|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@misc{tzanetakis_essl_cook_2001, |
|
author = "Tzanetakis, George and Essl, Georg and Cook, Perry", |
|
title = "Automatic Musical Genre Classification Of Audio Signals", |
|
url = "http://ismir2001.ismir.net/pdf/tzanetakis.pdf", |
|
publisher = "The International Society for Music Information Retrieval", |
|
year = "2001" |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
GTZAN is a dataset for musical genre classification of audio signals. The dataset consists of 1,000 audio tracks, each of 30 seconds long. It contains 10 genres, each represented by 100 tracks. The tracks are all 22,050Hz Mono 16-bit audio files in .wav format. The genres are: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock. |
|
""" |
|
|
|
_HOMEPAGE = "http://marsyas.info/downloads/datasets.html" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
_URL = "http://opihi.cs.uvic.ca/sound/genres.tar.gz" |
|
|
|
GENRES = ["blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock"] |
|
CORRUPTED_FILES = ["jazz.00054.wav"] |
|
|
|
|
|
class Gtzan(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=22_050), |
|
"genre": datasets.ClassLabel(names=GENRES), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
local_extracted_archive = dl_manager.download_and_extract("data/genres.tar.gz") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, local_extracted_archive): |
|
paths = list(Path(local_extracted_archive).glob("**/*.wav")) |
|
paths = [p for p in paths if "._" not in p.name] |
|
data = [] |
|
|
|
for path in paths: |
|
label = str(path).split("/")[-2] |
|
name = str(path).split("/")[-1] |
|
if name in CORRUPTED_FILES: |
|
continue |
|
|
|
data.append({"file": str(path), "genre": label}) |
|
df = pd.DataFrame(data) |
|
df.sort_values("file", inplace=True) |
|
|
|
for idx_, row in df.iterrows(): |
|
yield idx_, {"file": row["file"], "audio": row["file"], "genre": row["genre"]} |
|
|