Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
topic-classification
Size:
10K - 100K
License:
File size: 7,979 Bytes
e50c3ac 1c716b0 e50c3ac 1c716b0 8200f8a 1c716b0 8ccc72e 1c716b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
annotations_creators:
- expert-generated
language:
- am
- en
- fr
- ha
- ig
- ln
- lg
- om
- pcm
- rn
- sn
- so
- sw
- ti
- xh
- yo
language_creators:
- expert-generated
license:
- afl-3.0
multilinguality:
- multilingual
pretty_name: masakhanews
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- news-topic
- masakhanews
- masakhane
task_categories:
- text-classification
task_ids:
- topic-classification
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [homepage](https://github.com/masakhane-io/masakhane-news)
- **Repository:** [github](https://github.com/masakhane-io/masakhane-news)
- **Paper:** [paper]()
- **Point of Contact:** [Masakhane](https://www.masakhane.io/) or [email protected]
### Dataset Summary
MasakhaNEWS is the largest publicly available dataset for news topic classification in 16 languages widely spoken in Africa.
The train/validation/test sets are available for all the 16 languages.
### Supported Tasks and Leaderboards
[More Information Needed]
- `news topic classification`: categorize news articles into new topics e.g business, sport sor politics.
### Languages
There are 16 languages available :
- Amharic (amh)
- English (eng)
- French (fra)
- Hausa (hau)
- Igbo (ibo)
- Lingala (lin)
- Luganda (lug)
- Oromo (orm)
- Nigerian Pidgin (pcm)
- Rundi (run)
- chShona (sna)
- Somali (som)
- Kiswahili (swą)
- Tigrinya (tir)
- isiXhosa (xho)
- Yorùbá (yor)
## Dataset Structure
### Data Instances
The examples look like this for Yorùbá:
```
from datasets import load_dataset
data = load_dataset('masakhane/masakhanews', 'yor')
# Please, specify the language code
# A data point example is below:
{
'label': 0,
'headline': "'The barriers to entry have gone - go for it now'",
'text': "j Lalvani, CEO of Vitabiotics and former Dragons' Den star, shares his business advice for our CEO Secrets series.\nProduced, filmed and edited by Dougal Shaw",
'headline_text': "'The barriers to entry have gone - go for it now' j Lalvani, CEO of Vitabiotics and former Dragons' Den star, shares his business advice for our CEO Secrets series.\nProduced, filmed and edited by Dougal Shaw",
'url': '/news/business-61880859'
}
```
### Data Fields
- `label`: news topic id
- `headline`: news title/headline
- `text`: news body
- `headline_text`: concatenation of headline and news body
- `url`: website address
The news topics correspond to this list:
```
"business", "entertainment", "health", "politics", "religion", "sports", "technology"
```
### Data Splits
For all languages, there are three splits.
The original splits were named `train`, `dev` and `test` and they correspond to the `train`, `validation` and `test` splits.
The splits have the following sizes :
| Language | train | validation | test |
|-----------------|------:|-----------:|-----:|
| Amharic | 1311 | 188 | 376 |
| English | 3309 | 472 | 948 |
| French | 1476 | 211 | 422 |
| Hausa | 2219 | 317 | 637 |
| Igbo | 1356 | 194 | 390 |
| Lingala | 608 | 87 | 175 |
| Luganda | 771 | 110 | 223 |
| Oromo | 1015 | 145 | 292 |
| Nigerian-Pidgin | 1060 | 152 | 305 |
| Rundi | 1117 | 159 | 322 |
| chiShona | 1288 | 185 | 369 |
| Somali | 1021 | 148 | 294 |
| Kiswahili | 1658 | 237 | 476 |
| Tigrinya | 947 | 137 | 272 |
| isiXhosa | 1032 | 147 | 297 |
| Yoruba | 1433 | 206 | 411 |
## Dataset Creation
### Curation Rationale
The dataset was introduced to introduce new resources to 20 languages that were under-served for natural language processing.
[More Information Needed]
### Source Data
The source of the data is from the news domain, details can be found here ****
#### Initial Data Collection and Normalization
The articles were word-tokenized, information on the exact pre-processing pipeline is unavailable.
#### Who are the source language producers?
The source language was produced by journalists and writers employed by the news agency and newspaper mentioned above.
### Annotations
#### Annotation process
Details can be found here **
#### Who are the annotators?
Annotators were recruited from [Masakhane](https://www.masakhane.io/)
### Personal and Sensitive Information
The data is sourced from newspaper source and only contains mentions of public figures or individuals
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Users should keep in mind that the dataset only contains news text, which might limit the applicability of the developed systems to other domains.
## Additional Information
### Dataset Curators
### Licensing Information
The licensing status of the data is CC 4.0 Non-Commercial
### Citation Information
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@article{Adelani2023MasakhaNEWS,
title={MasakhaNEWS: News Topic Classification for African languages},
author={David Ifeoluwa Adelani and Marek Masiak and Israel Abebe Azime and Jesujoba Oluwadara Alabi and Atnafu Lambebo Tonja and Christine Mwase and Odunayo Ogundepo and Bonaventure F. P. Dossou and Akintunde Oladipo and Doreen Nixdorf and Chris Chinenye Emezue and Sana Sabah al-azzawi and Blessing K. Sibanda and Davis David and Lolwethu Ndolela and Jonathan Mukiibi and Tunde Oluwaseyi Ajayi and Tatiana Moteu Ngoli and Brian Odhiambo and Abraham Toluwase Owodunni and Nnaemeka C. Obiefuna and Shamsuddeen Hassan Muhammad and Saheed Salahudeen Abdullahi and Mesay Gemeda Yigezu and Tajuddeen Gwadabe and Idris Abdulmumin and Mahlet Taye Bame and Oluwabusayo Olufunke Awoyomi and Iyanuoluwa Shode and Tolulope Anu Adelani and Habiba Abdulganiy Kailani and Abdul-Hakeem Omotayo and Adetola Adeeko and Afolabi Abeeb and Anuoluwapo Aremu and Olanrewaju Samuel and Clemencia Siro and Wangari Kimotho and Onyekachi Raphael Ogbu and Chinedu E. Mbonu and Chiamaka I. Chukwuneke and Samuel Fanijo and Jessica Ojo and Oyinkansola F. Awosan and Tadesse Kebede Guge and Sakayo Toadoum Sari and Pamela Nyatsine and Freedmore Sidume and Oreen Yousuf and Mardiyyah Oduwole and Ussen Kimanuka and Kanda Patrick Tshinu and Thina Diko and Siyanda Nxakama and Abdulmejid Tuni Johar and Sinodos Gebre and Muhidin Mohamed and Shafie Abdi Mohamed and Fuad Mire Hassan and Moges Ahmed Mehamed and Evrard Ngabire and and Pontus Stenetorp},
journal={ArXiv},
year={2023},
volume={}
}
```
### Contributions
Thanks to [@dadelani](https://github.com/dadelani) for adding this dataset. |