dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3019
a5f01bb3646545dba3379294f4cef974
[ "2011年六年级竞赛创新杯" ]
0
single_choice
有$$8$$个数,$$0.\dot{5}\dot{1}$$,$$0.5\dot{1}$$,$$\frac{2}{3}$$,$$\frac{5}{9}$$,$$\frac{24}{47}$$,$$\frac{13}{25}$$是其中的$$6$$个,如果按照从小到大的顺序排列,第$$4$$个数是$$0.5\dot{1}$$,那么从大到小排列时,第$$4$$个数是( )
[ [ { "aoVal": "A", "content": "$$0.\\dot{5}\\dot{1}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{5}{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{24}{47}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{13}{25}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合" ]
[ "六个数的大小关系为$$\\frac{24}{47} \\textless{} 0.5\\dot{1} \\textless{} 0.\\dot{5}\\dot{1} \\textless{} \\frac{13}{25} \\textless{} \\frac{5}{9} \\textless{} \\frac{2}{3}$$,根据已知条件,$$0.5\\dot{1}$$为从小到大第四个,所以从大到小排列第四个数为$$0.\\dot{5}\\dot{1}$$。 " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2301
f7556eaf07644e3d8b3548d81a747087
[ "六年级上学期其它第12讲", "2011年北京五年级竞赛" ]
2
single_choice
甲、乙二人以均匀的速度分别从$$A$$,$$B$$两地同时出发,相向而行,他们第一次相遇地点离$$A$$地$$4$$千米,相遇后二人继续前进,走到对方出发点后立即返回,在距$$B$$地$$3$$千米处第二次相遇,求两次相遇地点之间的距离是多少千米?
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$4\\times 3=12$$(千米),通过画图,我们发现甲走了一个全程多了回来那一段,就是距$$B$$地的$$3$$千米,所以全程是$$12-3=9$$(千米),两次相遇点相距$$9-\\left( 3+4 \\right)=2$$(千米). " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3126
fe6cd8dee82a42b8a8988f5268092665
[ "2006年第4届创新杯五年级竞赛初赛B卷第10题", "2006年五年级竞赛创新杯" ]
2
single_choice
红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有( )排座位上坐的人数相同.
[ [ { "aoVal": "A", "content": "3 " } ], [ { "aoVal": "B", "content": "4 " } ], [ { "aoVal": "C", "content": "5 " } ], [ { "aoVal": "D", "content": "6 " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "每一排坐的人数都不同最多可坐$$\\left( 7+30 \\right)\\div 2\\times 24=444$$人 每一排坐的人数有$$2$$个相同最多可坐$$30\\times 2+29\\times 2+......+19\\times 2=588 \\textless{} 650$$ 每一排坐的人数有$$3$$个相同最多可坐$$30\\times 3+29\\times 3+......+23\\times 3=636 \\textless{} 650$$ 每一排坐的人数有$$4$$个相同最多可坐$$30\\times 4+29\\times 4+......+25\\times 4=660\\textgreater650$$ 故,至少有$$4$$排座位上人数相同 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1710
72c0104114e9461b8ad1aae84f165a70
[ "2006年第4届创新杯五年级竞赛初赛B卷第6题", "2006年五年级竞赛创新杯" ]
2
single_choice
购买十种货物$${{A}_{1}}$$,$${{A}_{2}}$$,$${{A}_{3}}\cdots {{A}_{10}}$$,如果购买件数依次为$$1$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$,$$8$$,$$9$$,$$10$$,$$11$$件,共需人民$$1995$$元,如果购买件数依次为$$1$$,$$5$$,$$7$$,$$9$$,$$11$$,$$13$$,$$15$$,$$17$$,$$19$$,$$21$$件,共需人民币$$3000$$元,那么各购买一件共需人民币( ).
[ [ { "aoVal": "A", "content": "1000元 " } ], [ { "aoVal": "B", "content": "900元 " } ], [ { "aoVal": "C", "content": "990元 " } ], [ { "aoVal": "D", "content": "980元 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "将第一种方案购买件数同时都扩大2倍,则购买货物$${{A}_{1}}$$、$${{A}_{2}}$$、$${{A}_{3}}$$、$$\\cdots$$、$${{A}_{10}}$$的件数依次为$$2$$,$$6$$,$$8$$,$$10$$,$$12$$,$$14$$,$$16$$,$$18$$,$$20$$,$$22$$件,需人民币$$1995\\times 2=3990$$(元),所以各购买一件共需人民币$$3990-3000=990$$(元). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3465
d47c1e8b52474512b3b8dae7366ee8cf
[ "2019年第24届YMO一年级竞赛决赛第6题3分" ]
1
single_choice
2019年第$$24$$届$$YMO$$一年级竞赛决赛第$$6$$题$$3$$分 The sum of the ten digits and the single digit is $$12$$, and there are a total of such two-digit numbers. 十位数字和个位数字相加的和是$$12$$,这样的两位数一共有个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->整数分拆->简单拆分->加法拆数(指定个数)", "Overseas Competition->知识点->计数模块->枚举法综合->枚举法" ]
[ "两位数的十位数字与个位数字之和为$$12$$, 而数字均为$$0\\sim 9$$,故枚举得: $$93$$,$$84$$,$$75$$,$$66$$,$$57$$,$$48$$,$$39$$共$$7$$个. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1101
0c495afbdc884e7ea254ae7ae3820125
[ "2017年全国亚太杯五年级竞赛初赛第6题" ]
1
single_choice
小明、小红、小刚三人拥有的藏书数量之比为$$3:5:8$$,三人一共藏书$$48$$本,那么小刚的藏书数量是多少本?
[ [ { "aoVal": "A", "content": "$$16$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->比例应用题->按比分配" ]
[ "设小刚的藏书数量为$$8$$份,则小明和小红的藏书数量分别为$$3$$份和$$5$$份所以一份为$$48\\div \\left( 3+5+8 \\right)=3$$(本). 所以小刚的藏书数量是$$8\\times 3=24$$ (本). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3223
3539eb83adb24f4cbc475eeb04df638d
[ "2017年全国华杯赛竞赛初赛模拟试卷2第4题" ]
1
single_choice
两个小数的整数部分分别是$$5$$和$$9$$,那么这两个小数的乘积的整数部分有( ~)中可能的值.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$10$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "设整数部分为$$5$$的小数为$$a$$,则$$5\\leqslant a\\textless6$$,整数部分为$$9$$的小数为$$b$$,则$$9\\leqslant b\\textless10$$,那么$$5\\times9\\leqslant a\\times b\\textless6\\times10$$,所以$$a\\times b$$的整数部分可以等于$$45$$至$$59$$之间的任意整数,共$$15$$种可能. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2246
f1958ef111784958811c3a1c2ab624d1
[ "2011年第7届全国新希望杯六年级竞赛第3题4分" ]
1
single_choice
下列时刻中,时针和分针所成的角最接近$$30{}^{}\circ $$是.
[ [ { "aoVal": "A", "content": "$$3:27$$ " } ], [ { "aoVal": "B", "content": "$$4:17$$ " } ], [ { "aoVal": "C", "content": "$$5:14$$ " } ], [ { "aoVal": "D", "content": "$$6:22$$ " } ] ]
[ "知识标签->拓展思维->行程模块->时钟问题->时钟上的追及问题->已知时间求角度" ]
[ "b选项:$4\\times30-(6-0.5)=26.5^{\\circ}$,离$$30$$度最近,故选$$b$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
845
9671beee77574902b189ccaddcb00711
[ "2011年第9届全国创新杯小学高年级六年级竞赛第9题" ]
2
single_choice
符号$$\left[ x \right]$$表示不大于$$x$$的最大整数,例如$$\left[ 5 \right]=5$$、$$\left[ 6.31 \right]=6$$,如果$$\left[ \frac{3x+7}{7} \right]=4$$,这样的正整数$$x$$有.
[ [ { "aoVal": "A", "content": "$$3$$个 " } ], [ { "aoVal": "B", "content": "$$4$$个 " } ], [ { "aoVal": "C", "content": "$$5$$个 " } ], [ { "aoVal": "D", "content": "$$2$$个 " } ] ]
[ "知识标签->拓展思维->数论模块->高斯记号->高斯记号的复杂应用" ]
[ "根据高斯函数的性质,可得$4\\leqslant\\dfrac{3x+7}{7}\\lt5$,解得$$7\\leqslant x\\leqslant 9$$,对应的整数共$$3$$个数. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1184
f0fb91cbb3194287be39d6b9ef325cdb
[ "2015年第11届全国新希望杯五年级竞赛复赛第1题" ]
1
single_choice
某班五名同学在一次数学考试中的平均成绩为$$105.4$$分,其中四名同学的成绩分别为$$120$$分、$$90$$分、$$102$$分、$$99$$分,那么另外一名同学的成绩是(~~~ ).
[ [ { "aoVal": "A", "content": "$$106$$分 " } ], [ { "aoVal": "B", "content": "$$110$$分 " } ], [ { "aoVal": "C", "content": "$$114$$分 " } ], [ { "aoVal": "D", "content": "$$116$$分 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "$$105.4\\times 5-120-90-102-99=116$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3121
f9ae7cd754574f408aa4a4f9e1262255
[ "2017年全国华杯赛小学高年级竞赛" ]
1
single_choice
用$$p$$代表黄金分割数,是无限不循环小数,若取小数点后三位时,$$p=0.618$$;取小数点后十位时,$$p=0.6180339887$$这,则(~ )是一个错误的判断.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{p}$$代表一个特定的数 " } ], [ { "aoVal": "B", "content": "$${{p}^{2}}$$代表一个特定的数 " } ], [ { "aoVal": "C", "content": "$$p$$代表一个尚未确定的数 " } ], [ { "aoVal": "D", "content": "$$\\frac{1-p}{p}$$代表一个特定的数 " } ] ]
[ "拓展思维->拓展思维->计算模块->小数->循环小数->循环小数的概念" ]
[ "如果圆周率$$\\pi $$,黄金分割数量个特定的无限不循环小数,则$$\\frac{1}{p}$$,$${{p}^{2}}$$和$$\\frac{1-p}{p}$$都是特定的数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2510
8b148c006d904c0c86890dc9bdeaa7c3
[ "2014年全国迎春杯六年级竞赛复赛第2题" ]
2
single_choice
对于任何自然数,定义$$n!=1\times 2\times 3\times \cdots \times n$$.那么算式$$2022!-3!$$的计算结果的个位数字是.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "由新定义:$$n!=1\\times 2\\times 3\\times \\ldots\\times n$$得: $$2014!=1\\times 2\\times 3\\times 4\\times 5\\times \\ldots\\times 2021\\times 2022$$ $$=1\\times 3\\times 4\\times 6\\times 7\\times 8\\times \\ldots\\times 2021\\times 2022\\times 10$$ 所以$$1\\times 3\\times 4\\times 6\\times 7\\times 8\\times \\ldots\\times 2021\\times 2022\\times 10$$是$$10$$的倍数, 所以$$2022!$$的个位数为$$0$$; $$3!=1\\times 2\\times 3=6$$ 所以$$2022!-3!$$的个位数也就为:$$10-6=4$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1041
070f7b7b9f0d4a8b92587b575f200be2
[ "2018年第22届广东世界少年奥林匹克数学竞赛三年级竞赛决赛第4题5分" ]
0
single_choice
``数学趣味题数学趣味题$$\cdots \cdots $$''依次重复排列,第$$2019$$个字是.
[ [ { "aoVal": "A", "content": "趣 " } ], [ { "aoVal": "B", "content": "味 " } ], [ { "aoVal": "C", "content": "题 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "观察题干可知,$$5$$个字一个循环周期,分别按照数、学、趣、味、题,依次排列,据此求出第$$2019$$个字是第几个循环周期的第几个字即可解答问题. $$2019\\div 5=403$$(组)$$\\cdots \\cdots 4$$(个), 所以第$$2019$$个字是第$$403$$循环周期的第$$4$$个字,是``味''. 答:第$$2019$$个字是味. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1160
112e904a22e14040a556b9ef625cdc7d
[ "2009年五年级竞赛创新杯" ]
1
single_choice
2008年父亲的年龄是兄弟二人年龄之和的2倍,是兄弟两人年龄差的7倍,父子三人年龄之和为84,那么哥哥生于( )年.
[ [ { "aoVal": "A", "content": "1995 " } ], [ { "aoVal": "B", "content": "1990 " } ], [ { "aoVal": "C", "content": "1992 " } ], [ { "aoVal": "D", "content": "1989 " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之当当型->年龄轴" ]
[ "设父亲年龄为x岁,兄弟二人的年龄分别为a岁、b岁,$$\\left( a\\textgreater b \\right)$$.则$$x=2\\left( a+b \\right)=7\\left( a-b \\right)$$,且$$x+a+b=84$$.将$$a+b=84-x$$代入$$x=2\\left( a+b \\right)$$得$$x=2\\left( 84-x \\right)$$,$$3x=84\\times 2$$.从而$$x=56$$,所以$$a+b=28$$,$$ab=8$$.因此$$a=18$$,$$b=10$$,哥哥生于1990年. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2631
ac001b3dc65a4d47a761b6b355e638fa
[ "2021年新希望杯六年级竞赛初赛第11题5分" ]
2
single_choice
小糊涂遇到一个问题:比较$$\frac{99}{100}$$,$$ \frac{100}{101}$$,$$\frac{199}{201}$$的大小.他感到很迷糊,请你帮他找到正确的答案.
[ [ { "aoVal": "A", "content": "$$\\frac{99}{100}\\textgreater{} \\frac{100}{101}\\textgreater{} \\frac{199}{201}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{199}{201}\\textgreater{} \\frac{100}{101}\\textgreater{} \\frac{99}{100}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{99}{100}\\textgreater{} \\frac{199}{201}\\textgreater{} \\frac{100}{101}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{100}{101}\\textgreater{} \\frac{199}{201}\\textgreater\\frac{99}{100}$$ " } ], [ { "aoVal": "E", "content": "$$\\frac{100}{101}\\textgreater{} \\frac{99}{100}\\textgreater{} \\frac{199}{201}$$ " } ] ]
[ "拓展思维->能力->数感认知->分数数字加工" ]
[ "$$\\frac{99}{100}=1- \\frac{1}{100}=1- \\frac{2}{200}$$, $$\\frac{100}{101}=1- \\frac{1}{101}=1- \\frac{2}{202}$$, $$\\frac{199}{201}=1- \\frac{2}{201}$$, 因为$$\\frac{2}{202}\\textless{} \\frac{2}{201}\\textless{} \\frac{2}{200}$$, 所以$$1- \\frac{2}{202}\\textgreater1- \\frac{2}{201}\\textgreater1- \\frac{2}{200}$$, 即$$\\frac{100}{101}\\textgreater{} \\frac{199}{201}\\textgreater{} \\frac{99}{100}$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2427
100e6e2a9f6e4fb8b264121451fe6b62
[ "2020年福建河仁杯六年级竞赛初赛A卷第1题" ]
2
single_choice
计算:$$\frac{3}{{{1}^{2}}+1}-\frac{5}{{{2}^{2}}+2}+\frac{7}{{{3}^{2}}+3}-\frac{9}{{{4}^{2}}+4}+\cdots +\frac{4039}{{{2019}^{2}}+2019}-\frac{4041}{{{2020}^{2}}+2020}$$.
[ [ { "aoVal": "A", "content": "$$\\frac{2018}{2019}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2020}{2021}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{2019}{2020}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{2021}{2022}$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\frac{3}{{{1}^{2}}+1}-\\frac{5}{{{2}^{2}}+2}+\\frac{7}{{{3}^{2}}+3}-\\frac{9}{{{4}^{2}}+4}+\\cdots +\\frac{4039}{{{2019}^{2}}+2019}-\\frac{4041}{{{2020}^{2}}+2021}$$ $$=\\frac{3}{1\\times 2}-\\frac{5}{2\\times 3}+\\frac{7}{3\\times 4}-\\frac{9}{4\\times 5}+\\cdots +\\frac{4039}{2019\\times 2020}-\\frac{4041}{2020\\times 2021}$$ $$=\\left( 1+\\frac{1}{2} \\right)-\\left( \\frac{1}{2}+\\frac{1}{3} \\right)+\\left( \\frac{1}{3}+\\frac{1}{4} \\right)-\\left( \\frac{1}{4}+\\frac{1}{5} \\right)+\\cdots +\\left( \\frac{1}{2019}+\\frac{1}{2020} \\right)-\\left( \\frac{1}{2020}+\\frac{1}{2021} \\right)$$ $$=1+\\frac{1}{2}-\\frac{1}{2}-\\frac{1}{3}+\\frac{1}{3}+\\frac{1}{4}-\\frac{1}{4}-\\frac{1}{5}+\\cdots +\\frac{1}{2019}+\\frac{1}{2020}-\\frac{1}{2020}-\\frac{1}{2021}$$ $$=1-\\frac{1}{2021}$$ $$=\\frac{2020}{2021}$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
108
d9cb6c5c89ba4e13b97eed2588f694d8
[ "2014年华杯赛六年级竞赛初赛" ]
2
single_choice
小华下午$$2$$点要到少年宫参加活动,但他的手表每个小时快了$$4$$分钟,他特意在上午$$10$$点时对好了表。当小华按照自己的表于下午$$2$$点到少年宫时,实际早到了( )分钟。
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ], [ { "aoVal": "D", "content": "$$17$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->时间计算" ]
[ "解:依题意可知: 上午十点对好表,标准钟每小时走$$60$$格,小华的表快$$4$$分钟每小时走$$64$$格。路程比例为$$15:16$$。 当小华的表为下午$$2$$点时,小华的表走了$$4$$圈共$$240$$格。 根据比例关系设标准钟走的路程为$$x$$,则有$$15:16=x:240$$,解得$$x=225$$。 $$240-225=15$$(分钟)。 故选:B " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1664
4ece93595c12425ebf3b895cc4982e44
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛决赛第1题5分" ]
0
single_choice
$$2019$$年元旦是星期二,当年的国庆节是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "从$$2019$$年的$$1$$月$$1$$日至$$2019$$年的$$10$$月$$1$$日共:$$31+28+31+30+31+30+31+31+30+1=274$$(天), 根据``二、三、四、五、六、日、一''的周期规律:$$274\\div 7=39$$(周)$$\\cdots \\cdots 1$$(天). 所以$$10$$月$$1$$日是这个周期的第$$1$$天,即星期二. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1795
924aee10a21d474baae0f11132ccc5d4
[ "2018年第22届广东世界少年奥林匹克数学竞赛五年级竞赛决赛第1题5分" ]
1
single_choice
君君、嘉嘉、旭旭、宇宇四位同学这次考试的平均分是$$95$$分,如果去掉宇宇的成绩,则其他三位同学的平均分是$$94$$分,那么宇宇这次考了分.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$97$$ " } ], [ { "aoVal": "C", "content": "$$98$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "四位同学的总分为:$$95\\times4=380$$(分), 去掉宇宇总分:$$94\\times3=282$$(分), 故,宇宇的分数为:$$380-282=98$$(分). 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1507
686e06716f0d44aba382ad946ebafaea
[ "2019年第23届广东世界少年奥林匹克数学竞赛二年级竞赛初赛第6题5分" ]
1
single_choice
猴子摘桃,第一天摘了树上桃子的一半,第二天又摘了余下桃子的一半多$$1$$个,这时树上还有$$9$$个桃子,原来树上有个桃子.
[ [ { "aoVal": "A", "content": "$$32$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$42$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "根据题目叙述倒推,第二天又摘了余下桃子的一半多$$1$$个,这时树上还有$$9$$个桃子,所以第一天摘完还剩桃子$$\\left(9+1\\right)\\div\\frac{1}{2}=20$$(个),因为第一天摘了树上桃子的一半,所以原来树上有$$20\\div\\frac{1}{2}=40$$(个),所以答案为$$40$$个. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1203
34633ce4d27d44eca83a7dbfb7f88d5f
[ "2017年河南郑州联合杯小学高年级六年级竞赛初赛" ]
1
single_choice
甲数比乙数少$$20 \% $$,那么,乙数比甲数多(~ ).
[ [ { "aoVal": "A", "content": "$$20 \\% $$ " } ], [ { "aoVal": "B", "content": "$$25 \\% $$ " } ], [ { "aoVal": "C", "content": "$$30 \\% $$ " } ], [ { "aoVal": "D", "content": "$$22.5 \\% $$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->量率对应已知单位1" ]
[ "甲数比乙数少$$\\frac{1}{5}$$,设乙为5份,甲为4份,乙数比甲数多$$\\frac{5-4}{4}=\\frac{1}{4}=25 \\%$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2754
768fc09119714d7ca65b3c892dcb2a30
[ "2016年IMAS小学高年级竞赛第二轮检测试题第1题4分" ]
1
single_choice
请问算式$$666+669+699+999$$的值为多少?
[ [ { "aoVal": "A", "content": "$$2433$$ " } ], [ { "aoVal": "B", "content": "$$2970$$ " } ], [ { "aoVal": "C", "content": "$$2973$$ " } ], [ { "aoVal": "D", "content": "$$3030$$ " } ], [ { "aoVal": "E", "content": "$$3033$$ " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "$$666+669+699+999$$ $$=670+670+700+1000-4-1-1-1$$ $$=3040-7$$ $$=3033$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3358
6e9ae6622a3040229bb3eea76fa740f7
[ "2019年第24届YMO一年级竞赛决赛第6题3分" ]
1
single_choice
\textbf{(2019 Youth Mathematics Olympics, Primary 1, Question \#6)~} The sum of the ten digits and the single digit is $$12$$, and there are a total of such two-digit numbers. 十位数字和个位数字相加的和是$$12$$,这样的两位数一共有个.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "Overseas Competition->知识点->计数模块->枚举法综合->枚举法", "拓展思维->能力->逻辑分析" ]
[ "两位数的十位数字与个位数字之和为$$12$$, 而数字均为$$0\\sim 9$$,故枚举得: $$93$$,$$84$$,$$75$$,$$66$$,$$57$$,$$48$$,$$39$$共$$7$$个. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1474
561d2b6171c4464eb9e359c17b9bc6ca
[ "其它改编自2014年全国希望杯六年级竞赛初赛第6题" ]
2
single_choice
已知三个分数的和是$$\frac{10}{11}$$ ,并且它们的分母相同,分子的比是$$2:3:4$$ ,那么,这三个分数中最大的是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$\\frac{20}{99}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{30}{99}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{40}{99}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{50}{99}$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "假设分数的分母为$$y$$,分子分别为$$2x$$,$$3x$$,$$4x$$,根据题意$$\\frac{2x}{y}+\\frac{3x}{y}+\\frac{4x}{y}=\\frac{10}{11}$$,所以解出最大分数为$$\\frac{4x}{y}=\\frac{40}{99}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
78
98b5657c8d2e47c2a3d135db304cb333
[ "1989年华杯赛六年级竞赛初赛" ]
3
single_choice
一副扑克牌有四种花色,每种花色有$$13$$张,此外还有两张王牌,从中任意抽牌。那么,最少要抽张牌,才能保证有$$4$$张牌是同一花色。
[ [ { "aoVal": "A", "content": "$$14$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$16$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->抽屉原理->最不利原则" ]
[ "如果在最不利的情况下能完成目标,则保证在任何情况下都能完成。最不利的情况是:抽的前$$12$$张是$$4$$种花色各$$3$$张,再抽两张王牌,这时抽第$$15$$张,无论是哪种花色,都能保证凑成$$4$$张牌同一花色。所以至少要抽$$15$$张牌,才能保证有四张牌是同一花色的。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3061
b8b4f20de24b4a0e9a34ae50175a3365
[ "2020年希望杯五年级竞赛模拟第14题", "2020年新希望杯五年级竞赛第14题" ]
1
single_choice
艾迪在闯关游戏中遇到一个计算题:$$0.004186\times 8812345.321$$,下列选项中最接近计算结果的是.
[ [ { "aoVal": "A", "content": "$$3200$$ " } ], [ { "aoVal": "B", "content": "$$3600$$ " } ], [ { "aoVal": "C", "content": "$$32000$$ " } ], [ { "aoVal": "D", "content": "$$36000$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$0.004186\\times 8812345.321\\approx 0.004\\times 9000000=36000$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2916
adc51b42382d4a719e3829a04bc85277
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(三)第3题" ]
2
single_choice
小敏参加数学竞赛,题目的类型分为$$3$$种:$$A$$类题目每题$$7$$分,$$B$$类题目每题$$4$$分,$$C$$ 类题目每题$$1$$分.小敏考完后核对答案发现她一共做对了$$20$$道题目,那么小敏可能的得分是分.
[ [ { "aoVal": "A", "content": "$$51$$ " } ], [ { "aoVal": "B", "content": "$$67$$ " } ], [ { "aoVal": "C", "content": "$$86$$ " } ], [ { "aoVal": "D", "content": "$$100$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为$$1$$,$$4$$,$$7$$都是除以$$3$$余$$1$$的数,小敏答对$$20$$道题,$$\\left( 20\\times 1 \\right)\\div 3=6\\ldots \\ldots 2$$,所以她的分数也一定是除以$$3$$余$$2$$的数,综合比较$$A$$,$$B$$,$$C$$,$$D$$四个选项,不难发现,只有$$C$$选项符合题意,即小敏可能的得分是$$86$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
930
b863c4d0799c4e68b1006a39cf17fc09
[ "2018年迎春杯小学高年级竞赛决赛A卷第9题12分" ]
3
single_choice
算式$$\underbrace{20182018\cdots 2018}_{18个2018}\times 151514141313\cdots 0707$$的计算结果中有~\uline{~~~~~~~~~~}~个奇数数字.
[ [ { "aoVal": "A", "content": "$$60$$ " } ], [ { "aoVal": "B", "content": "$$63$$ " } ], [ { "aoVal": "C", "content": "$$72$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ], [ { "aoVal": "E", "content": "$$96$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想", "海外竞赛体系->知识点->数论模块->质数与合数->特殊质数运用->特殊质数2" ]
[ "设$$A=151514141313\\cdots 0707$$, ($$1$$)由四位数截断法知$$A$$是$$9999$$的倍数,不妨设$$A=9999B$$,则$$B$$是个$$32$$位数; ($$2$$)原式$$=\\underbrace{20182018\\cdots 2018}_{18个2018}\\times 9999\\times B=\\underbrace{99999999\\cdots 9999}_{18个9999}\\times 2018\\times B=\\underbrace{99\\cdots 9}_{72个9}\\times 2018\\times B$$ 因为$$2018\\times B$$是一个不超过$$72$$位的数,无论它是多少,$$\\underbrace{99\\cdots 9}_{72个9}\\times 2018\\times B$$的计算结果中都是$$72$$个奇数数字. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3050
f7fb117acadf4270a58dca23c6eaca94
[ "2020年广东广州羊排赛六年级竞赛第7题3分" ]
1
single_choice
在$$\frac{5}{7}$$,$$ \frac{2}{13}$$, $$\frac{3}{4}$$,$$\frac{10}{17}$$ 几个分数中,按从大到小排列,排在第二位的是.
[ [ { "aoVal": "A", "content": "$$\\frac{5}{7}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{13}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{17}$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "通分子,都变成$$30$$去比较大小 则从大到小排列排在第二位的是$$\\frac{5}{7}$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1570
ff8080814518d5240145190910980309
[ "2014年全国迎春杯五年级竞赛初赛第3题" ]
0
single_choice
一辆大卡车一次可以装煤$$2.5$$吨,现在要一次运走$$48$$吨煤,那么至少需要(~~~ ~)辆这样的大卡车.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$19$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$21$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "$$48\\div 2.5=19\\cdots 0.5$$,$$19+1=20$$(辆). " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1971
a1d10a2ebf3741328a06fc9d3cfe85e4
[ "2013年第11届全国创新杯五年级竞赛第6题5分" ]
2
single_choice
下列各组数中,平均数较大的是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$与$$101$$之间的$$2$$倍数 " } ], [ { "aoVal": "B", "content": "$$1$$与$$101$$之间的$$3$$倍数 " } ], [ { "aoVal": "C", "content": "$$1$$与$$101$$之间的$$4$$倍数 " } ], [ { "aoVal": "D", "content": "$$1$$与$$101$$之间的$$6$$倍数 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "根据等差数列相关概念可知,一个等差数列的平均数,其实就是这个数列的首项与末项的平均数,简化计算后易知$$1$$与$$101$$之间$$4$$的倍数的平均数最大,其值为$$(4+100)\\div 2=52$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1131
33dde079f5834b28baea4e56ef5873a4
[ "2014年广东广州羊排赛六年级竞赛第9题1分" ]
1
single_choice
往$$100$$克浓度为$$20 \%$$的盐水中加入$$10$$克水和$$10$$克盐,浓度变成.
[ [ { "aoVal": "A", "content": "$$20 \\%$$ " } ], [ { "aoVal": "B", "content": "$$25 \\%$$ " } ], [ { "aoVal": "C", "content": "$$27.5 \\%$$ " } ], [ { "aoVal": "D", "content": "$$30 \\%$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->浓度问题->浓度基本题型->已知溶质溶液求浓度" ]
[ "最后浓度变为$$\\frac{100\\times 20 \\%+10}{100+10+10}\\times 100 \\%=25 \\%$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1627
bf082ceb76294cbaba52e7082ce871a2
[ "2015年第4届广东广州羊排赛六年级竞赛第10题1分" ]
0
single_choice
某款机器人用``$$+$$''\,``$$-$$''符号分别表示向右走、向左走.如向右走$$3$$步记为``$$+3$$'',向左走$$2$$步记为``$$-2$$''.某天内,机器人的行走记录如下: $$+3$$、$$-5$$、$$+4$$、$$-2$$、$$+3$$ 最终机器人的位置在起点~\uline{~~~~~~~~~~}~方~\uline{~~~~~~~~~~}~步的地方.
[ [ { "aoVal": "A", "content": "左,$$2$$ " } ], [ { "aoVal": "B", "content": "左,$$3$$ " } ], [ { "aoVal": "C", "content": "右,$$2$$ " } ], [ { "aoVal": "D", "content": "右,$$3$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->加减法应用->加减法应用顺口溜" ]
[ "相当于共向右走了$$3+4+3=10$$(步),共向左走了$$5+2=7$$(步),$$10-7=3$$(步),相当于在起点右方$$3$$步的地方. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1910
aa17b0eeda1044eeab6524b91d0c7619
[ "2017年全国华杯赛小学中年级竞赛初赛模拟第1题", "小学中年级三年级上学期其它" ]
1
single_choice
甲乙两人在春节一共得$$200$$元压岁钱,甲给乙$$40$$元,甲和乙钱数相等,那么,原来甲得了~\uline{~~~~~~~~~~}~元压岁钱.
[ [ { "aoVal": "A", "content": "$$150$$ " } ], [ { "aoVal": "B", "content": "$$140$$ " } ], [ { "aoVal": "C", "content": "$$130$$ " } ], [ { "aoVal": "D", "content": "$$120$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->和差倍问题->和差问题->二量和差问题->明和暗差" ]
[ "因为甲给乙$$40$$元,甲和乙钱数相等,所以甲$$200+40\\times$$ 2=280(元),$$280\\div$$ 2=140(元) " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2831
5c63e8f531764df482c188b6d5f2159c
[ "2020年新希望杯六年级竞赛(2月)第25题" ]
1
single_choice
比较大小:$$1+ \frac{1}{2^{2}}+ \frac{1}{3^{2}}+ \frac{1}{4^{2}} \cdots + \frac{1}{2020^{2}}$$~\uline{~~~~~~~~~~}~$$2$$.
[ [ { "aoVal": "A", "content": "$$\\textgreater$$ " } ], [ { "aoVal": "B", "content": "$$\\textless{}$$ " } ], [ { "aoVal": "C", "content": "$$=$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}} ~\\textless{} ~\\frac{1}{1\\times 2}+\\frac{1}{2\\times 3}+\\cdots +\\frac{1}{1999\\times 2020}$$ $$=1-\\frac{1}{2020}=\\frac{2019}{2020}$$. ∴$$1+\\frac{1}{{{2}^{2}}}+\\frac{1}{{{3}^{2}}}+\\cdots +\\frac{1}{{{2020}^{2}}} ~\\textless{} ~1+\\frac{2019}{2020} ~\\textless{} ~2$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
197
da135a92e8204ea59f303092b26ecb62
[ "2017年第15届湖北武汉创新杯六年级竞赛初赛第7题" ]
2
single_choice
质料、型号相同的红、白、黑色袜子各$$5$$双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成$$2$$双(只要两只袜子同色,即为一双),至多摸出只.
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->能力->抽象概括" ]
[ "考虑最不利情况,先摸到一双,两只,再每种颜色各一只,共三只,再任意摸一只就可以配成两双,所以一共至多$$6$$只. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
758
450ab68529b348078d09b09d2de28aa9
[ "2016年全国小学生数学学习能力测评四年级竞赛复赛第7题3分" ]
0
single_choice
下列各数中,读出的``零''最多.
[ [ { "aoVal": "A", "content": "$$60006000$$ " } ], [ { "aoVal": "B", "content": "$$60606060$$ " } ], [ { "aoVal": "C", "content": "$$6006060$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->数与数字->数、数位、数字的认识" ]
[ "$$60006000$$读作六千万六千,没有读出``零''; $$60606060$$读作六千零六十万六千零六十,读了两个``零''; $$6006060$$读作六百万六千零六十,读了一个``零''. 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2422
25e9f239d53c4a4fbc66e6b8516bf58a
[ "2018年IMAS小学中年级竞赛(第一轮)第1题3分" ]
2
single_choice
请问算式$$19\times 1+19\times 3+19\times 5+19\times 7+\cdots +19\times 19$$的值等于什么?
[ [ { "aoVal": "A", "content": "$$1900$$ " } ], [ { "aoVal": "B", "content": "$$1919$$ " } ], [ { "aoVal": "C", "content": "$$2900$$ " } ], [ { "aoVal": "D", "content": "$$2919$$ " } ], [ { "aoVal": "E", "content": "$$3800$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数乘法巧算之提取公因数(普通型)" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde19\\times 1+19\\times 3+19\\times 5+19\\times 7+\\cdots +19\\times 19$$ $$=19\\times \\left( 1+3+5+7+\\cdots +19 \\right)$$ $$=19\\times \\frac{\\left( 1+19 \\right)\\times 10}{2}$$ $$=19\\times 100$$ $$=1900$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2884
6f2a5e83ff2f4d2493e6995377cd9832
[ "2018年第6届湖北长江杯六年级竞赛初赛A卷第6题3分" ]
1
single_choice
圆锥的底面圆的周长和它的体积.
[ [ { "aoVal": "A", "content": "成正比例 " } ], [ { "aoVal": "B", "content": "成反比例 " } ], [ { "aoVal": "C", "content": "不成比例 " } ], [ { "aoVal": "D", "content": "无选项 " } ] ]
[ "拓展思维->拓展思维->几何模块->立体图形->圆柱与圆锥->圆锥的基本公式" ]
[ "圆锥的底面周长表示为$$2\\pi r$$, 圆锥的体积表示为$$\\frac{1}{3}\\pi {{r}^{2}}$$, 两者之间没有任何关系,所以故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
161
8784f038e0e8496fa777ed4ee14f5a46
[ "2011年第7届全国新希望杯小学高年级六年级竞赛第6题4分" ]
2
single_choice
盒子里装有分别写着$$1$$,$$2$$,$$3$$,$$4$$,\ldots,$$100$$的黄色卡片各一张,我们称如下操作为一次操作;从盒子里取出$$m(7\leqslant m\leqslant 10)$$张卡片,算出这$$m$$张卡片上各数之和减去$$27$$的差,将写在一张红色卡片上(不放回).若干次操作之后,盒子里的卡片全部被取出,若所有红色卡片上的数字之和为$$n$$,那么$$n$$的最大可能值减去最小可能值等于.
[ [ { "aoVal": "A", "content": "$$108$$ " } ], [ { "aoVal": "B", "content": "$$96$$ " } ], [ { "aoVal": "C", "content": "$$88$$ " } ], [ { "aoVal": "D", "content": "$$81$$ " } ], [ { "aoVal": "E", "content": "$$54$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "先算卡片的总值. 最小值$$100\\div 10=10$$次,共减$$10\\times 27$$; 最多$$14$$次,共减去$$14\\times 27$$, 因此差为$$(14-10)\\times 27=108$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2260
57cb09674dcd44a389bc5fbe4fcdab95
[ "2017年第13届湖北武汉新希望杯六年级竞赛决赛第2题" ]
2
single_choice
泸昆高铁最后一段贵阳至昆明于$$2016$$年$$12$$月$$28$$日开通运营,这对我国``一带一路''战略的实施和区域经济发展都有着重大意义.$$G1375$$次高铁$$11:16$$从上海虹桥站出发,当天$$22:54$$到达昆明南站,全程共$$1593$$千米,途中站点共计停车$$56$$分钟,扣除停车时间,$$G1375$$次高铁的平均速度为(~ )千米/时.(结果保留整数)
[ [ { "aoVal": "A", "content": "$$148$$~ " } ], [ { "aoVal": "B", "content": "$$149$$~ " } ], [ { "aoVal": "C", "content": "$$150$$~ " } ], [ { "aoVal": "D", "content": "$$151$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->平均速度->公式法" ]
[ "$$11:16-22:54$$共$$11$$小时$$38$$分,其中停车$$56$$分钟,运行$$10$$小时$$42$$分钟.$$1593\\div 10.7\\approx 149$$千米/时. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
656
1a83b5d03fbe4a6c85a2870c665167a8
[ "2016年IMAS小学高年级竞赛第一轮检测试题第7题3分" ]
1
single_choice
请问$$192$$与$$120$$的公因数共有多少个?
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ], [ { "aoVal": "E", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->因数个数定理->因数个数定理正应用->总个数" ]
[ "$$(192,120)={{2}^{3}}\\times 3$$,所以因数个数有$$(3+1)\\times (1+1)=8$$个. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1432
da3ca35220ff4ad596de1e7f94f384a8
[ "2020年新希望杯二年级竞赛初赛(团战)第54题" ]
1
single_choice
二年级一班有$$25$$人,其中男生有$$11$$人.全班属兔的有$$8$$人,其余的同学都属龙,那么女生中至少有人属龙.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ], [ { "aoVal": "E", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "二年级一班有$$25$$人,其中男生有$$11$$人,则女生有$$25-11=14$$人,$$8$$人属兔,则属龙的有$$25-8=17$$人,女生中至少有$$14-8=6$$人属龙. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1451
9512418177684402a37a381a589cb735
[ "2013年全国迎春杯三年级竞赛初赛第3题" ]
1
single_choice
四个海盗杰克、吉米、汤姆和桑吉共分$$280$$个金币.杰克说:``我分到的金币比吉米少$$11$$ 个,比汤姆多$$15$$个,比桑吉少$$20$$个.''那么,桑吉分到了个金币.
[ [ { "aoVal": "A", "content": "$$84$$ " } ], [ { "aoVal": "B", "content": "$$85$$ " } ], [ { "aoVal": "C", "content": "$$86$$ " } ], [ { "aoVal": "D", "content": "$$87$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->和差倍问题->和差问题->多量和差问题" ]
[ "设杰克分到的金币为$$1$$份量,则有 $$\\left. \\begin{matrix}1+11 1-15 1+20 \\end{matrix} \\right }\\Rightarrow 4+16=280\\Rightarrow 1=66\\Rightarrow 66+20=86$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1345
59b51d397ec54f15aa661abe8fe9c9ed
[ "2017年IMAS小学高年级竞赛(第二轮)第1题4分" ]
2
single_choice
2017年IMAS 将$$80$$个三角排成一列﹐然后依照下面的规律涂上黑色或白色﹐请问涂上黑色的三角形总共比涂上白色的三角形多几个? ▲▲▲$$\triangle \triangle $$▲▲▲$$\triangle \triangle $$▲▲▲$$\triangle \triangle \cdots \cdots $$
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$18$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ], [ { "aoVal": "E", "content": "$$32$$ " } ] ]
[ "拓展思维->思想->对应思想", "Overseas Competition->知识点->应用题模块->周期问题" ]
[ "由图可知,从第一个三角形开始,以每五个三角形为一个周期,每个周期内有$$3$$个黑色三角形与$$2$$个白色三角形,即黑色三角形比白色三角形多$$1$$个.可知$$80$$个三角形共有$$16$$个周期, 所以黑色三角形比白色三角形总共多$$16$$个. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2512
4b669b50cbd44fe6aa0c39bdf4dce495
[ "2007年第5届创新杯四年级竞赛第1题5分", "2007年四年级竞赛创新杯" ]
1
single_choice
9个连续自然数的和是2007,其中最小的自然数是( ).
[ [ { "aoVal": "A", "content": "225 " } ], [ { "aoVal": "B", "content": "223 " } ], [ { "aoVal": "C", "content": "221 " } ], [ { "aoVal": "D", "content": "219 " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列求和" ]
[ "$$2007\\div 9-4\\text{=}219$$ " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1798
812ac99060b64acebc0ef33a16b59656
[ "2016年第7届广东广州羊排赛六年级竞赛第7题1分" ]
1
single_choice
琦琦语文考了$$88$$分,英语考了$$85$$分,如果想要平均分达到$$90$$分,那么他的数学成绩至少要达到分.
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$97$$ " } ], [ { "aoVal": "C", "content": "$$98$$ " } ], [ { "aoVal": "D", "content": "$$99$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "数序至少要$$90\\times 3-88-85=97$$(分). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2956
bb9fa74e014d412b81e4d786634cd4b8
[ "2017年河南郑州豫才杯小学高年级六年级竞赛" ]
1
single_choice
小明上网时,电脑提示要输入开机密码,小明并不知道.这时小明爸爸写了一列有规律的数:$$1$$、$$2$$、$$3$$、$$5$$、$$8$$、~\uline{~~~~~~~~~~}~共$$7$$个数字是密码,并提示说横线上是一个两位数,请聪明的你根据数字规律帮小明写出密码是(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$1235810$$ " } ], [ { "aoVal": "B", "content": "$$1235811$$ " } ], [ { "aoVal": "C", "content": "$$1235812$$ " } ], [ { "aoVal": "D", "content": "$$1235813$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->数列找规律填数" ]
[ "观察数列可发现:从第$$3$$项开始,每一项都等于前两项之和.所以第$$6$$项为$$5+8=13$$,即$$1235813$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1975
d7d0047f84f9461fb46e8d628f179c9b
[ "2018年湖北武汉新希望杯五年级竞赛训练题(三)第5题" ]
1
single_choice
一个长方形水库长$$420$$米、宽$$280$$米,水库周围栽有杨树和柳树,相邻两棵杨树之间有$$3$$棵柳树,任意相邻两棵树的距离都是$$7$$米.柳树共有棵.
[ [ { "aoVal": "A", "content": "$$116$$ " } ], [ { "aoVal": "B", "content": "$$120$$ " } ], [ { "aoVal": "C", "content": "$$136$$ " } ], [ { "aoVal": "D", "content": "$$150$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$7\\times (1+3)=28$$(米),$$(420+280)\\times 2\\div 28=50$$(段),$$3\\times 50=150$$(棵). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2727
ff8080814502fa2401450bc68de1159c
[ "2014年全国迎春杯三年级竞赛初赛第1题" ]
1
single_choice
下列算式结果为$$500$$的是(~ ~ ~ ~).
[ [ { "aoVal": "A", "content": "$$5\\times99+1$$ " } ], [ { "aoVal": "B", "content": "$$100+25\\times4$$ " } ], [ { "aoVal": "C", "content": "$$88\\times4+37\\times4$$ " } ], [ { "aoVal": "D", "content": "$$100\\times0\\times5$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->四则混合运算" ]
[ "A等于$$5\\times(100-1)+1=500-5+1=496$$,B等于$$100+100=200$$ ,C等于$$(88+37)\\times4=125\\times 4=500$$ ,D等于$$0$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3048
b3e9a417bcf24915b227a985b8d78922
[ "2017年IMAS小学高年级竞赛(第一轮)第1题3分" ]
1
single_choice
请问算式$$\frac{20\times 17}{2+0+1+7}$$的值等于什么?
[ [ { "aoVal": "A", "content": "$$340$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{34}{2017}$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$20$$ " } ], [ { "aoVal": "E", "content": "$$34$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\frac{20\\times 17}{2+0+1+7}=\\frac{20\\times 17}{10}=2\\times 17=34$$. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2824
8938226f4dc94690b6c85ed2c9145ac7
[ "2018年湖北武汉新希望杯六年级竞赛训练题(五)第2题" ]
2
single_choice
古埃及计算圆的面积的方法:圆的面积等于直径减去直径的$$\frac{1}{9}$$,然后再平方.由此来看,古埃及人认为圆周率是.
[ [ { "aoVal": "A", "content": "$$3.16$$ " } ], [ { "aoVal": "B", "content": "$$3.15$$ " } ], [ { "aoVal": "C", "content": "$$3.14$$ " } ], [ { "aoVal": "D", "content": "$$3.13$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->一元一次方程->分数、小数系数方程" ]
[ "$$\\frac{1}{4}\\pi {{d}^{2}}={{\\left( d-\\frac{1}{9}d \\right)}^{2}}$$,解得$$\\pi \\approx 3.16$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2386
0f416f5966c1426cb715ff86ff96d985
[ "2014年IMAS小学高年级竞赛第一轮检测试题第1题3分" ]
0
single_choice
请问算式$$2015+1520+5201$$的值等于什么?
[ [ { "aoVal": "A", "content": "$$8236$$ " } ], [ { "aoVal": "B", "content": "$$8506$$ " } ], [ { "aoVal": "C", "content": "$$8736$$ " } ], [ { "aoVal": "D", "content": "$$8836$$ " } ], [ { "aoVal": "E", "content": "$$9716$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "解法$$1$$:$$2015+1520+5201=8736$$,故选$$\\text{C}$$. 解法$$2$$:$$2015+1520+5201=2015+152+1520+5201-152=8888-152=8736$$,故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1164
1147219097774076aeae82815ce1079d
[ "2021年鹏程杯六年级竞赛初赛第16题" ]
2
single_choice
中国正在进入老龄化社会,社区中老年人数量日渐增多.今有五位老人的年龄互不相同,其中年龄最大的比年龄最小的大$$6$$岁,已知他们的平均年龄为$$85$$岁,则其中年龄最大的一位老人为岁.
[ [ { "aoVal": "A", "content": "$$87$$ " } ], [ { "aoVal": "B", "content": "$$88$$ " } ], [ { "aoVal": "C", "content": "$$89$$ " } ], [ { "aoVal": "D", "content": "$$90$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "设这五个老人的年龄为$$a$$,$$b$$,$$c$$,$$d$$,$$e$$,且$$a\\textless{}b\\textless{}c\\textless{}d\\textless{}e$$, 则$$e-a=6$$,$$a+b+c+d+e=85\\times 5=425$$. ①因为$$d\\leqslant e-1$$,$$c\\leqslant e-2$$,$$b\\leqslant e-3$$,$$a=e-6$$, 所以$$(e-6)+(e-3)+(e-2)+(e-1)+e\\geqslant 425$$, $$e\\geqslant 87.4$$; ②因为$$b\\geqslant a+1$$,$$c\\geqslant a+2$$,$$d\\geqslant a+3$$,$$e=a+6$$, $$a+(a+1)+(a+2)+(a+3)+(a+6)\\leqslant 425$$, $$a\\leqslant 82.6$$, 即$$e=a+6\\leqslant 88.6$$, 所以$$87.4\\leqslant e\\leqslant 88.6$$, 所以$$e=88$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3036
f32dfa5f79944467855a45fcbd78d5ff
[ "2022年六年级竞赛(世界少年奥林匹克思维能力测评地方选拔活动)第4题" ]
3
single_choice
新学期性格活泼开朗的莉莉要竞选文艺委员,按规定需$$\frac{3}{4}$$的选票才能当选,计算$$\frac{2}{3}$$的选票后,她得到的选票已达到当选票数的$$\frac{5}{6}$$,她还要得到剩下选票的~\uline{~~~~~~~~~~}~才能当选。
[ [ { "aoVal": "A", "content": "$$\\frac58$$ " } ], [ { "aoVal": "B", "content": "$$\\frac56$$ " } ], [ { "aoVal": "C", "content": "$$\\frac14$$ " } ], [ { "aoVal": "D", "content": "$$\\frac38$$ " } ], [ { "aoVal": "E", "content": "$$\\frac23$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数" ]
[ "【分析】假设全班一共$$120$$人,按规定需$$\\frac34$$的选票才能当选,也就是至少需要得到$$90$$票,现在已经得到当选票数的$$\\frac56$$,求出已获得的选票数量,求出还需要的选票数量,再计算还需要的数量占余下票数的几分之几。【详解】假设全班一共$$60$$人;$$120\\times\\frac34=90$$(张)$$90\\times\\frac56=75$$(张)$$120\\times\\frac23=80$$(张)$$120-80=40$$(张)$$90-75=15$$(张)$$15\\div40=\\frac38$$【点睛】本题考查的是基础的分数乘除法应用题,找准单位``1''是解题的关键。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3436
aadf8324cb0e479399705299f5fba97c
[ "2015年华杯赛四年级竞赛初赛", "2015年华杯赛三年级竞赛初赛", "2015年华杯赛四年级竞赛初赛", "2015年华杯赛三年级竞赛初赛" ]
2
single_choice
小明有多张面额为$$\text{1}$$元、$$\text{2}$$元和$$\text{5}$$元的人民币,他想用其中不多于$$\text{1}0$$张的人民币购买一只价格为$$\text{18}$$元的风筝,要求至少用其中两种面额的人民币。那么,不同的付款方式有( )种。
[ [ { "aoVal": "A", "content": "$$\\text{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\text{9}$$ " } ], [ { "aoVal": "C", "content": "$$\\text{11}$$ " } ], [ { "aoVal": "D", "content": "$$\\text{8}$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->加乘原理->加法原理" ]
[ "设所用的$$\\text{1}$$元、$$\\text{2}$$元和$$\\text{5}$$元的人民币张数依次为$$x$$,$$y$$,$$z$$。由已知可得: $$x+2y+5z=18$$,$$x+y+z\\leqslant 10$$ 当$$z=0$$时,$$\\left( x\\text{,}y \\right)$$只能取$$\\left( 2\\text{,}8 \\right)$$,共$$\\text{1}$$种; 当$$z=1$$时,$$\\left( x\\text{,}y \\right)$$只能取$$\\left( 1\\text{,}6 \\right)$$,$$\\left( 3\\text{,}5 \\right)$$,$$\\left( 5\\text{,}4 \\right)$$,共$$\\text{3}$$种; 当$$z=2$$时,$$\\left( x\\text{,}y \\right)$$只能取$$\\left( 0\\text{,}4 \\right)$$,$$\\left( 2\\text{,}3 \\right)$$,$$\\left( 4\\text{,}2 \\right)$$,$$\\left( 6\\text{,}1 \\right)$$,$$\\left( 8\\text{,}0 \\right)$$,共$$\\text{5}$$种; 当$$z=3$$时,$$\\left( x\\text{,}y \\right)$$只能取$$\\left( 1\\text{,}1 \\right)$$,$$\\left( 3\\text{,}0 \\right)$$,共$$\\text{2}$$种。 综上可得,一共有:$$\\text{1}+\\text{3}+\\text{5}+\\text{2}=\\text{11}$$(种)不同的付款方式。 选C。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2545
50373d75eef643029f81495059936454
[ "2019年美国数学大联盟杯五年级竞赛初赛第3题5分" ]
1
single_choice
计算:$${{1}^{2019}}+{{1}^{2020}}=$$.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$1$$的任意次方都为$$1$$,所以$$1$$的$$2019$$次方等于$$1$$,$$1$$的$$2020$$次方等于$$1$$,$$1+1=2$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1605
e86f2a4c61c94a8fb7f81def197071a1
[ "走美杯三年级竞赛", "走美杯四年级竞赛" ]
1
single_choice
下面问题不可以用算式$$50\times 2\times 3$$解决的是。
[ [ { "aoVal": "A", "content": "惠民超市一天卖出$$3$$盒保温杯,每盒装有$$2$$个杯子,每个杯子$$50$$元,一共卖了多少元 " } ], [ { "aoVal": "B", "content": "乐乐在长$$50$$米的游泳池里游了三个来回,他游了多少米 " } ], [ { "aoVal": "C", "content": "2箱蜜蜂一年可以产$$50$$千克的蜂蜜,照这样计算,$$3$$箱蜜蜂一年可以产多少千克的蜂蜜 " } ], [ { "aoVal": "D", "content": "悠悠一家三口人,每人每天早上各吃一个$$50$$克的鸡蛋,两天吃的鸡蛋共多少克 " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "略 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3112
f92cfb2fa49d43eea52629f2c5502136
[ "2013年IMAS小学中年级竞赛第二轮检测试题第2题4分" ]
1
single_choice
有$$7$$名选手参加赛跑,选手的编号从$$1$$号开始连续编排.除了小明外,其它$$6$$名选手的号码之总和是$$26$$.那么小明的号码是。
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ], [ { "aoVal": "E", "content": "$$6$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->等差数列->等差数列的概念" ]
[ "从$$1$$号到$$7$$号选手的编码是从$$1$$到$$7$$的自然数,找到中间数是$$4$$,那么他们的和是$$4\\times 7=28$$,除了小明之外其他选手的编号和是$$26$$,所以小明的编号是$$28-26=2$$,即$$2$$号。选择A " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2590
abcdcd6c845646ff900e88d97143c93e
[ "2016年新希望杯六年级竞赛训练题(二)第6题" ]
2
single_choice
【2016年新希望杯六年级竞赛题】 小张打算购买围巾和手套送给朋友们,预算不超过$$500$$元,已知围巾单价是$$70$$元,手套的单价是$$60$$元,如果小张至少要买$$2$$条围巾和$$3$$双手套,那么有种不同的选购方式.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "设围巾$$x$$条,手套$$y$$条. $$\\begin{cases}70x+60y\\leqslant 500 x\\geqslant 2y\\geqslant 3 \\end{cases}$$ $$\\begin{cases}x=2 y=3 \\end{cases}$$,$$\\begin{cases}x=2 y=4 \\end{cases}$$,$$\\begin{cases}x=2 y=5 \\end{cases}$$,$$\\begin{cases}x=2 y=6 \\end{cases}$$,$$\\begin{cases}x=3 y=3 \\end{cases}$$,$$\\begin{cases}x=3 y=4 \\end{cases}$$,$$\\begin{cases}x=4 y=3 \\end{cases}$$,$$7$$种. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1490
e836f914bc3c4456b47d3e4ce7fef1b1
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(二)" ]
1
single_choice
一次考试,甲、乙、丙三人的平均分为$$90$$分.其中甲、乙二人的平均分为$$88$$分,那么丙得了(~ )分.
[ [ { "aoVal": "A", "content": "$$92$$ " } ], [ { "aoVal": "B", "content": "$$93$$ " } ], [ { "aoVal": "C", "content": "$$94$$ " } ], [ { "aoVal": "D", "content": "$$95$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$90\\times 3=270$$(分),甲,乙,丙总分是$$270$$分, $$88\\times 2=176$$(分),甲,丙总分是$$176$$分, $$270-176=94$$(分),丙的得分是$$94$$分. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1760
b1dfd6e70c0840a0890576d2ca4547f9
[ "2008年第6届创新杯五年级竞赛初赛A卷第5题5分", "2008年五年级竞赛创新杯" ]
1
single_choice
如果有2008个学生排成一列,从第一个学生开始,按1,2,3,4,5,4,3,2,1,2,3,4,5,4,3,2,1,2,3,$$\cdots$$ 报数,则第2000个学生所报的数为( )
[ [ { "aoVal": "A", "content": "2 " } ], [ { "aoVal": "B", "content": "3 " } ], [ { "aoVal": "C", "content": "4 " } ], [ { "aoVal": "D", "content": "5 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->基本排列的周期问题" ]
[ "设$$1$$,$$2$$,$$3$$,$$4$$,$$5$$,$$4$$,$$3$$,$$2$$为一节,每节$$8$$个数,由于$$2000=8\\times 250$$,所以,第2000个学生所报的数是第$$250$$节的最后一个数,因此,第2000个学生所报的数为$$2$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1272
2c1a889ea182405fa104a43cd1037568
[ "走美杯三年级竞赛" ]
2
single_choice
泡泡比毛毛小$$7$$岁,再过$$4$$年泡泡的年龄将是毛毛年龄的一半,他们今年的年龄总和是( )岁。
[ [ { "aoVal": "A", "content": "$$21$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$13$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题之差倍型" ]
[ "再过$$4$$年毛毛的年龄将是泡泡年龄的$$2$$倍,所以那时泡泡的年龄为$$7$$岁,毛毛为$$7\\times 2=14$$(岁),他们今年的年龄总和为$$7+14-4\\times 2=13$$(岁)。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2059
eb09bcc67477471e885429ed6bb2beef
[ "2008年第6届创新杯六年级竞赛初赛A卷第7题5分", "2008年六年级竞赛创新杯" ]
1
single_choice
有一些糖,每人分5块多10块;如果现有的人数增加到原来的1.5倍,则每人分4块就少2块,那么这些糖在( )块之间.
[ [ { "aoVal": "A", "content": "80-\\/-90 " } ], [ { "aoVal": "B", "content": "68-\\/-78 " } ], [ { "aoVal": "C", "content": "56-\\/-62 " } ], [ { "aoVal": "D", "content": "95-\\/-102 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题" ]
[ "设现有人数为$$x$$,则糖块数为$$5x+10$$,依题意得$$5x+10=4\\times1.5x-2$$,解得$$x=12$$,所以糖块数为$$5\\times 12+10=70$$.即在这些糖在68-\\/-78块之间. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
522
d4675c9c3f264be3b1e7a282c3bc6e52
[ "2021年鹏程杯六年级竞赛初赛第7题" ]
1
single_choice
在算式:$$2\times \square \square \square =\square \square \square $$的六个空格中,分别填入$$2$$,$$3$$,$$4$$,$$5$$,$$6$$,$$7$$这六个数字,使算式成立,并且算式的积能被$$13$$整除,那么这个积是.
[ [ { "aoVal": "A", "content": "$$234$$ " } ], [ { "aoVal": "B", "content": "$$286$$ " } ], [ { "aoVal": "C", "content": "$$534$$ " } ], [ { "aoVal": "D", "content": "$$654$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "先从个位数考虑,有$$2\\times 2=4$$,$$2\\times 3=6$$,$$2\\times 6=12$$,$$2\\times 7=14$$.再考虑乘数的百位只能是$$2$$或$$3$$,因此只有三种可能的填法: $$2\\times 273=546$$, $$2\\times 327=654$$, $$2\\times 267=534$$, 其中只有$$546$$能被$$13$$整除,因此这个积是$$546$$. 故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
992
054854c072d543119269ba611b3cd0a9
[ "2012年全国美国数学大联盟杯小学高年级竞赛初赛第32题", "2013年美国数学大联盟杯小学高年级竞赛初赛第32题5分" ]
2
single_choice
在数轴中请求出到$$1.75$$和$$7.25$$距离相同的点?
[ [ { "aoVal": "A", "content": "$$2.75$$ " } ], [ { "aoVal": "B", "content": "$$3.25$$ " } ], [ { "aoVal": "C", "content": "$$3.75$$ " } ], [ { "aoVal": "D", "content": "$$4.5$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->直接求平均数" ]
[ "$$(1.75+7.25)\\div2=4.5$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2914
7d0786a15396498688d248d7c10f99d4
[ "2008年六年级竞赛创新杯" ]
1
single_choice
张扬已经进行了$$20$$场比赛,并且赢了$$95 \%$$的比赛,如果他以后每一场都获胜,当赢得$$96 \%$$的比赛时,他又赢了( )。
[ [ { "aoVal": "A", "content": "$$2$$场 " } ], [ { "aoVal": "B", "content": "$$3$$场 " } ], [ { "aoVal": "C", "content": "$$4$$场 " } ], [ { "aoVal": "D", "content": "$$5$$场 " } ] ]
[ "拓展思维->拓展思维->计算模块->方程基础->一元一次方程->分数、小数系数方程" ]
[ "解法一:张扬已经赢了$$20\\times 95 \\%=19$$(场)比赛,只输了$$1$$场,为了赢得$$96 \\%$$的比赛,他输的场数只能占总场数的$$4 \\%$$,$$1\\div 4 \\%=25$$(场),所以他至少还要赢$$25-20=5$$(场)。 解法二:在$$20$$场比赛中,张扬已经赢了$$20\\times 95 \\%=19$$(场),如果他以后每一场都赢,设他再赢$$x$$场,则$$19+x=\\left( 20+x \\right)\\times 96 \\%$$,解得$$x=5$$。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2891
a46530340ece46eca86a6a3f555b9142
[ "2008年六年级竞赛创新杯" ]
1
single_choice
下列各分数中,分数值最小的是( ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{7}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{2}{15}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{8}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{15}{112}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->分数通分法->通分子" ]
[ "由于$$\\frac{1}{7}=\\frac{2}{14}\\textgreater\\frac{2}{15}\\textgreater\\frac{2}{16}=\\frac{1}{8}$$,$$\\frac{15}{112}\\textgreater\\frac{14}{112}=\\frac{1}{8}$$,所以$$\\frac{1}{8} \\textless{} \\frac{1}{7}$$,$$\\frac{1}{8} \\textless{} \\frac{2}{15}$$,$$\\frac{1}{8} \\textless{} \\frac{15}{112}$$因此,这些分数中最小的是$$\\frac{1}{8}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2740
ff8080814518d52401451925852804f4
[ "2014年全国迎春杯五年级竞赛复赛第11题" ]
2
single_choice
三位数$$N$$,分别减$$3$$、加$$4$$、除以$$5$$、乘$$6$$,得到四个整数,已知这四个数的数字和恰好是$$4$$个连续的自然数,那么满足条件的三位数$$N$$有(~~~~ )个.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$2$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "考虑到一定会有进位,退位.设原数数字和为$$a$$,则$$-3$$,$$+4$$定不是差$$7$$,否则无法成为连续$$4$$个自然数.$$\\div 5$$说明末位为$$0$$或$$5$$,当末位为$$5$$时,$$-3$$,$$+4$$均不进位退位.当末位为$$0$$时,$$-3$$退位,符合. 所以$$-3$$相当于数字和多$$6$$,$$a+6$$;$$+4$$相当于数字和多$$4$$,$$a+4$$;$$\\div 5$$ 相当于数字和$$\\times 2$$,$$a\\times 2$$;$$a\\times 2$$、$$a+2$$、$$a+4$$连续,$$a\\times 2$$为$$a+7$$,$$a+5$$,$$a+3$$中的一个. 分类讨论得到$$a\\times 2=a+5$$成立,所以$$a=5$$,数字和为$$5$$,尾数为$$0$$的有,$$500$$(舍弃),$$410$$,$$320$$,$$230$$,$$140$$,共$$4$$个. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
795
4e565c26018846368d0c26153e790ca1
[ "2019~2020学年陕西宝鸡渭滨区五年级上学期期末第22题1分", "2019~2020学年山东济南高新区五年级下学期期末第10题1分", "2020年广东深圳龙岗区亚迪学校迎春杯五年级竞赛模拟第20题2分" ]
1
single_choice
在下面四组数中,组中的两个数都是质数.
[ [ { "aoVal": "A", "content": "$$21$$,$$31$$ " } ], [ { "aoVal": "B", "content": "$$13$$,$$33$$ " } ], [ { "aoVal": "C", "content": "$$35$$,$$45$$ " } ], [ { "aoVal": "D", "content": "$$37$$,$$97$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$\\text{A}$$中$$21$$不是质数,故$$\\text{A}$$错误; $$\\text{B}$$中$$33$$不是质数,故$$\\text{B}$$错误. $$\\text{C}$$中$$35$$,$$45$$都不是质数,故$$\\text{C}$$错误. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1045
0742d19203814a3194e6a393f1f5c7b9
[ "2018年湖北武汉新希望杯五年级竞赛训练题(一)第4题" ]
1
single_choice
五年级($$1$$)班原有$$39$$名学生,平均体重为$$48$$千克,班里转来新生小林后,平均体重变为$$48.1$$千克,那么小林的体重是.
[ [ { "aoVal": "A", "content": "$$48.2$$千克 " } ], [ { "aoVal": "B", "content": "$$49$$千克 " } ], [ { "aoVal": "C", "content": "$$50$$千克 " } ], [ { "aoVal": "D", "content": "$$52$$千克 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->公式类->加权平均数" ]
[ "$$48+(48.1-48)\\times 40=52$$(千克). " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2669
32d3b50f3d014ecda9891bf03505f2c2
[ "2008年第6届创新杯六年级竞赛复赛第2题4分", "2008年六年级竞赛创新杯" ]
1
single_choice
规定$$\max \left( a,b \right)$$表示$$a$$,$$b$$两个数中较大的一个,$$\min \left( a,b \right)$$表示$$a$$,$$b$$两个数中较小的一个,则$$\max \left[ \min \left( 2006,2008 \right),\min \left( 2007,2009 \right) \right]$$等于.
[ [ { "aoVal": "A", "content": "2006 " } ], [ { "aoVal": "B", "content": "2007 " } ], [ { "aoVal": "C", "content": "2008 " } ], [ { "aoVal": "D", "content": "2009 " } ] ]
[ "拓展思维->拓展思维->计算模块->定义新运算->直接运算型->普通型" ]
[ "由$$\\text{min}\\left( 2006\\text{,}2008 \\right)=2006$$,$$\\min \\left( 2007\\text{,}2009 \\right)=2007$$得,原式$$=\\max \\left( 2006\\text{,}2007 \\right)=2007$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2464
220495ff8eea42878cef0bdb878ed2ee
[ "2018年美国数学大联盟杯五年级竞赛初赛第33题5分" ]
1
single_choice
计算:$$\left(2^{2} \times 2^{4} \times 2^{6}\times \ldots ~\times 2^{98} \times 2^{100}\right) \div \left(2^{1} \times 2^{3} \times 2^{5}\times \ldots ~\times 2^{97} \times 2^{99}\right)=$$.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$${{2}^{49}}$$ " } ], [ { "aoVal": "C", "content": "$${{2}^{50}}$$ " } ], [ { "aoVal": "D", "content": "$${{2}^{100}}$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\left(2^{2} \\times 2^{4} \\times 2^{6}\\times \\ldots ~\\times 2^{98} \\times 2^{100}\\right) \\div \\left(2^{1} \\times 2^{3} \\times 2^{5}\\times \\ldots ~\\times 2^{97} \\times 2^{99}\\right)$$ $$=\\left( {{2}^{2}}\\div {{2}^{1}} \\right)\\times \\left( {{2}^{4}}\\div {{2}^{3}} \\right)\\times \\left( {{2}^{6}}\\div {{2}^{5}} \\right)\\times \\ldots \\times \\left( {{2}^{98}}\\div {{2}^{97}} \\right)\\times \\left( {{2}^{100}}\\div {{2}^{99}} \\right)$$ $$=\\underbrace{2\\times 2\\times 2\\times \\cdots \\times 2}_{50个2}$$ $$={{2}^{50}}$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3390
9b9fddf4c3884f5fbcf59112ab39d4cb
[ "2018年第22届广东世界少年奥林匹克数学竞赛二年级竞赛决赛第2题5分" ]
1
single_choice
二($$1$$)班的同学算两道口算题,第一道算对的有$$20$$人,第二道算对的有$$31$$人,两道都对的有$$10$$人,这个班共有个同学.
[ [ { "aoVal": "A", "content": "$$41$$ " } ], [ { "aoVal": "B", "content": "$$51$$ " } ], [ { "aoVal": "C", "content": "$$61$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "根据重叠问题,可知这个班上共有同学:$$20+31-10=41$$人. 故选择$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
229
43e8f2cccce74a0799a70701b88ce913
[ "2018年华杯赛小学中年级竞赛初赛第4题10分", "2018年第23届华杯赛小学中年级竞赛初赛第4题" ]
2
single_choice
在$$6\times 6$$网格的所有方格中放入围棋子,每个方格方$$1$$枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个$$6\times 6$$网格中共有枚黑色围棋子.
[ [ { "aoVal": "A", "content": "$$18$$ " } ], [ { "aoVal": "B", "content": "$$14$$ " } ], [ { "aoVal": "C", "content": "$$12$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "可以考虑纵向每列白色棋子数相等,故白棋子数量一定是$$6$$的倍数;考虑横向,每行棋子数不同,且最少为$$0$$,最多为$$6$$,白色棋子数最少为$$0+1+2+3+4+5=15$$,最多是$$1+2+3+4+5+6=21$$,故$$15\\sim 21$$间能被$$6$$整除的数只有$$18$$,故白棋子数量为$$18$$,黑棋子有$$36-18=18$$. ", "<p>首先考虑纵向,每列白色棋子数相等,故白棋子数量一定是$$6$$的倍数,</p>\n<p>考虑横向每行棋子数不同,且最少为$$0$$,最多为$$6$$,</p>\n<p>白棋子数量最少为$$0+1+2+3+4+5=15$$,</p>\n<p>最多为$$1+2+3+4+5+6=21$$,</p>\n<p>易知$$15-21$$间能被$$6$$整除的只有$$18$$,</p>\n<p>故白棋子数量为$$18$$,</p>\n<p>黑棋子数量为$$6\\times 6-18=18$$.</p>\n<p>故选$$\\text{A}$$.</p>" ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
738
b56fb8e2218a4d789730925b90609fc6
[ "2015年湖北武汉世奥赛六年级竞赛模拟训练题(二)第1题" ]
2
single_choice
有一列数:$$1234$$、$$5678$$、$$9101112$$、$$13141516\cdots \cdots $$每个数都是由四个连续的自然数组 成.其中只有一个十三位数,它的各数位上的数字之和是.
[ [ { "aoVal": "A", "content": "$$76$$ " } ], [ { "aoVal": "B", "content": "$$77$$ " } ], [ { "aoVal": "C", "content": "$$78$$ " } ], [ { "aoVal": "D", "content": "$$79$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "这个十三位数只能是$$9979989991000$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
984
04e8ee87898a47f6bc470ef866643555
[ "2012年第10届创新杯四年级竞赛初赛第6题6分" ]
1
single_choice
某运输公司为玻璃厂运来$$1000$$个玻璃镜框到仓库,双方商定每个玻璃镜框运费$$5$$元,如果打碎$$1$$个,这一个玻璃镜框不但不给运费,而且要赔偿$$20$$元,结果到目的地结算时,玻璃厂共付出运费$$4475$$元,那么运输过程中打碎了个玻璃镜框.
[ [ { "aoVal": "A", "content": "$$11$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$26$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "假设玻璃镜框全部完好,玻璃厂应付$$1000\\times 5=5000$$元,与实际情况相比少付了$$5000-4475=525$$元,每打碎一个镜框少付$$5+20=25$$元,因此一共打碎了$$525\\div 25=21$$个. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1748
e8d3430b73f04775b30aa07e351feb2f
[ "2005年第3届创新杯六年级竞赛初赛第2题" ]
2
single_choice
---件工程,甲单独做要$$6$$小时,乙单独做要$$10$$小时,如果按甲、乙、甲、乙$$\cdots \cdots $$顺序交替工作,每次$$1$$小时,那么需要小时完成.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$7\\frac{1}{2}$$ " } ], [ { "aoVal": "C", "content": "$$7\\frac{1}{3}$$ " } ], [ { "aoVal": "D", "content": "$$7\\frac{1}{4}$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->合作工程问题->接力施工问题" ]
[ "甲乙合作完成需要: $$1\\div \\left( \\frac{1}{6}+\\frac{1}{10} \\right)$$ $$=1\\div \\frac{4}{15}$$ $$=3.75$$(小时), 每人工作$$3$$小时,还剩下: $$1-\\left( \\frac{1}{6}+\\frac{1}{10} \\right)\\times 3$$ $$=1-\\frac{4}{5}$$ $$=\\frac{1}{5}$$, 甲再工作$$1$$小时,剩下的由乙完成需要: $$\\left( \\frac{1}{5}-\\frac{1}{6} \\right)\\div \\frac{1}{10}$$ $$=\\frac{1}{30}\\div \\frac{1}{10}$$ $$=\\frac{1}{3}$$(小时), 一共$$3\\times 2+1+\\frac{1}{3}=7\\frac{1}{3}$$(小时). 答:需要$$7\\frac{1}{3}$$时完成. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1521
bebf1a032fdc41ae9357de2ad9477086
[ "2017年全国希望杯小学高年级五年级竞赛初赛考前100题" ]
2
single_choice
1.价格相同的一种商品,甲店:买四赠一.乙店:优惠$$\frac{1}{4}$$.如果只从经济方面考虑,你选择去哪?
[ [ { "aoVal": "A", "content": "甲店 " } ], [ { "aoVal": "B", "content": "乙店 " } ], [ { "aoVal": "C", "content": "都一样 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "设此商品的单价为$$a$$元,``买四赠一''即用$$4$$件的钱买了$$5$$件商品,购买单价为$$\\frac{4}{5}a=0.8a$$;``优惠$$\\frac{1}{4}$$''表示每件单价为$$\\left( 1-\\frac{1}{4} \\right)a=0.75a$$,故选择乙店. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2137
258cfd8d577949b28654bb2b84e9b396
[ "2016年广东深圳四年级模拟考试鹏程杯集训", "2011年北京五年级竞赛" ]
2
single_choice
有甲、乙、丙$$3$$人,甲每分钟走$$100$$米,乙每分钟走$$80$$米,丙每分钟走$$75$$米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇$$6$$分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?
[ [ { "aoVal": "A", "content": "$$37800$$ " } ], [ { "aoVal": "B", "content": "$$38800$$ " } ], [ { "aoVal": "C", "content": "$$39900$$ " } ], [ { "aoVal": "D", "content": "太难了,容我在喝一杯$$82$$年的雪碧压压惊 " } ] ]
[ "知识标签->学习能力->七大能力->运算求解" ]
[ "甲、丙$$6$$分钟相遇的路程:$$\\left( {100 + 75} \\right) \\times 6 = 1050$$$$($$米$$)$$; 甲、乙相遇的时间为:$$1050 \\div \\left( {80 - 75} \\right) = 210$$$$($$分钟$$)$$; 东、西两村之间的距离为:$$\\left( {100 + 80} \\right) \\times 210 = 37800$$$$($$米$$)$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
871
813f1400bef74ffc8677e8ca0142576f
[ "2018年第6届湖北长江杯五年级竞赛初赛A卷第6题3分" ]
2
single_choice
$$5$$路和$$9$$路公共汽车早上$$6$$时$$40$$分同时发车,$$5$$路公共汽车每隔$$10$$分钟发一辆车,$$9$$路公共汽车每隔$$8$$分钟发一辆车,这两路车第$$20$$次同时发车是.
[ [ { "aoVal": "A", "content": "$$8:00$$ " } ], [ { "aoVal": "B", "content": "$$18:40$$ " } ], [ { "aoVal": "C", "content": "$$19:20$$ " } ], [ { "aoVal": "D", "content": "$$20:00$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->因倍应用题->倍数应用题" ]
[ "$$10$$和$$8$$的最小公倍数是$$40$$, $$40\\times20=800$$(分), $$6$$时$$20$$分再过$$800$$分钟为$$20$$时, 所以第$$20$$次同时发车为$$20$$时. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
369
f21943325e6442c09f751996f45052bd
[ "2017年全国美国数学大联盟杯小学高年级五年级竞赛初赛第29题" ]
1
single_choice
2017年全国美国数学大联盟杯小学高年级五年级竞赛初赛第$$29$$题 The minimum number of people needed in a room so that there are always at least five people in the room born in the same month is~\uline{~~~~~~~~~~}~. 翻译:一个房间需要的最少多少人,才能使得总是有至少五个人是同一个月份出生的? the minimum number:最小值;$$at$$ least:最少;$$born$$ in:出生;$$the$$ same month:同一个月份;
[ [ { "aoVal": "A", "content": "$$48$$ " } ], [ { "aoVal": "B", "content": "$$49$$ " } ], [ { "aoVal": "C", "content": "$$60$$ " } ], [ { "aoVal": "D", "content": "$$61$$ " } ] ]
[ "知识标签->课内知识点->数学广角->鸽巢问题->利用抽屉原理解决实际问题" ]
[ "一个房间需要的最少多少人,才能使得总是有至少五个人是同一个月份出生的? the minimum number:最小值;$$at$$ least:最少;$$born$$ in:出生;$$the$$ same month:同一个月份; $$4\\times 12+1=49$$,所以选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1571
ff8080814518d5240145190915fe030b
[ "2014年全国迎春杯五年级竞赛初赛第6题", "2014年全国迎春杯六年级竞赛初赛第6题", "2016年陕西西安小升初交大附中入学真卷9第11题", "2014年北京六年级竞赛" ]
2
single_choice
甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了$$3$$,$$7$$,$$14$$件礼物,最后结算时,乙付给了丁$$14$$元钱,并且乙没有付给甲钱.那么丙应该再付给丁(~~~ ~)元钱.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$28$$ " } ], [ { "aoVal": "C", "content": "$$56$$ " } ], [ { "aoVal": "D", "content": "$$70$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设丁拿了$$a$$件礼物,则四人花同样的钱,每人可以拿到$$a+\\frac{3+7+14}{4}=a+6$$件礼物, 实际情况:丁少拿了$$6$$件,乙多拿了$$1$$件,给丁$$14$$元,则货物单价$$14$$元, 丙多拿了$$14-6=8$$件,$$3$$件给甲,$$5$$件给丁,$$5\\times14=70$$元. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1094
b48e4cb1a9174ae5990848dbd7d0bc5b
[ "2019年第7届湖北长江杯六年级竞赛复赛B卷第1题3分" ]
1
single_choice
一只手表每小时慢$$5$$分钟,照这样计算,早上$$6$$时对准标准时间后,当手表指示下午$$5$$时整时,标准时间是.
[ [ { "aoVal": "A", "content": "$$16:05$$ " } ], [ { "aoVal": "B", "content": "$$17:55$$ " } ], [ { "aoVal": "C", "content": "$$18:00$$ " } ], [ { "aoVal": "D", "content": "$$18:05$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "本题中的相等关系是: 这只手表慢的时间$$-$$手表每小时比准确时间慢$$5$$分钟$$\\times $$标准时间经过的时间$$=0$$, 设标准时间经过了$$x$$小时,根据等量关系列方程求解即可. $$5+12=17$$时, 设标准时间经过了$$x$$小时,则 $$\\left( 6+x-17 \\right)\\times 60-5x=0$$, $$60\\left( x-11 \\right)-5x=0$$, $$60x-660-5x=0$$, $$55x=660$$, $$x=12$$. $$6:00+12=18:00$$. 所以准确时间应该是$$18:00$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
164
42ab9ae47b164e9e943a8956cd860b01
[ "2020年迎春杯六年级竞赛第10题12分" ]
3
single_choice
小周老师写了一个两位质数,并将这个质数个位数字告诉了甲,十位数字告诉了乙,十位数字与个位数字之和告诉了丙,十位数字与个位数字之差(大减小)告诉了丁. 丙说:在我说话之前,甲一定认为乙不知道这个质数是多少. 丙说完之后,乙说:在我说话之前,甲一定认为丁不知道这个质数是多少. 那么,这个质数是~\uline{~~~~~~~~~~}~.(甲、乙、丙、丁四位同学诚实且聪明)
[ [ { "aoVal": "A", "content": "$$23$$ " } ], [ { "aoVal": "B", "content": "$$29$$ " } ], [ { "aoVal": "C", "content": "$$41$$ " } ], [ { "aoVal": "D", "content": "$$61$$ " } ], [ { "aoVal": "E", "content": "$$97$$ " } ] ]
[ "拓展思维->能力->数感认知->数学概念理解(数)", "海外竞赛体系->知识点->组合模块->逻辑推理" ]
[ "所有的两位质数:$$11$$、$$31$$、$$41$$、$$61$$、$$71$$; $$13$$、$$23$$、$$43$$、$$53$$、$$73$$、$$83$$; $$17$$、$$37$$、$$47$$、$$67$$、$$97$$; $$19$$、$$29$$、$$59$$、$$79$$、$$89$$. 丙:丙说话之前甲只知道个位,就知道乙猜不出, 所以个位不可能是$$7$$, 丙手上拿的是数字和,通过数字和来确定这个信息的, 因此数字和不可能是$$8$$、$$10$$、$$11$$、$$13$$、$$16$$,将数字和为这些的都排除, 只剩下$$9$$个数:$$11$$、$$13$$、$$23$$、$$31$$、$$41$$、$$43$$、$$59$$、$$61$$、$$89$$. 乙:乙说话之前,丁拿的是数字差,甲一定猜不出, 所以排除$$11$$、$$41$$、$$59$$、$$61$$,那么个位不可能是$$1$$和$$9$$, 继续排除$$31$$、$$59$$、$$89$$. 剩下$$3$$个数:$$13$$、$$23$$、$$43$$, 乙通过十位确定甲一定知道丁猜不出,那么十位不可能是$$1$$和$$4$$, 故这个质数一定是$$23$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3037
cec43207b7064e98a2023c039129eb74
[ "2011年全国世奥赛三年级竞赛初赛" ]
2
single_choice
$$100 + 99 - 98 + 97 - 96 + ~\cdots ~+ 3 - 2 + 1$$的结果是( ~~).
[ [ { "aoVal": "A", "content": "$$101$$ " } ], [ { "aoVal": "B", "content": "$$150$$ " } ], [ { "aoVal": "C", "content": "$$149$$ " } ], [ { "aoVal": "D", "content": "$$151$$ " } ] ]
[ "拓展思维->能力->运算求解->程序性计算" ]
[ "观察$$100$$和$$1$$之间的数,将$$\\left( 99 - 98\\right)$$、$$\\left( 97 - 96 \\right)$$、$$\\left( 95 - 94 \\right)$$、$$ \\cdots $$、$$\\left( 3 - 2 \\right)$$进行组合( 除去$${1}$$和$${100}$$后,奇数前面是加号,偶数前面是减号),所以一共有$$\\left( 100 - 2 \\right) \\div 2 = 49$$个$$1$$,所以原式$$ = 100 + 1 + 49 = 150$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
206
250202111bab4e7a9477aa80f96208b3
[ "2015年华杯赛六年级竞赛初赛" ]
2
single_choice
春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁$$4$$位同学有如下的对话: 甲:``丙、丁之中至少有$$1$$人捐了款'' 乙:``丁、甲之中至多有$$1$$人捐了款'' 丙:``你们$$3$$人中至少有$$2$$人捐了款'' 丁:``你们$$3$$人中至多有$$2$$人捐了款'' 已知这$$4$$位同学说的都是真话且其中恰有$$2$$位同学捐了款,那么,这$$2$$位同学是( )
[ [ { "aoVal": "A", "content": "甲、乙 " } ], [ { "aoVal": "B", "content": "丙、丁 " } ], [ { "aoVal": "C", "content": "甲、丙 " } ], [ { "aoVal": "D", "content": "乙、丁 " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "由丙的话可知:丙没有捐款;再由甲的话可知:丁捐了款;再由乙的话可知:丁、甲之中最多有$$1$$人捐款.由此推知,甲没有捐款,乙捐了款,捐款的两人为乙和丁,选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
225
8368dc822e354db184a76c0e11073ebe
[ "2013年全国迎春杯小学中年级竞赛复赛第2题" ]
1
single_choice
小明碰到了三个人,其中一位是牧师、一位是骗子、一位是疯子.牧师只说真话,骗子只说假话,疯子有时说真话,有时说假话.第一位说:``我是疯子.''第二位说:``你胡说,你才不是疯子呢!''第三位说:``别说了,我是疯子.''那么,这三个人中第~\uline{~~~~~~~~~~}~位是疯子.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "第一个和第三个都说自己是疯子,所以他们不是牧师,只有第二个是牧师.而牧师说的是真话,所以第一个不是疯子.因此第三个才是真正的疯子. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
996
0185a543e4a7449faadc0544d2e9d08d
[ "2019年第22届世界少年奥林匹克数学竞赛四年级竞赛决赛(中国区)第1题2分" ]
1
single_choice
一项工程预计$$15$$人每天做$$4$$小时,$$18$$天可以完成,后来增加$$3$$人,并且工作时间增加$$1$$小时,这项工程天完成.
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$12$$ " } ], [ { "aoVal": "C", "content": "$$14$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "首先要求出工作总量,即$$15\\times 4\\times 18$$,再用工作总量除以工作人数,再除以每天的工作时间,即为所需要的天数.解决此题的关键是先求出总工作量. $$15\\times 4\\times 18\\div \\left[ \\left( 15+3 \\right)\\times \\left( 4+1 \\right) \\right]$$ $$=1080\\div 90$$ $$=12$$(天). 答:这项工程$$12$$天完成. 故选 $$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
232
7ef1f938a70848d792b217637698a54a
[ "2017年全国美国数学大联盟杯小学高年级五年级竞赛初赛第33题" ]
1
single_choice
\textbf{(2017 US Math League, Priamry 5, Question \#33)} $$A$$, $$B$$, $$C$$, $$D$$, $$E$$, $$F$$, and $$G$$ participated in a chess tournament. Each player must play each of his six opponents exactly once. So far, $$A$$ has played $$1$$ match. $$B$$ has played $$2$$ matches. $$C$$ has played $$3$$ matches. $$D$$ has played $$4$$ matches. $$E$$ has played $$5$$ matches and $$F$$ has played $$6$$ matches. How many matches has $$G$$ played at this point?($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$) 甲、乙、丙、丁、戊、己、庚一起参加象棋锦标赛,每一位选手必须要跟六个对手分别对赛一次.目前为止,甲比赛了一场,乙两场,丙三场,丁四场,戊五场,己六场,那么目前庚比赛了几场?($\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde\textasciitilde$)
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->思想->对应思想", "Overseas Competition->知识点->组合模块->逻辑推理->体育比赛" ]
[ "根据题意,$$F$$已经跟每个人都比赛过,包括$$G$$;同理,$$D$$,$$E$$也跟$$G$$比赛过,所以$$G$$比了$$3$$场 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1707
7bc22ee509a44c59860d7ac6597bd0cb
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(四)" ]
1
single_choice
有一年六月份日历中周五比周四多$$1$$个,那么这年七月一日为(~ ).
[ [ { "aoVal": "A", "content": "周四 " } ], [ { "aoVal": "B", "content": "周五 " } ], [ { "aoVal": "C", "content": "周六 " } ], [ { "aoVal": "D", "content": "周日 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$6$$月份有$$30$$天,按照每同$$7$$天计算,$$30\\div 7=4$$(周)$$\\cdots \\cdots 2$$(天),根据这个$$6$$月的周五比周四多$$1$$个,可知多余的$$2$$天必为周五和周六,即这个$$6$$月的最后一天是星期 六,所以$$7$$月$$1$$日是周日. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3043
d36359aa8639416fae03040e53301667
[ "2017年第15届湖北武汉创新杯六年级竞赛决赛第6题" ]
2
single_choice
若$$a$$、$$b$$互素,且两个最简分数之和为$$\frac{m}{a}+\frac{n}{b}=\frac{31}{35}$$,则$$\frac{a}{m}+\frac{b}{n}-\frac{1}{m\times n}=$$.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$10$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->质数与合数->质数与合数判定->质数与合数的认识" ]
[ "数论.$$a$$、$$b$$互素,且计算结果分母为$$35$$,因此$$a$$、$$b$$为$$5$$和$$7$$,代入原式得$$\\frac{7m+5n}{35}=\\frac{31}{35}$$,则$$m=3$$,$$n=2$$,所以$$\\frac{5}{3}+\\frac{7}{2}-\\frac{1}{2\\times 3}=5$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
868
9fe438e6e1b944e7ac303d8d98230707
[ "2018年美国数学大联盟杯四年级竞赛初赛第32题5分" ]
1
single_choice
九个连续的正整数的总和总是能被整除 The sum of nine consecutive positive integers is always divisible by.
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$9$$个连续正整数的和总是可以被整除. 设$$9$$个数中的中间数为$$a$$,则这$$9$$个数可表示为:$$a-4$$,$$a-3$$,$$a-2$$,$$a-1$$,$$a$$,$$a+1$$,$$a+2$$,$$a+3$$,$$a+4$$, 所以和为:$$\\left(a-4\\right)+\\left(a-3\\right)+\\left(a-2\\right)+\\left(a-1\\right)+a+\\left(a+1\\right)+\\left(a+2\\right)+\\left(a+3\\right)$$ $$+\\left(a+4\\right)=9a$$,即不管$$a$$为什么数时,其和必能被$$9$$整除. 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2371
2eb6337dc82c442599a65cddb4a07343
[ "2016年全国中环杯四年级竞赛初赛第11题" ]
2
single_choice
神庙里有一把古老的秤,对于重量小于$$1000$$克的物体,这把秤会显示其正确的重量;对于重量大于等于$$1000$$克的物体,这把秤会显示出一个大于等于$$1000$$的随机数.艾迪有五个物品,各自的重量都小于$$1000$$克,我们分别用$$P$$、$$Q$$、$$R$$、$$S$$、$$T$$表示它们的重量.将这五个物品两两配对放到秤上进行称重,得到下面的结果:$$Q+S=1200$$(克)、$$R+T=2100$$(克)、$$Q+T=800$$(克)、$$Q+R=900$$(克)、$$P+T=700$$(克).那么这五个物品的重量从重到轻的顺序为~\uline{~~~~~~~~~~}~$$\textgreater$$~\uline{~~~~~~~~~~}~$$\textgreater$$~\uline{~~~~~~~~~~}~$$\textgreater$$~\uline{~~~~~~~~~~}~$$\textgreater$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$R\\textgreater T\\textgreater S\\textgreater Q\\textgreater P$$ " } ], [ { "aoVal": "B", "content": "$$R\\textgreater S\\textgreater T\\textgreater Q\\textgreater P$$ " } ], [ { "aoVal": "C", "content": "$$S\\textgreater R\\textgreater Q\\textgreater T\\textgreater P$$ " } ], [ { "aoVal": "D", "content": "$$S\\textgreater R\\textgreater T\\textgreater Q\\textgreater P$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$Q+T=800$$①; $$Q+R=900$$②;$$P+T=700$$③;$$Q+S\\geqslant 1000$$④;$$R+T\\geqslant 1000$$⑤;由①②得:$$R\\textgreater T$$;由①③得:$$Q\\textgreater P$$;由②④得:$$S\\textgreater R$$;由②⑤得:$$T\\textgreater Q$$;所以:$$S\\textgreater R\\textgreater T\\textgreater Q\\textgreater P$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2388
08922c007d594a87b32c2fc8b247caf1
[ "2017年河南郑州豫才杯五年级竞赛初赛第1题" ]
1
single_choice
《红楼梦》是一部长篇章回体小说,全书分为$$120$$回,字数总计为$$729636$$个字.章回体小说是中国古典小说的长篇小说的主要形式.章回体的一个特点即是每``回''叙述一个较为完整的故事段落,篇幅长短相当.由此我们可以推算出,此书每回的字数约为(~ )字左右.
[ [ { "aoVal": "A", "content": "$$6$$万~~~~~~~~~~ " } ], [ { "aoVal": "B", "content": "$$0.06$$万~~~~ " } ], [ { "aoVal": "C", "content": "$$6000$$~~~~~~~ " } ], [ { "aoVal": "D", "content": "$$600$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "$$729636\\div 120\\approx 6000$$字. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3464
f8ef63625f1f44b38ea60e3504c991a0
[ "2011年北京五年级竞赛" ]
2
single_choice
某射手在百步之外射箭恰好射到靶心的概率为$40 \%$,如果该射手在百步之外连射三箭,有两箭射中靶心的概率为~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$0.216$$ " } ], [ { "aoVal": "B", "content": "$$0.432$$ " } ], [ { "aoVal": "C", "content": "$$0.144$$ " } ], [ { "aoVal": "D", "content": "$$0.288$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "第一箭射空,其他两箭射中的概率为$$\\left( 1-0.4 \\right)\\times 0.4\\times 0.4=0.096$$. 第二箭射空,其他两箭射中的概率为$$\\left( 1-0.4 \\right)\\times 0.4\\times 0.4=0.096$$. 第三箭射空,其他两箭射中的概率为$$\\left( 1-0.4 \\right)\\times 0.4\\times 0.4=0.096$$. 有两箭射空的概率为$$0.96+0.96+0.96=0.288$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1348
7e7d0d73baca424a9dd59e93529d0ed6
[ "2012年全国迎春杯六年级竞赛初赛第3题" ]
2
single_choice
一辆玩具汽车,第一天按$$100 \%$$的利润定价,无人来买;第二天降价$$10 \%$$,还是无人买;第三天再降价$$360$$元,终于卖出.已知卖出的价格是进价的$$1.44$$倍,那么这辆玩具汽车的进价是~\uline{~~~~~~~~~~}~元.
[ [ { "aoVal": "A", "content": "$$800$$ " } ], [ { "aoVal": "B", "content": "$$1000$$ " } ], [ { "aoVal": "C", "content": "$$1200$$ " } ], [ { "aoVal": "D", "content": "$$1400$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->经济问题->基本经济概念->折扣问题" ]
[ "设进价为``$$1$$'',则第一天定价为``$$2$$'',第二天定价为``$$1.8$$'',最终售价为``$$1.44$$''. ``$$1.8$$''与``$$1.44$$''的差价等于$$360$$元,可知进价``$$1$$''$$=1000$$元. 设进价为$$x$$元. $$2x\\times (1-10 \\%)-360=1.44x$$, 解得:$$x=1000$$, 故答案为:$$1000$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1294
2c4957341f4b4e55af308f736b608247
[ "2013年IMAS小学中年级竞赛第一轮检测试题第15题4分" ]
2
single_choice
有三只小兔子小白,小花和小黑在田里拔萝卜.已知小白和小花共拔了$$13$$根萝卜;小花和小黑共拔了$$11$$根萝卜;小黑和小白共拔了$$16$$根萝卜.请问这三只小兔子共拔了多少根萝卜?
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$11$$ " } ], [ { "aoVal": "C", "content": "$$15$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ], [ { "aoVal": "E", "content": "$$20$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "可发现$$13+11+16=40$$恰为三只小兔子总共拔的萝卜数之$$2$$倍,因此三只小兔子共拔了$$40\\div 2=20$$根萝卜.故选$$\\text{E}$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1725
84f3bc739ab64c62a29a5a388ea6fc20
[ "2020年广东广州羊排赛三年级竞赛第14题8分" ]
1
single_choice
某部$$87$$集的电视连续剧在某个星期日开播,每周日、周一、周四、周五、周六都要播出一集,周二、周三停播.问:最后一集在周几播出?.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "四 " } ], [ { "aoVal": "C", "content": "五 " } ], [ { "aoVal": "D", "content": "六 " } ], [ { "aoVal": "E", "content": "日 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期" ]
[ "$$87$$集的电视连续剧在某个星期日开播,每周日、周一、周四、周五、周六都要播一集,五天一周期,$$87\\div 5=17$$(周)$$\\cdots \\cdots 2$$(天),所以最后一集在周一播出,选项$$\\text{A}$$正确. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
774
7affcc007ccb48b8abbee3b401d86903
[ "2012年第8届全国新希望杯五年级竞赛复赛第4题" ]
1
single_choice
在$$\overline{20\square 12\square }$$的$$\square $$内填上合适的数字,使该六位数能同时被$$2、$$3$$、5$$整除,不同的填法有.
[ [ { "aoVal": "A", "content": "$$3$$种 " } ], [ { "aoVal": "B", "content": "$$4$$种 " } ], [ { "aoVal": "C", "content": "$$5$$种 " } ], [ { "aoVal": "D", "content": "$$6$$种 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$\\overline{20\\square 12\\square }$$末位肯定为$$0$$,那么$$\\overline{20\\square 120}$$是$$3$$的倍数,中间的$$\\square $$有三种选择$$1、$$4$$、7$$,因此最后只有$$3$$种填法. " ]
A