Datasets:
ToluClassics
commited on
Commit
•
49b9da9
1
Parent(s):
8bc5365
updates
Browse files
README.md
CHANGED
@@ -16,4 +16,190 @@ language:
|
|
16 |
pretty_name: AfriQA
|
17 |
size_categories:
|
18 |
- 10K<n<100K
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
pretty_name: AfriQA
|
17 |
size_categories:
|
18 |
- 10K<n<100K
|
19 |
+
multilinguality:
|
20 |
+
- multilingual
|
21 |
+
tags:
|
22 |
+
- cross-lingual
|
23 |
+
- question-answering
|
24 |
+
- qa
|
25 |
+
---
|
26 |
+
|
27 |
+
# Dataset Card for [Dataset Name]
|
28 |
+
|
29 |
+
## Table of Contents
|
30 |
+
- [Table of Contents](#table-of-contents)
|
31 |
+
- [Dataset Description](#dataset-description)
|
32 |
+
- [Dataset Summary](#dataset-summary)
|
33 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
34 |
+
- [Languages](#languages)
|
35 |
+
- [Dataset Structure](#dataset-structure)
|
36 |
+
- [Data Instances](#data-instances)
|
37 |
+
- [Data Splits](#data-splits)
|
38 |
+
- [Dataset Creation](#dataset-creation)
|
39 |
+
- [Curation Rationale](#curation-rationale)
|
40 |
+
- [Source Data](#source-data)
|
41 |
+
- [Annotations](#annotations)
|
42 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
43 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
44 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
45 |
+
- [Discussion of Biases](#discussion-of-biases)
|
46 |
+
- [Other Known Limitations](#other-known-limitations)
|
47 |
+
- [Additional Information](#additional-information)
|
48 |
+
- [Dataset Curators](#dataset-curators)
|
49 |
+
- [Licensing Information](#licensing-information)
|
50 |
+
- [Citation Information](#citation-information)
|
51 |
+
- [Contributions](#contributions)
|
52 |
+
|
53 |
+
## Dataset Description
|
54 |
+
|
55 |
+
- **Homepage:** [homepage](https://github.com/masakhane-io/afriqa)
|
56 |
+
- **Repository:** [github](https://github.com/masakhane-io/afriqa)
|
57 |
+
- **Paper:** [paper]()
|
58 |
+
- **Point of Contact:** [Masakhane](https://www.masakhane.io/) or [email protected]
|
59 |
+
|
60 |
+
### Dataset Summary
|
61 |
+
|
62 |
+
AfriQA is the first cross-lingual question answering (QA) dataset with a focus on African languages. The dataset includes over 12,000 XOR QA examples across 10 African languages, making it an invaluable resource for developing more equitable QA technology.
|
63 |
+
|
64 |
+
The train/validation/test sets are available for all the 10 languages.
|
65 |
+
|
66 |
+
For more details see ...
|
67 |
+
|
68 |
+
|
69 |
+
### Supported Tasks and Leaderboards
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
- `question-answering`: The performance in this task is measured with [F1](https://huggingface.co/metrics/f1) (higher is better) and [Exact Match Accuracy](https://huggingface.co/spaces/evaluate-metric/exact_match).
|
74 |
+
|
75 |
+
### Languages
|
76 |
+
|
77 |
+
There are 20 languages available :
|
78 |
+
- Bemba (bem)
|
79 |
+
- Fon (fon)
|
80 |
+
- Hausa (hau)
|
81 |
+
- Igbo (ibo)
|
82 |
+
- Kinyarwanda (kin)
|
83 |
+
- Swahili (swą)
|
84 |
+
- Twi (twi)
|
85 |
+
- Wolof (wol)
|
86 |
+
- Yorùbá (yor)
|
87 |
+
- Zulu (zul)
|
88 |
+
|
89 |
+
## Dataset Structure
|
90 |
+
|
91 |
+
### Data Instances
|
92 |
+
|
93 |
+
- Data Format:
|
94 |
+
- id : Question ID
|
95 |
+
- question : Question in African Language
|
96 |
+
- translated_question : Question translated into a pivot language (English/French)
|
97 |
+
- answers : Answer in African Language
|
98 |
+
- lang : Datapoint Language (African Language) e.g `bem`
|
99 |
+
- split : Dataset Split
|
100 |
+
- translated_answer : Answer in Pivot Language
|
101 |
+
- translation_type : Translation type of question and answers
|
102 |
+
|
103 |
+
|
104 |
+
```bash
|
105 |
+
{ "id": 0,
|
106 |
+
"question": "Bushe icaalo ca Egypt caali tekwapo ne caalo cimbi?",
|
107 |
+
"translated_question": "Has the country of Egypt been colonized before?",
|
108 |
+
"answers": "['Emukwai']",
|
109 |
+
"lang": "bem",
|
110 |
+
"split": "dev",
|
111 |
+
"translated_answer": "['yes']",
|
112 |
+
"translation_type": "human_translation"
|
113 |
+
}
|
114 |
+
```
|
115 |
+
|
116 |
+
### Data Splits
|
117 |
+
|
118 |
+
For all languages, there are three splits.
|
119 |
+
|
120 |
+
The original splits were named `train`, `dev` and `test` and they correspond to the `train`, `validation` and `test` splits.
|
121 |
+
|
122 |
+
The splits have the following sizes :
|
123 |
+
|
124 |
+
| Language | train | dev | test |
|
125 |
+
|-----------------|------:|-----------:|-----:|
|
126 |
+
| Bemba | 502 | 503 | 314 |
|
127 |
+
| Fon | 427 | 428 | 386 |
|
128 |
+
| Hausa | 435 | 436 | 300 |
|
129 |
+
| Igbo | 417 | 418 | 409 |
|
130 |
+
| Kinyarwanda | 407 | 409 | 347 |
|
131 |
+
| Swahili | 415 | 417 | 302 |
|
132 |
+
| Twi | 451 | 452 | 490 |
|
133 |
+
| Wolof | 503 | 504 | 334 |
|
134 |
+
| Yoruba | 360 | 361 | 332 |
|
135 |
+
| Zulu | 387 | 388 | 325 |
|
136 |
+
| <b>Total</b> | <b>4333</b> | <b>4346</b> |<b>3560</b> |
|
137 |
+
|
138 |
+
## Dataset Creation
|
139 |
+
|
140 |
+
### Curation Rationale
|
141 |
+
|
142 |
+
The dataset was introduced to introduce question-answering resources to 10 languages that were under-served for natural language processing.
|
143 |
+
|
144 |
+
[More Information Needed]
|
145 |
+
|
146 |
+
### Source Data
|
147 |
+
|
148 |
+
...
|
149 |
+
|
150 |
+
#### Initial Data Collection and Normalization
|
151 |
+
|
152 |
+
...
|
153 |
+
|
154 |
+
#### Who are the source language producers?
|
155 |
+
|
156 |
+
...
|
157 |
+
|
158 |
+
### Annotations
|
159 |
+
|
160 |
+
#### Annotation process
|
161 |
+
|
162 |
+
Details can be found here ...
|
163 |
+
|
164 |
+
#### Who are the annotators?
|
165 |
+
|
166 |
+
Annotators were recruited from [Masakhane](https://www.masakhane.io/)
|
167 |
+
|
168 |
+
### Personal and Sensitive Information
|
169 |
+
|
170 |
+
...
|
171 |
+
|
172 |
+
## Considerations for Using the Data
|
173 |
+
|
174 |
+
### Social Impact of Dataset
|
175 |
+
[More Information Needed]
|
176 |
+
|
177 |
+
|
178 |
+
### Discussion of Biases
|
179 |
+
[More Information Needed]
|
180 |
+
|
181 |
+
|
182 |
+
### Other Known Limitations
|
183 |
+
|
184 |
+
Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.
|
185 |
+
|
186 |
+
## Additional Information
|
187 |
+
|
188 |
+
### Dataset Curators
|
189 |
+
|
190 |
+
|
191 |
+
### Licensing Information
|
192 |
+
|
193 |
+
The licensing status of the data is CC 4.0 Non-Commercial
|
194 |
+
|
195 |
+
### Citation Information
|
196 |
+
|
197 |
+
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
|
198 |
+
|
199 |
+
```
|
200 |
+
Incoming ...
|
201 |
+
```
|
202 |
+
|
203 |
+
### Contributions
|
204 |
+
|
205 |
+
Thanks to [@ToluClassics](https://github.com/ToluClassics) for adding this dataset.
|