cartpole_gym_replay / cartpole_gym_replay.py
marktrovinger's picture
Update cartpole_gym_replay.py
8757697
raw
history blame
2.87 kB
import pickle
import datasets
import numpy as np
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_BASE_URL = "https://huggingface.co/datasets/marktrovinger/cartpole_gym_replay/resolve/main"
_DATA_URL = f"{_BASE_URL}/replay_buffer_npz.npz"
_DESCRIPTION = """ \
Testing a cartpole replay.
"""
_HOMEPAGE = "blah"
_LICENSE = "MIT"
class DecisionTransformerGymDataset(datasets.GeneratorBasedBuilder):
def _info(self):
features = datasets.Features(
{
"observations": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"actions": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"rewards": datasets.Sequence(datasets.Value("float32")),
"dones": datasets.Sequence(datasets.Value("float32")),
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
# Here we define them above because they are different between the two configurations
features=features,
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
)
def _split_generators(self, dl_manager):
urls = _DATA_URL
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
#trajectories = pickle.load(f)
traj = np.load(filepath)
obs = traj["observations"]
act = traj["actions"]
rew = traj["rewards"]
done = traj["dones"]
for idx, value in enumerate(obs):
yield idx, {
"observations": obs[i],
"actions": act[i],
"rewards": rew[i],
"dones": done[i],
}