Datasets:
mb23
/

Languages:
English
License:
File size: 7,115 Bytes
d335f0f
 
 
 
 
 
 
 
 
 
 
 
79490af
d335f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a5794
d335f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a5794
d335f0f
 
 
 
 
 
f9a5794
 
 
 
 
 
 
 
 
d335f0f
 
 
 
 
 
f9a5794
 
 
d335f0f
 
 
f9a5794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e784f3
f9a5794
 
 
 
 
 
d335f0f
 
f9a5794
d335f0f
 
 
 
 
 
 
 
f9a5794
 
 
 
 
 
 
d335f0f
 
 
f9a5794
d335f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
from os.path import dirname, basename
from pathlib import Path


# ここに設定を記入
_NAME = "mb23/GraySpectrogram"
_EXTENSION = [".png"]
_REVISION = "main"

# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"

_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""

# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/docs/datasets/package_reference/builder_classes
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes



class GraySpectrogram2(datasets.GeneratorBasedBuilder):

    # データのサブセットはここで用意
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="train",
            description=_DESCRIPTION,
        )
    ]

    def _info(self) -> DatasetInfo:
      return datasets.DatasetInfo(
          description = self.config.description,
          features=datasets.Features(
              {
                  "image": datasets.Image(),
                  "caption": datasets.Value("string"),
                  "data_idx": datasets.Value("int32"),
                  "number" : datasets.Value("int32"),
                  "label" : datasets.ClassLabel(
                        names=[
                            "blues",
                            "classical",
                            "country",
                            "disco",
                            "hiphop",
                            "metal",
                            "pop",
                            "reggae",
                            "rock",
                            "jazz"
                        ]
                  )
              }
          ),
          supervised_keys=("image", "caption"),
          homepage=_HOMEPAGE,
          citation= "",
          # license=_LICENSE,
          # task_templates=[ImageClassification(image_column="image", label_column="label")],
      )

    def _split_generators(self, dl_manager: DownloadManager):
        # huggingfaceのディレクトリからデータを取ってくる
        hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)

        # メタデータであるjsonlファイルのURLを取得
        metadata_urls = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["jsonl", ".jsonl"],
        )

        # 辞書型にしてURLを格納し直す <- 正しい辞書型にできていたら、必要ないかも
        metadata_paths = dict()
        for path in metadata_urls["train"]:
            dname = dirname(path)
            folder = basename(Path(dname))
            # fname = basename(path)
            metadata_paths[folder] = path

        # 画像データは**.zipのURLをDict型として取得?
        data_urls = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["zip", ".zip"],
        )

        data_url = dict()
        train_data_url = list()
        test_data_url = list()
        for path in data_urls["train"]:
            dname = dirname(path)
            folder = basename(Path(dname))
            # 辞書型
            if folder=="train":
                train_data_url.append(path)
            if folder == "test":
                test_data_url.append(path)

        data_url["train"] = train_data_url
        data_url["test"] = test_data_url

        # iteration
        iter_archive = dict()
        for split, files in data_url.items():
            file_name_obj = list()
            for file_ in files:
                downloaded_files_path = dl_manager.download(file_)
                for file_obj in dl_manager.iter_archive(downloaded_files_path):
                    # print(file_obj)
                    if file_obj[0].startswith('content/'):
                        fname = basename(file_obj[0])
                        file_obj = (fname, file_obj[1])
                        file_name_obj.append(file_obj)
                        # print(file_obj)
                    else:
                        file_name_obj.append(file_obj)
                        # print(file_obj)
            iter_archive[split] = file_name_obj
        
        gs = []
        for split, files in iter_archive.items():
            '''
            split : "train" or "test" or "val"
            files : zip files
            '''
            # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
            metadata_path = dl_manager.download_and_extract(metadata_paths[split])
            # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
            gs.append(
                datasets.SplitGenerator(
                    name = split,
                    gen_kwargs = {
                        "images" : iter(iter_archive[split]),
                        "metadata_path": metadata_path # メタデータパスを渡す
                    }
                )
            )
        return gs

    
    def _generate_examples(self, images, metadata_path):
        """Generate images and captions for splits."""
        # with open(metadata_path, encoding="utf-8") as f:
        #     files_to_keep = set(f.read().split("\n"))
        file_list = list()
        caption_list = list()
        dataIDX_list = list()
        num_list = list()
        label_list = list()

        with open(metadata_path) as fin:
            for line in fin:
                data =  json.loads(line)
                file_list.append(data["file_name"])
                caption_list.append(data["caption"])
                dataIDX_list.append(data["data_idx"])
                num_list.append(data["number"])
                label_list.append(data["label"])

        for idx, (file_path, file_obj) in enumerate(images):
            yield file_path, {
                "image": {
                    "path": file_path, 
                    "bytes": file_obj.read()
                },
                "caption" : caption_list[idx],
                "data_idx" : dataIDX_list[idx],
                "number" : num_list[idx],
                "label": label_list[idx]
            }