File size: 13,979 Bytes
9a7f164
 
 
 
 
68b4ae8
d2d4032
 
 
 
 
 
 
 
 
 
68b4ae8
9a7f164
 
 
 
 
 
 
 
5db1bc4
9a7f164
 
 
98b8c6c
d2d4032
 
 
 
 
 
 
 
 
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7453931
 
 
ca9011a
 
9a7f164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d2757
 
 
 
 
 
 
 
 
 
 
 
9a7f164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9011a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- am
- ha
- ig
- lg
- luo
- pcm
- rw
- sw
- wo
- yo
license:
- unknown
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: null
pretty_name: MasakhaNER
configs:
- am
- ha
- ig
- lg
- luo
- pcm
- rw
- sw
- wo
- yo
dataset_info:
- config_name: amh
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 639911
    num_examples: 1750
  - name: validation
    num_bytes: 92753
    num_examples: 250
  - name: test
    num_bytes: 184271
    num_examples: 500
  download_size: 571951
  dataset_size: 916935
- config_name: hau
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 929848
    num_examples: 1912
  - name: validation
    num_bytes: 139503
    num_examples: 276
  - name: test
    num_bytes: 282971
    num_examples: 552
  download_size: 633372
  dataset_size: 1352322
- config_name: ibo
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 749196
    num_examples: 2235
  - name: validation
    num_bytes: 110572
    num_examples: 320
  - name: test
    num_bytes: 222192
    num_examples: 638
  download_size: 515415
  dataset_size: 1081960
- config_name: kin
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 878746
    num_examples: 2116
  - name: validation
    num_bytes: 120998
    num_examples: 302
  - name: test
    num_bytes: 258638
    num_examples: 605
  download_size: 633024
  dataset_size: 1258382
- config_name: lug
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 611917
    num_examples: 1428
  - name: validation
    num_bytes: 70058
    num_examples: 200
  - name: test
    num_bytes: 183063
    num_examples: 407
  download_size: 445755
  dataset_size: 865038
- config_name: luo
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 314995
    num_examples: 644
  - name: validation
    num_bytes: 43506
    num_examples: 92
  - name: test
    num_bytes: 87716
    num_examples: 186
  download_size: 213281
  dataset_size: 446217
- config_name: pcm
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 868229
    num_examples: 2124
  - name: validation
    num_bytes: 126829
    num_examples: 306
  - name: test
    num_bytes: 262185
    num_examples: 600
  download_size: 572054
  dataset_size: 1257243
- config_name: swa
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 1001120
    num_examples: 2109
  - name: validation
    num_bytes: 128563
    num_examples: 300
  - name: test
    num_bytes: 272108
    num_examples: 604
  download_size: 686313
  dataset_size: 1401791
- config_name: wol
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 602076
    num_examples: 1871
  - name: validation
    num_bytes: 71535
    num_examples: 267
  - name: test
    num_bytes: 191484
    num_examples: 539
  download_size: 364463
  dataset_size: 865095
- config_name: yor
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-PER
          2: I-PER
          3: B-ORG
          4: I-ORG
          5: B-LOC
          6: I-LOC
          7: B-DATE
          8: I-DATE
  splits:
  - name: train
    num_bytes: 1016741
    num_examples: 2171
  - name: validation
    num_bytes: 127415
    num_examples: 305
  - name: test
    num_bytes: 359519
    num_examples: 645
  download_size: 751510
  dataset_size: 1503675
---

# Dataset Card for MasakhaNER

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [homepage](https://github.com/masakhane-io/masakhane-ner)
- **Repository:** [github](https://github.com/masakhane-io/masakhane-ner)
- **Paper:** [paper](https://arxiv.org/abs/2103.11811)
- **Point of Contact:** [Masakhane](https://www.masakhane.io/) or [email protected]

### Dataset Summary

MasakhaNER is the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages.

Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example:

[PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .

MasakhaNER is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for ten African languages:
- Amharic
- Hausa
- Igbo
- Kinyarwanda
- Luganda
- Luo
- Nigerian-Pidgin
- Swahili
- Wolof
- Yoruba

The train/validation/test sets are available for all the ten languages.

For more details see https://arxiv.org/abs/2103.11811


### Supported Tasks and Leaderboards

[More Information Needed]

- `named-entity-recognition`: The performance in this task is measured with [F1](https://huggingface.co/metrics/f1) (higher is better). A named entity is correct only if it is an exact match of the corresponding entity in the data.

### Languages

There are ten languages available :
- Amharic (amh)
- Hausa (hau)
- Igbo (ibo)
- Kinyarwanda (kin)
- Luganda (kin)
- Luo (luo)
- Nigerian-Pidgin (pcm)
- Swahili (swa)
- Wolof (wol)
- Yoruba (yor)

## Dataset Structure

### Data Instances

The examples look like this for Yorùbá:

```
from datasets import load_dataset
data = load_dataset('masakhaner', 'yor') 

# Please, specify the language code

# A data point consists of sentences seperated by empty line and tab-seperated tokens and tags. 
{'id': '0',
 'ner_tags': [B-DATE, I-DATE, 0, 0, 0, 0, 0, B-PER, I-PER, I-PER, O, O, O, O],
 'tokens': ['Wákàtí', 'méje', 'ti', 'ré', 'kọjá', 'lọ', 'tí', 'Luis', 'Carlos', 'Díaz', 'ti', 'di', 'awati', '.']
}
```

### Data Fields

- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token

The NER tags correspond to this list:
```
"O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-DATE", "I-DATE",
```

In the NER tags, a B denotes the first item of a phrase and an I any non-initial word. There are four types of phrases: person names (PER), organizations (ORG), locations (LOC) and dates & time (DATE).

It is assumed that named entities are non-recursive and non-overlapping. In case a named entity is embedded in another named entity usually, only the top level entity is marked.

### Data Splits

For all languages, there are three splits.

The original splits were named `train`, `dev` and `test` and they correspond to the `train`, `validation` and `test` splits.

The splits have the following sizes :

| Language        | train | validation | test |
|-----------------|------:|-----------:|-----:|
| Amharic         |  1750 |        250 |  500 |
| Hausa           |  1903 |        272 |  545 |
| Igbo            |  2233 |        319 |  638 |
| Kinyarwanda     |  2110 |        301 |  604 |
| Luganda         |  2003 |        200 |  401 |
| Luo             |   644 |         92 |  185 |
| Nigerian-Pidgin |  2100 |        300 |  600 |
| Swahili         |  2104 |        300 |  602 |
| Wolof           |  1871 |        267 |  536 |
| Yoruba          |  2124 |        303 |  608 |

## Dataset Creation

### Curation Rationale

The dataset was introduced to introduce new resources to ten languages that were under-served for natural language processing.

[More Information Needed]

### Source Data

The source of the data is from the news domain, details can be found here https://arxiv.org/abs/2103.11811

#### Initial Data Collection and Normalization

The articles were word-tokenized, information on the exact pre-processing pipeline is unavailable.

#### Who are the source language producers?

The source language was produced by journalists and writers employed by the news agency and newspaper mentioned above.

### Annotations

#### Annotation process

Details can be found here https://arxiv.org/abs/2103.11811

#### Who are the annotators?

Annotators were recruited from [Masakhane](https://www.masakhane.io/)

### Personal and Sensitive Information

The data is sourced from newspaper source and only contains mentions of public figures or individuals

## Considerations for Using the Data

### Social Impact of Dataset
[More Information Needed]


### Discussion of Biases
[More Information Needed]


### Other Known Limitations

Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.

## Additional Information

### Dataset Curators


### Licensing Information

The licensing status of the data is CC 4.0 Non-Commercial

### Citation Information

Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@article{Adelani2021MasakhaNERNE,
  title={MasakhaNER: Named Entity Recognition for African Languages},
  author={D. Adelani and Jade Abbott and Graham Neubig and Daniel D'Souza and Julia Kreutzer and Constantine Lignos 
  and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and 
  Israel Abebe Azime and S. Muhammad and Chris C. Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and 
  Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and J. Alabi and Seid Muhie Yimam and Tajuddeen R. Gwadabe and
  Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and V. Otiende and Iroro Orife and Davis David and 
  Samba Ngom and Tosin P. Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and 
  C. Chukwuneke and N. Odu and Eric Peter Wairagala and S. Oyerinde and Clemencia Siro and Tobius Saul Bateesa and 
  Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and 
  Ayodele Awokoya and Mouhamadane Mboup and D. Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and
   Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and 
   Thierno Ibrahima Diop and A. Diallo and Adewale Akinfaderin and T. Marengereke and Salomey Osei},
  journal={ArXiv},
  year={2021},
  volume={abs/2103.11811}
}
```

### Contributions

Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset.