Datasets:
mb23
/

Languages:
English
License:
File size: 11,451 Bytes
d335f0f
 
 
 
 
 
 
 
 
 
 
 
79490af
d335f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6038f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d335f0f
c173f70
d335f0f
 
 
741161c
6038f66
 
 
 
 
 
 
 
 
 
 
 
741161c
6038f66
 
 
 
 
 
 
 
 
 
 
 
741161c
6038f66
 
 
 
 
 
 
 
 
 
 
741161c
6038f66
d335f0f
6038f66
 
 
 
 
 
 
 
 
 
741161c
6038f66
 
 
 
 
 
 
 
 
 
d335f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6038f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02219b3
6038f66
 
 
d335f0f
6038f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d335f0f
6038f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d335f0f
f9a5794
d335f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0431810
d335f0f
0431810
d335f0f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
from os.path import dirname, basename
from pathlib import Path


# ここに設定を記入
_NAME = "mb23/GraySpectrogram"
_EXTENSION = [".png"]
_REVISION = "main"

# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"

_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""

# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/docs/datasets/package_reference/builder_classes
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes


# データを整理?
dl_manager = DownloadManager()
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)

# メタデータであるjsonlファイルのURLを取得
# ここの抽出方法変えられないかな?
train_metadata_url = DataFilesDict.from_hf_repo(
    {datasets.Split.TRAIN: ["data/train/**"]},
    dataset_info=hfh_dataset_info,
    allowed_extensions=["jsonl", ".jsonl"],
)

test_metadata_url = DataFilesDict.from_hf_repo(
    {datasets.Split.TEST: ["data/test/**"]},
    dataset_info=hfh_dataset_info,
    allowed_extensions=["jsonl", ".jsonl"],
)
        

metadata_urls = dict()
metadata_urls["train"] = train_metadata_url["train"]
metadata_urls["test"] = test_metadata_url["test"]

# 画像データは**.zipのURLをDict型として取得?
# **.zipのURLをDict型として取得?
train_data_url = DataFilesDict.from_hf_repo(
    {datasets.Split.TRAIN: ["data/train/**"]},
    dataset_info=hfh_dataset_info,
    allowed_extensions=["zip", ".zip"],
)

test_data_url = DataFilesDict.from_hf_repo(
    {datasets.Split.TEST: ["data/test/**"]},
    dataset_info=hfh_dataset_info,
    allowed_extensions=["zip", ".zip"]
)
data_urls = dict()
data_urls["train"] = train_data_url["train"]
data_urls["test"] = test_data_url["test"]

class GraySpectrogramConfig(datasets.BuilderConfig):
    """BuilderConfig for Imagette."""

    def __init__(self, data_url, metadata_urls, **kwargs):
        """BuilderConfig for Imagette.
        Args:
          data_url: `string`, url to download the zip file from.
          matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
          **kwargs: keyword arguments forwarded to super.
        """
        super(GraySpectrogramConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url
        self.metadata_urls = metadata_urls

class GraySpectrogram(datasets.GeneratorBasedBuilder):

    # データのサブセットはここで用意
    BUILDER_CONFIGS = [
        GraySpectrogramConfig(
            name="data 0-200",
            description=_DESCRIPTION,
            data_url = {
                "train" : data_urls["train"][0],
                "test" : data_urls["test"][0]
            },
            metadata_urls = {
                "train" : metadata_urls["train"][0],
                "test" : metadata_urls["test"][0]
            }
            
        ), 
        GraySpectrogramConfig(
            name="data 200-600",
            description=_DESCRIPTION,
            data_url ={
                "train" : data_urls["train"][1],
                "test" : data_urls["test"][1]
            },
            metadata_urls = {
                "train": metadata_urls["train"][1],
                "test" : metadata_urls["test"][1] 
            }
            
        ), 
        GraySpectrogramConfig(
            name="data 600-1000",
            description=_DESCRIPTION,
            data_url = {
                "train" : data_urls["train"][2],
                "test" : data_urls["test"][2]
            },
            metadata_urls = {
                "train" : metadata_urls["train"][2],
                "test" : metadata_urls["test"][2]
            }
        ), 
        GraySpectrogramConfig(
            name="data 1000-1300",
            description=_DESCRIPTION,
            data_url = {
                "train" : data_urls["train"][3],
                "test" : data_urls["test"][3]
            },
            metadata_urls = {
                "train" : metadata_urls["train"][3],
                "test" : metadata_urls["test"][3]
            }
            
        ), 
        GraySpectrogramConfig(
            name="data 1300-1600",
            description=_DESCRIPTION,
            data_url = {
                "train" : data_urls["train"][4],
                "test" : data_urls["test"][4]
            },
            metadata_urls = {
                "train" : metadata_urls["train"][4],
                "test" : metadata_urls["test"][4]
            }   
        )
    ]

    def _info(self) -> DatasetInfo:
      return datasets.DatasetInfo(
          description = self.config.description,
          features=datasets.Features(
              {
                  "image": datasets.Image(),
                  "caption": datasets.Value("string"),
                  "data_idx": datasets.Value("int32"),
                  "number" : datasets.Value("int32"),
                  "label" : datasets.ClassLabel(
                        names=[
                            "blues",
                            "classical",
                            "country",
                            "disco",
                            "hiphop",
                            "metal",
                            "pop",
                            "reggae",
                            "rock",
                            "jazz"
                        ]
                  )
              }
          ),
          supervised_keys=("image", "caption"),
          homepage=_HOMEPAGE,
          citation= "",
          # license=_LICENSE,
          # task_templates=[ImageClassification(image_column="image", label_column="label")],
      )

    def _split_generators(self, dl_manager: DownloadManager):

        metadata_paths = dl_manager.download(self.config.metadata_urls)
        data_paths = dl_manager.download(self.config.data_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": dl_manager.iter_archive(data_paths["train"]),
                    "metadata_path": metadata_paths["train"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images": dl_manager.iter_archive(data_paths["test"]),
                    "metadata_path": metadata_paths["test"],
                }
            ),
        ]

        # # huggingfaceのディレクトリからデータを取ってくる
        # hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)

        # # メタデータであるjsonlファイルのURLを取得
        # # ここの抽出方法変えられないかな?
        # train_metadata_url = DataFilesDict.from_hf_repo(
        #     {datasets.Split.TRAIN: ["data/train/**"]},
        #     dataset_info=hfh_dataset_info,
        #     allowed_extensions=["jsonl", ".jsonl"],
        # )

        # test_metadata_url = DataFilesDict.from_hf_repo(
        #     {datasets.Split.TEST: ["data/test/**"]},
        #     dataset_info=hfh_dataset_info,
        #     allowed_extensions=["jsonl", ".jsonl"],
        # )
        
        # metadata_urls = dict()
        # metadata_urls["train"] = train_metadata_url["train"]
        # metadata_urls["test"] = test_metadata_url["test"]

        # # 画像データは**.zipのURLをDict型として取得?
        # # **.zipのURLをDict型として取得?
        # train_data_url = DataFilesDict.from_hf_repo(
        #     {datasets.Split.TRAIN: ["data/train/**"]},
        #     dataset_info=hfh_dataset_info,
        #     allowed_extensions=["zip", ".zip"],
        # )

        # test_data_url = DataFilesDict.from_hf_repo(
        #     {datasets.Split.TEST: ["data/test/**"]},
        #     dataset_info=hfh_dataset_info,
        #     allowed_extensions=["zip", ".zip"]
        # )
        # data_urls = dict()
        # data_urls["train"] = train_data_url["train"]
        # data_urls["test"] = test_data_url["test"]
        
        # gs = []

        # # for split, file_list in data_urls.items():
        # #     metadata_list = metadata_urls[split]
        # #     for i, file_ in enumerate(file_list):
        # #         '''
        # #         split : "train" or "test" or "val"
        # #         files : zip files
        # #         '''
        # #         # print(file_)
        # #         # print(metadata_list[0])
        # #         # # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
        # #         metadata_path = dl_manager.download_and_extract(metadata_list[i])
        # #         downloaded_files = dl_manager.download(file_)
        # #         # # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
        # #         gs.append(
        # #             datasets.SplitGenerator(
        # #                 name = split,
        # #                 gen_kwargs = {
        # #                     # "images" : iter(iter_archive[split]),
        # #                     "images" : dl_manager.iter_archive(downloaded_files),
        # #                     "metadata_path": metadata_path # メタデータパスを渡す
        # #                 }
        # #             )
        # #         )

        # return gs

    
    def _generate_examples(self, images, metadata_path):
        """Generate images and captions for splits."""
        # with open(metadata_path, encoding="utf-8") as f:
        #     files_to_keep = set(f.read().split("\n"))
        file_list = list()
        caption_list = list()
        dataIDX_list = list()
        num_list = list()
        label_list = list()

        with open(metadata_path) as fin:
            for line in fin:
                data =  json.loads(line)
                file_list.append(data["file_name"])
                caption_list.append(data["caption"])
                dataIDX_list.append(data["data_idx"])
                num_list.append(data["number"])
                label_list.append(data["label"])

        for idx, (file_path, file_obj) in enumerate(images):
            yield file_path, {
                "image": {
                    "path": file_path, 
                    "bytes": file_obj.read()
                },
                "caption" : caption_list[idx],
                "data_idx" : dataIDX_list[idx],
                "number" : num_list[idx],
                "label": label_list[idx]
            }