Datasets:
mb23
/

Languages:
English
License:
GraySpectrogram / GraySpectrogram.py
mickylan2367's picture
Merge branch 'main' of https://huggingface.co/datasets/mb23/GraySpectrogram
1083e4b
raw
history blame
6.72 kB
import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
from os.path import dirname, basename
from pathlib import Path
# ここに設定を記入
_NAME = "mb23/GraySpectrogram"
_EXTENSION = [".png"]
_REVISION = "main"
# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"
_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""
# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/docs/datasets/package_reference/builder_classes
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes
class GraySpectrogram2(datasets.GeneratorBasedBuilder):
# データのサブセットはここで用意
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="train",
description=_DESCRIPTION,
)
]
def _info(self) -> DatasetInfo:
return datasets.DatasetInfo(
description = self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"caption": datasets.Value("string"),
"data_idx": datasets.Value("int32"),
"number" : datasets.Value("int32"),
"label" : datasets.ClassLabel(
names=[
"blues",
"classical",
"country",
"disco",
"hiphop",
"metal",
"pop",
"reggae",
"rock",
"jazz"
]
)
}
),
supervised_keys=("image", "caption"),
homepage=_HOMEPAGE,
citation= "",
# license=_LICENSE,
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager: DownloadManager):
# huggingfaceのディレクトリからデータを取ってくる
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
# メタデータであるjsonlファイルのURLを取得
# ここの抽出方法変えられないかな?
train_metadata_url = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["data/train/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
test_metadata_url = DataFilesDict.from_hf_repo(
{datasets.Split.TEST: ["data/test/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
metadata_urls = dict()
metadata_urls["train"] = train_metadata_url["train"]
metadata_urls["test"] = test_metadata_url["test"]
# 画像データは**.zipのURLをDict型として取得?
# **.zipのURLをDict型として取得?
train_data_url = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["data/train/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"],
)
test_data_url = DataFilesDict.from_hf_repo(
{datasets.Split.TEST: ["data/test/**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"]
)
data_urls = dict()
data_urls["train"] = train_data_url["train"]
data_urls["test"] = test_data_url["test"]
gs = []
for split, file_list in data_urls.items():
metadata_list = metadata_urls[split]
for i, file_ in enumerate(file_list):
'''
split : "train" or "test" or "val"
files : zip files
'''
# print(file_)
# print(metadata_list[0])
# # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
metadata_path = dl_manager.download_and_extract(metadata_list[i])
downloaded_files = dl_manager.download(file_)
# # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
gs.append(
datasets.SplitGenerator(
name = split,
gen_kwargs = {
# "images" : iter(iter_archive[split]),
"images" : downloaded_files,
"metadata_path": metadata_path # メタデータパスを渡す
}
)
)
return gs
def _generate_examples(self, images, metadata_path):
"""Generate images and captions for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
file_list = list()
caption_list = list()
dataIDX_list = list()
num_list = list()
label_list = list()
with open(metadata_path) as fin:
for line in fin:
data = json.loads(line)
file_list.append(data["file_name"])
caption_list.append(data["caption"])
dataIDX_list.append(data["data_idx"])
num_list.append(data["number"])
label_list.append(data["label"])
for idx, (file_path, file_obj) in enumerate(images):
yield file_path, {
"image": {
"path": file_path,
"bytes": file_obj.read()
},
"caption" : caption_list[idx],
"data_idx" : dataIDX_list[idx],
"number" : num_list[idx],
"label": label_list[idx]
}