--- license: cc-by-nc-4.0 task_categories: - robotics language: - en size_categories: - 1K/ # Folder for a specific map β”‚ β”œβ”€ .png # Image representation of the map β”‚ └─ .yml # Map info (for ROS map server) β”œβ”€ bagfiles/ # Directory containing ROS bagfiles πŸŽ₯ β”‚ └─ .bag # ROS bagfile with unique identifier └─ scenarios/ # Directory containing scenario information πŸ“œ β”œβ”€.json # Scenario schema └─.npy # Sketch instructions ``` --- ## Dataset Overview πŸ“ˆ ### Statistics | Environment | Office (sim_office) | Street (Road) (sim_street_road) | Street (Sidewalk) (sim_street_sidewalk) | Orchard (sim_orchard) | |--------------------|---------------------|---------------------------------|-----------------------------------------|-----------------------| | Count | 2,253 | 400 | 402 | 262 | | Avg. Time | 31s | 57s | 103s | 172s | | Avg. Distance | 32.8m | 80.4m | 150.0m | 191.6m | | Avg. FD (P / M) | 1.05 / 1.77 | 0.97 / 2.02 | 3.03 / 3.50 | 1.91 / 3.76 | | % of Misleading | 31% | 51% | 50% | 39% | Total : 3317 bagfiles, includes 48 hours of driving data over 219 kilometers. **Note:** These values differ slightly from the paper because the data version history is missing. ## Directory Details πŸ—οΈ ### `map_asset/` - **`map_list.yml`**: Contains metadata about all maps in the dataset. - **`maps/`**: Holds individual map folders. Each folder typically includes: - **`.png`**: An image representation of the map. - **`.yml`**: Detailed map information (compatible with the [ROS map server](http://wiki.ros.org/map_server)). ### `bagfiles/` - Contains ROS bagfiles, each identified by a unique UUID (e.g., **`.bag`**). ### `scenarios/` - **`.json`**: Scenario schema file describing the scenario. - **`.npy`**: Scenario annotations (sketch instructions). It contains a list of `(y, x)` pixel coordinates on the corresponding `sketch_map_name` map image. --- ### Topics in ROS Bagfiles πŸŽ₯ 1. **`/clock`** - **Message Type**: `rosgraph_msgs/msg/Clock` - **Description**: Publishes the current simulated time in a ROS system. Useful for synchronizing sensor data and events in simulation. 2. **`/cmd_vel`** - **Message Type**: `geometry_msgs/msg/Twist` - **Description**: Represents commanded linear and angular velocities for a robot, typically used to drive mobile robots (e.g., differential drive, holonomic platforms). 3. **`/imu`** - **Message Type**: `sensor_msgs/msg/Imu` - **Description**: Provides data from an Inertial Measurement Unit, including orientation (as a quaternion), angular velocity, and linear acceleration. 4. **`/joy`** - **Message Type**: `sensor_msgs/msg/Joy` - **Description**: Reports the state of joystick (gamepad) axes and buttons, enabling teleoperation or manual input to the robot. 5. **`/odom`** - **Message Type**: `nav_msgs/msg/Odometry` - **Description**: Offers an estimate of the robot’s position and velocity in free space. This serves as ground-truth data in simulation. 6. **`/rgb_front/camera_info`, `/rgb_left/camera_info`, `/rgb_right/camera_info`** - **Message Type**: `sensor_msgs/msg/CameraInfo` - **Description**: Contains intrinsic and extrinsic parameters of a camera. 7. **`/rgb_front/compressed`, `/rgb_left/compressed`, `/rgb_right/compressed`** - **Message Type**: `sensor_msgs/msg/CompressedImage` - **Description**: Encoded image data (JPEG/PNG) from a camera feed. 8. **`/tf`** - **Message Type**: `tf2_msgs/msg/TFMessage` - **Description**: Provides an odom-to-base_link transform. ### Schema of Scenario JSON πŸ“œ - **`semantic_uuid`**: A unique identifier for the scenario. Combines map name, scenario name, and either "precise" or "misleading," followed by the scenario number. - **`map_name`**: The name of the map where the scenario is located. - **`sketch_map_name`**: The map where the sketch instructions are provided. - **`start`**: The starting point of the robot (can be a specific point or "random"). - **`end`**: The ending point of the robot, predefined in annotated maps. - **`drive_map_name`**: The map that the robot uses for navigation, usually an occupancy map. - **`model_guideline`**: Instructions for the robot to follow during the scenario, serving as input for model training. **Example:** ```json { "semantic_uuid": "sim_office/coffee_delivery/precise/3/42", "map_name": "sim_office", "sketch_map_name": "annotated_occupancy_map", "start": "(random)", "end": "4", "drive_map_name": "occupancy_map", "model_guideline": "You are an indoor food-serving robot.\n\nYou must follow these driving instructions:\n1. You must avoid collisions.\n2. You should prioritize reaching the final destination.\n3. You should follow the Trajectory Instruction.\n a. If the Trajectory Instruction cannot be followed due to any obstacles, you should deviate to bypass the obstacle.\n b. You should try to evade any identifiable obstacles.\n4. You should maintain a constant driving speed." } ```