File size: 4,981 Bytes
f550567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import csv
import json
import os
from copy import deepcopy
import datasets
_CITATION = """\
@InProceedings{boyd2018wnut,
author = {Adriane Boyd},
title = {Using Wikipedia Edits in Low Resource Grammatical Error Correction},
booktitle = {Proceedings of the 4th Workshop on Noisy User-generated Text},
publisher = {Association for Computational Linguistics},
year = {2018},
url = {http://aclweb.org/anthology/W18-6111}
}
"""
_DESCRIPTION = """\
Falko-MERLIN is a grammatical error correction corpus consisting of essays and exams.
"""
_HOMEPAGE = "https://github.com/adrianeboyd/boyd-wnut2018"
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International"
_URLS = {
"falko_merlin_wikipedia": "http://www.sfs.uni-tuebingen.de/~adriane/download/wnut2018/data.tar.gz"
}
class FalkoMERLIN(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"src_tokens": datasets.Sequence(datasets.Value("string")),
"tgt_tokens": datasets.Sequence(datasets.Value("string")),
"corrections": [{
"idx_src": datasets.Sequence(datasets.Value("int32")),
"idx_tgt": datasets.Sequence(datasets.Value("int32")),
"corr_type": datasets.Value("string")
}]
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS["falko_merlin_wikipedia"]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"file_path": os.path.join(data_dir, "data", "fm-train.m2")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"file_path": os.path.join(data_dir, "data", "fm-dev.m2")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"file_path": os.path.join(data_dir, "data", "fm-test.m2")}
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, file_path):
skip_edits = {"noop", "UNK", "Um"}
with open(file_path, "r", encoding="utf-8") as f:
idx_ex = 0
src_sent, tgt_sent, corrections, offset = None, None, [], 0
for idx_line, _line in enumerate(f):
line = _line.strip()
if len(line) > 0:
prefix, remainder = line[0], line[2:]
if prefix == "S":
src_sent = remainder.split(" ")
tgt_sent = deepcopy(src_sent)
elif prefix == "A":
annotation_data = remainder.split("|||")
idx_start, idx_end = map(int, annotation_data[0].split(" "))
edit_type, edit_text = annotation_data[1], annotation_data[2]
if edit_type in skip_edits:
continue
formatted_correction = {
"idx_src": list(range(idx_start, idx_end)),
"idx_tgt": [],
"corr_type": edit_type
}
annotator_id = int(annotation_data[-1])
assert annotator_id == 0
removal = len(edit_text) == 0 or edit_text == "-NONE-"
if removal:
for idx_to_remove in range(idx_start, idx_end):
del tgt_sent[offset + idx_to_remove]
offset -= 1
else: # replacement/insertion
edit_tokens = edit_text.split(" ")
len_diff = len(edit_tokens) - (idx_end - idx_start)
formatted_correction["idx_tgt"] = list(
range(offset + idx_start, offset + idx_end + len_diff))
tgt_sent[offset + idx_start: offset + idx_end] = edit_tokens
offset += len_diff
corrections.append(formatted_correction)
else: # empty line, indicating end of example
yield idx_ex, {
"src_tokens": src_sent,
"tgt_tokens": tgt_sent,
"corrections": corrections
}
src_sent, tgt_sent, corrections, offset = None, None, [], 0
idx_ex += 1
|