import pickle import datasets import numpy as np # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _BASE_URL = "https://huggingface.co/datasets/marktrovinger/cartpole_gym_replay/resolve/main" _DATA_URL = f"{_BASE_URL}/replay_buffer_npz.npz" _DESCRIPTION = """ \ Testing a cartpole replay. """ _HOMEPAGE = "blah" _LICENSE = "MIT" class DecisionTransformerGymDataset(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "observations": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), "actions": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), "rewards": datasets.Sequence(datasets.Value("float32")), "dones": datasets.Sequence(datasets.Value("float32")), # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types # Here we define them above because they are different between the two configurations features=features, # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, ) def _split_generators(self, dl_manager): urls = _DATA_URL data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir, "split": "train", }, ) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): #trajectories = pickle.load(f) #traj = np.load(filepath) obs = np.load(f'{filepath}/observations.npy') act = np.load(f'{filepath}/actions.npy') rew = np.load(f'{filepath}/rewards.npy') dones = np.load(f'{filepath}/dones.npy') for idx, value in enumerate(obs): yield idx, { "observations": obs[i], "actions": act[i], "rewards": rew[i], "dones": done[i], }