File size: 6,759 Bytes
d335f0f 79490af d335f0f f9a5794 d335f0f f9a5794 02219b3 d335f0f 02219b3 f9a5794 02219b3 d335f0f 02219b3 d335f0f 02219b3 01eb839 02219b3 f9a5794 d335f0f f9a5794 d335f0f 547e564 d335f0f 3e54127 d335f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
from os.path import dirname, basename
from pathlib import Path
# ここに設定を記入
_NAME = "mb23/GraySpectrogram"
_EXTENSION = [".png"]
_REVISION = "main"
# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"
_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""
# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/docs/datasets/package_reference/builder_classes
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes
class GraySpectrogram2(datasets.GeneratorBasedBuilder):
# データのサブセットはここで用意
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="train",
description=_DESCRIPTION,
)
]
def _info(self) -> DatasetInfo:
return datasets.DatasetInfo(
description = self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"caption": datasets.Value("string"),
"data_idx": datasets.Value("int32"),
"number" : datasets.Value("int32"),
"label" : datasets.ClassLabel(
names=[
"blues",
"classical",
"country",
"disco",
"hiphop",
"metal",
"pop",
"reggae",
"rock",
"jazz"
]
)
}
),
supervised_keys=("image", "caption"),
homepage=_HOMEPAGE,
citation= "",
# license=_LICENSE,
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager: DownloadManager):
# huggingfaceのディレクトリからデータを取ってくる
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
# メタデータであるjsonlファイルのURLを取得
# ここの抽出方法変えられないかな?
train_metadata_url = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["data/train/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
test_metadata_url = DataFilesDict.from_hf_repo(
{datasets.Split.TEST: ["data/test/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
metadata_urls = dict()
metadata_urls["train"] = train_metadata_url["train"]
metadata_urls["test"] = test_metadata_url["test"]
# 画像データは**.zipのURLをDict型として取得?
# **.zipのURLをDict型として取得?
train_data_url = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["data/train/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"],
)
test_data_url = DataFilesDict.from_hf_repo(
{datasets.Split.TEST: ["data/test/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"]
)
data_urls = dict()
data_urls["train"] = train_data_url["train"]
data_urls["test"] = test_data_url["test"]
gs = []
for split, file_list in data_urls.items():
metadata_list = metadata_urls[split]
for i, file_ in enumerate(file_list):
'''
split : "train" or "test" or "val"
files : zip files
'''
# print(file_)
# print(metadata_list[0])
# # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
metadata_path = dl_manager.download_and_extract(metadata_list[i])
downloaded_files = dl_manager.download(file_)
# # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
gs.append(
datasets.SplitGenerator(
name = split,
gen_kwargs = {
# "images" : iter(iter_archive[split]),
"images" : dl_manager.iter_archive(downloaded_files),
"metadata_path": metadata_path # メタデータパスを渡す
}
)
)
return gs
def _generate_examples(self, images, metadata_path):
"""Generate images and captions for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
file_list = list()
caption_list = list()
dataIDX_list = list()
num_list = list()
label_list = list()
with open(metadata_path) as fin:
for line in fin:
data = json.loads(line)
file_list.append(data["file_name"])
caption_list.append(data["caption"])
dataIDX_list.append(data["data_idx"])
num_list.append(data["number"])
label_list.append(data["label"])
for idx, (file_path, file_obj) in enumerate(images):
yield file_list[idx], {
"image": {
"path": file_list[idx],
"bytes": file_obj.read()
},
"caption" : caption_list[idx],
"data_idx" : dataIDX_list[idx],
"number" : num_list[idx],
"label": label_list[idx]
}
|