File size: 1,877 Bytes
d223ab5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304b416
d223ab5
cb093bd
 
 
 
 
 
0ee3ac3
cb093bd
 
 
 
ac7a9a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: split
    dtype: string
  - name: width
    dtype: int64
  - name: height
    dtype: int64
  - name: bboxes
    dtype: string
  - name: labels
    dtype: string
  - name: gaze_item
    dtype: int64
  - name: gazeIdx
    dtype: int64
  - name: gaze_cx
    dtype: int64
  - name: gaze_cy
    dtype: int64
  - name: hx
    dtype: int64
  - name: hy
    dtype: int64
  - name: seg
    dtype: string
  - name: occluded
    dtype: bool
  - name: person_num
    dtype: int64
  - name: cam_num
    dtype: int64
  splits:
  - name: test
    num_bytes: 6289998121.391
    num_examples: 7391
  download_size: 6286282416
  dataset_size: 6289998121.391
---
The dataset features/columns here are almost similar to the original github instruction (please read the github documentation first to understand the dataset): https://github.com/upeee/GOO-GAZE2021/blob/main/dataset/gooreal-download.txt

To download gooreal in huggingface, run the code below (https://huggingface.co/docs/datasets/v1.10.0/loading_datasets.html#from-the-huggingface-hub):

from datasets import load_dataset</br>
dataset = load_dataset("markytools/goorealv3")

The image datasets will be stored in ""~/.cache/huggingface", so you need to delete the files here if you want to free up space.
</br>
The "bboxes" and "labels" features are in string format, so you can use the code below to convert the string into list:</br>
import ast</br>
listOfBboxes = ast.literal_eval(dataset["test"]["bboxes"][0])</br>
</br>
The feature "seg" is now in string format instead of numpy ndarray. This is an optional feature, and you can manually download the files here (https://huggingface.co/datasets/markytools/goosegmv3) using wget commandline. The files are in .npy so load it using np.load (https://numpy.org/doc/stable/reference/generated/numpy.load.html).