Datasets:
import re | |
from nltk.corpus import stopwords | |
def preprocess_text(df): | |
""" | |
Preprocesses the text column in a DataFrame by applying various cleaning operations. | |
Args: | |
df (pandas.DataFrame): The DataFrame containing the text column to be preprocessed. | |
Returns: | |
None. The text column in the provided DataFrame is modified in place. | |
""" | |
# Remove URLs, user mentions, non-alphanumeric characters and hashtags from the tweets | |
df['text'] = df['text'].apply(lambda x: re.sub(r'http\S+', '', str(x))) # remove URLs | |
df['text'] = df['text'].apply(lambda x: re.sub(r'@\S+', '', str(x))) # remove user mentions | |
df['text'] = df['text'].apply(lambda x: re.sub(r'[^a-zA-Z0-9\s]', '', str(x))) # remove non-alphanumeric characters | |
df['text'] = df['text'].apply(lambda x: re.sub(r'#\S+', '', str(x))) # remove hashtags | |
# Remove punctuation and convert text to lowercase | |
df['text'] = df['text'].apply(lambda x: re.sub('[^\w\s]', '', x)) | |
df['text'] = df['text'].apply(lambda x: x.lower()) | |
# Remove stop word (such as "a", "an", "the", "is", "of", etc.) | |
stop_words = set(stopwords.words('english')) | |
df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if word not in stop_words])) | |
# Remove any remaining white space | |
df['text'] = df['text'].apply(lambda x: x.strip()) | |
# Remove observations with less than 3 words | |
df = df[df['text'].apply(lambda x: len(x.split()) >= 3)] | |
return df |