File size: 6,175 Bytes
bee4911 ddc4c97 5973fe6 bee4911 ddc4c97 8779c37 ddc4c97 c143885 8779c37 5371483 fbdac43 5371483 fbdac43 61dae2a fbdac43 5371483 8779c37 5371483 ddc4c97 8779c37 5973fe6 8779c37 a850817 5973fe6 c143885 5973fe6 c143885 5973fe6 c143885 5973fe6 c143885 38655b2 5973fe6 c143885 5973fe6 38655b2 5973fe6 3501186 38655b2 5973fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: cc-by-sa-4.0
language:
- en
tags:
- music
- spectrogram
size_categories:
- 10K<n<100K
---
# Google/MusicCapsをスペクトログラムにしたデータ。
* <font color="red">The dataset viwer of this repository is truncated, so maybe you should see <a href="https://huggingface.co/datasets/mb23/GraySpectrotram_example">this one</a> instaed.</font>
## Dataset information
<table>
<thead>
<td>画像</td>
<td>caption</td>
<td>data_idx</td>
<td>number</td>
</thead>
<tbody>
<tr>
<td>1025px × 216px</td>
<td>音楽の説明</td>
<td>どのデータから生成されたデータか</td>
<td>5秒ずつ区切ったデータのうち、何番目か</td>
</tr>
</tbody>
</table>
## How this dataset was made
* コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing
* 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer
```python
from PIL import Image
import IPython.display
import cv2
# 1. wavファイルを解析
y, sr = librosa.load("wavファイルなど")
# 2. フーリエ変換を適用して周波数成分を取得
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) # librosaを用いてデータを作る
image = Image.fromarray(np.uint8(D), mode='L') # 'L'は1チャンネルのグレースケールモードを指定します
image.save('spectrogram_{}.png')
```
## Recover music(wave form) from sprctrogram
```python
im = Image.open("pngファイル")
db_ud = np.uint8(np.array(im))
amp = librosa.db_to_amplitude(db_ud)
print(amp.shape)
# (1025, 861)は20秒のwavファイルをスペクトログラムにした場合
# (1025, 431)は10秒のwavファイルをスペクトログラムにした場合
# (1025, 216)は5秒のwavファイルをスペクトログラムにした場合
y_inv = librosa.griffinlim(amp*200)
display(IPython.display.Audio(y_inv, rate=sr))
```
## Example : How to use this
* <font color="red">Subset <b>data 1300-1600</b> and <b>data 3400-3600</b> are not working now, so please get subset_name_list</n>
those were removed first</font>.
### 1 : get information about this dataset:
* copy this code~~
```python
'''
if you use GoogleColab, remove # to install packages below..
'''
#!pip install datasets
#!pip install huggingface-hub
#!huggingface-cli login
import datasets
from datasets import load_dataset
# make subset_name_list
subset_name_list = [
'data 0-200',
'data 200-600',
'data 600-1000',
'data 1000-1300',
'data 1600-2000',
'data 2000-2200',
'data 2200-2400',
'data 2400-2600',
'data 2600-2800',
'data 3000-3200',
'data 3200-3400',
'data 3600-3800',
'data 3800-4000',
'data 4000-4200',
'data 4200-4400',
'data 4400-4600',
'data 4600-4800',
'data 4800-5000',
'data 5000-5200',
'data 5200-5520'
]
# load_all_datasets
data = load_dataset("mb23/GraySpectrogram", subset_name_list[0])
for subset in subset_name_list:
# Confirm subset_list doesn't include "remove_list" datasets in the above cell.
print(subset)
new_ds = load_dataset("mb23/GraySpectrogram", subset)
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]])
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]])
# take place of data[split]
data["train"] = new_dataset_train
data["test"] = new_dataset_test
data
```
### 2 : load dataset and change to dataloader:
* You can use the code below:
* <font color="red">...but (;・∀・)I don't know whether this code works efficiently, because I haven't tried this code so far</color>
```python
import datasets
from datasets import load_dataset, DatasetDict
from torchvision import transforms
from torch.utils.data import DataLoader
# BATCH_SIZE = ???
# IMAGE_SIZE = ???
# TRAIN_SIZE = ??? # the number of training data
# TEST_SIZE = ??? # the number of test data
def load_datasets():
# Define data transforms
data_transforms = [
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(), # Scales data into [0,1]
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
]
data_transform = transforms.Compose(data_transforms)
data = load_dataset("mb23/GraySpectrogram", subset_name_list[0])
for subset in subset_name_list:
# Confirm subset_list doesn't include "remove_list" datasets in the above cell.
print(subset)
new_ds = load_dataset("mb23/GraySpectrogram", subset)
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]])
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]])
# take place of data[split]
data["train"] = new_dataset_train
data["test"] = new_dataset_test
# memo:
# 特徴量上手く抽出する方法が...わからん。これは力づく。
# 本当はload_dataset()の時点で抽出したかったけど、無理そう
# リポジトリ作り直してpush_to_hub()したほうがいいかもしれない。
new_dataset = dict()
new_dataset["train"] = Dataset.from_dict({
"image" : data["train"]["image"],
"caption" : data["train"]["caption"]
})
new_dataset["test"] = Dataset.from_dict({
"image" : data["test"]["image"],
"caption" : data["test"]["caption"]
})
data = datasets.DatasetDict(new_dataset)
train = data["train"]
test = data["test"]
for idx in range(len(train["image"])):
train["image"][idx] = data_transform(train["image"][idx])
test["image"][idx] = data_transform(test["image"][idx])
train = Dataset.from_dict(train)
train = train.with_format("torch") # リスト型回避
test = Dataset.from_dict(train)
test = test.with_format("torch") # リスト型回避
# or
train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
return train_loader, test_loader
```
* then try this?
```
train_loader, test_loader = load_datasets()
```
|