import os import json import tqdm import functools import collections import multiprocessing from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel def extract_domains(filename): domains = set() with open(filename) as f: for line in f: line = json.loads(line.strip()) domains.add(line["domain"]) return filename, list(domains) def filter_valid(questions): answers = set() new_questions = [] for question in questions: if question["answer"] not in answers: new_questions.append(question) answers.add(question["answer"]) return new_questions # def format_to_valid(questions): # answers_txt = [e["answer"] for e in questions] # questions_txt = [e["question"] for e in questions] # vectorizer = TfidfVectorizer() # vectorizer.fit(answers_txt + questions_txt) # answer_vectors = vectorizer.transform(answers_txt) # for i, question in enumerate(questions): # similarities = linear_kernel(answer_vectors[[i]], answer_vectors).flatten() # answer_scores = [(j, sim) for j, sim in enumerate(similarities) if sim != 1] # answer_scores = sorted(answer_scores, key=lambda x: x[1], reverse=True) # sorted_answers = [questions[j]["answer"] for j, _ in answer_scores if questions[j]["answer"] != question["answer"]] # negative_answer = sorted_answers[len(sorted_answers) // 2] # assert question["answer"] not in sorted_answers # question["candidates"] = [question["answer"]] + sorted_answers # question["negative_example"] = negative_answer # return questions def format_to_valid(questions): answers = [e["answer"] for e in questions] for question in questions: answer = question["answer"] candidates = [e for e in answers if e != answer] candidates = [answer] + candidates question["candidates"] = candidates return questions def format_to_train(questions): answers_txt = [e["answer"] for e in questions] answers_shifted = answers_txt[1:] + [answers_txt[0]] for question, answer in zip(questions, answers_shifted): question["negative"] = answer return questions def valid_train_split(filename, mapping=None): previous_domain = "" train = [] valid = [] domain_data = {"questions": [], "pages": set()} counter = 0 with open(filename) as f: for line_txt in f: counter += 1 line = json.loads(line_txt.strip()) domain = line["domain"] if domain != previous_domain and previous_domain != "": form_questions = format_to_train(domain_data["questions"]) if len(mapping[previous_domain]) > 1: train.extend(form_questions) elif len(valid) > 2000: train.extend(form_questions) elif len(domain_data["pages"]) > 1: train.extend(form_questions) elif len(domain_data["questions"]) < 15: train.extend(form_questions) else: questions = filter_valid(domain_data["questions"]) if len(questions) < 15: train.extend(form_questions) else: questions = format_to_valid(questions) valid.extend(questions) domain_data = {"questions": [], "pages": set()} domain_data["questions"].append(line) domain_data["pages"].add(line["domain_index"]) previous_domain = domain # train.extend(form_questions) return train, valid, filename domain_count = collections.defaultdict(list) data = [f"data/{e}" for e in os.listdir("data") if e.endswith(".json")] # with multiprocessing.Pool(os.cpu_count()) as p: with multiprocessing.Pool(1) as p: for filename, domains in tqdm.tqdm(p.imap_unordered(extract_domains, data)): language = filename.split(".")[1] for domain in domains: domain_count[domain].append(language) with multiprocessing.Pool(os.cpu_count()) as p: fn = functools.partial(valid_train_split, mapping=domain_count) for train, valid, filename in tqdm.tqdm(p.imap_unordered(fn, data)): train_filename = filename.replace("data/", "data/train/") train = [json.dumps(e, ensure_ascii=False) for e in train] valid = [json.dumps(e, ensure_ascii=False) for e in valid] with open(train_filename, "w+") as f: train = "\n".join(train) f.write(train) valid_filename = filename.replace("data/", "data/valid/") with open(valid_filename, "w+") as f: valid = "\n".join(valid) f.write(valid)