg_c.shape[0]-patch_size[0]:_img_trg_c.shape[0],_img_trg_c.shape[1]-patch_size[1]:_img_trg_c.shape[1]])
                patches_src_l_temp.append(_img_src_l[_img_src_l.shape[0]-patch_size[0]:_img_src_l.shape[0],_img_src_l.shape[1]-patch_size[1]:_img_src_l.shape[1]])
                patches_src_r_temp.append(_img_src_r[_img_src_r.shape[0]-patch_size[0]:_img_src_r.shape[0],_img_src_r.shape[1]-patch_size[1]:_img_src_r.shape[1]])
                coordinates_list.append([_img_src_c.shape[0]-patch_size[0],_img_src_c.shape[0],_img_src_c.shape[1]-patch_size[1],_img_src_c.shape[1]])

    return patches_src_c_temp, patches_trg_c_temp, patches_src_l_temp, patches_src_r_temp

def train_files(file_):
    lrL_file, lrR_file, lrC_file, hrC_file = file_
    filename = os.path.splitext(os.path.split(lrC_file)[-1])[0]
    lrL_img = cv2.imread(lrL_file, -1)
    lrR_img = cv2.imread(lrR_file, -1)
    lrC_img = cv2.imread(lrC_file, -1)
    hrC_img = cv2.imread(hrC_file, -1)

    lrC_patches, hrC_patches, lrL_patches, lrR_patches = slice_stride(lrC_img, hrC_img, lrL_img, lrR_img)
    lrC_patches, hrC_patches, lrL_patches, lrR_patches = filter_patch_sharpness(lrC_patches, hrC_patches, lrL_patches, lrR_patches)
    num_patch = 0
    for lrC_patch, hrC_patch, lrL_patch, lrR_patch in zip(lrC_patches, hrC_patches, lrL_patches, lrR_patches):
        num_patch += 1
                
        lrL_savename = os.path.join(lrL_tar, filename + '-' + str(num_patch) + '.png')
        lrR_savename = os.path.join(lrR_tar, filename + '-' + str(num_patch) + '.png')
        lrC_savename = os.path.join(lrC_tar, filename + '-' + str(num_patch) + '.png')
        hrC_savename = os.path.join(hrC_tar, filename + '-' + str(num_patch) + '.png')
        
        cv2.imwrite(lrL_savename, lrL_patch)
        cv2.imwrite(lrR_savename, lrR_patch)
        cv2.imwrite(lrC_savename, lrC_patch)
        cv2.imwrite(hrC_savename, hrC_patch)

def val_files(file_):
    lrL_file, lrR_file, lrC_file, hrC_file = file_
    filename = os.path.splitext(os.path.split(lrC_file)[-1])[0]

    lrL_savename = os.path.join(lrL_tar, filename + '.png')
    lrR_savename = os.path.join(lrR_tar, filename + '.png')
    lrC_savename = os.path.join(lrC_tar, filename + '.png')
    hrC_savename = os.path.join(hrC_tar, filename + '.png')

    lrL_img = cv2.imread(lrL_file, -1)
    lrR_img = cv2.imread(lrR_file, -1)
    lrC_img = cv2.imread(lrC_file, -1)
    hrC_img = cv2.imread(hrC_file, -1)

    w, h = lrC_img.shape[:2]

    i = (w-val_patch_size)//2
    j = (h-val_patch_size)//2
                
    lrL_patch = lrL_img[i:i+val_patch_size, j:j+val_patch_size,:]
    lrR_patch = lrR_img[i:i+val_patch_size, j:j+val_patch_size,:]
    lrC_patch = lrC_img[i:i+val_patch_size, j:j+val_patch_size,:]
    hrC_patch = hrC_img[i:i+val_patch_size, j:j+val_patch_size,:]
                
    cv2.imwrite(lrL_savename, lrL_patch)
    cv2.imwrite(lrR_savename, lrR_patch)
    cv2.imwrite(lrC_savename, lrC_patch)
    cv2.imwrite(hrC_savename, hrC_patch)


############ Prepare Training data ####################
num_cores = 10
src = 'DPDD/train/'
tar = 'train-dpdd'

lrL_tar = os.path.join(tar, 'inputL_crops')
lrR_tar = os.path.join(tar, 'inputR_crops')
lrC_tar = os.path.join(tar, 'inputC_crops')
hrC_tar = os.path.join(tar, 'target_crops')

os.makedirs(lrL_tar, exist_ok=True)
os.makedirs(lrR_tar, exist_ok=True)
os.makedirs(lrC_tar, exist_ok=True)
os.makedirs(hrC_tar, exist_ok=True)

lrL_files = natsorted(glob(os.path.join(src, 'inputL', '*.png')))
lrR_files = natsorted(glob(os.path.join(src, 'inputR', '*.png')))
lrC_files = natsorted(glob(os.path.join(src, 'inputC', '*.png')))
hrC_files = natsorted(glob(os.path.join(src, 'target', '*.png')))

files = [(i, j, k, l) for i, j, k, l in zip(lrL_files, lrR_files, lrC_files, hrC_files)]

patch_size = [512, 512]
stride = [204, 204]
p_max = 0
to_remove_ratio = 0.3

Parallel(n_jobs=num_cores)(delayed(train_files)(file_) for file_ in tqdm(files))


############ Prepare validation data ####################
val_patch_size = 256
src = 'DPDD/test'
tar = 'test-dpdd'

lrL_tar = os.path.join(tar, 'inputL_crops')
lrR_tar = os.path.join(tar, 'inputR_crops')
lrC_tar = os.path.join(tar, 'inputC_crops')
hrC_tar = os.path.join(tar, 'target_crops')

os.makedirs(lrL_tar, exist_ok=True)
os.makedirs(lrR_tar, exist_ok=True)
os.makedirs(lrC_tar, exist_ok=True)
os.makedirs(hrC_tar, exist_ok=True)

lrL_files = natsorted(glob(os.path.join(src, 'inputL', '*.png')))
lrR_files = natsorted(glob(os.path.join(src, 'inputR', '*.png')))
lrC_files = natsorted(glob(os.path.join(src, 'inputC', '*.png')))
hrC_files = natsorted(glob(os.path.join(src, 'target', '*.png')))

files = [(i, j, k, l) for i, j, k, l in zip(lrL_files, lrR_files, lrC_files, hrC_files)]

Parallel(n_jobs=num_cores)(delayed(val_files)(file_) for file_ in tqdm(files))