import datasets | |
from huggingface_hub import HfApi | |
from datasets import DownloadManager, DatasetInfo | |
from datasets.data_files import DataFilesDict | |
import os | |
import json | |
from os.path import dirname, basename | |
from pathlib import Path | |
# ここに設定を記入 | |
_NAME = "mb23/GraySpectrogram" | |
_EXTENSION = [".png"] | |
_REVISION = "main" | |
# _HOMEPAGE = "https://github.com/fastai/imagenette" | |
# プログラムを置く場所が決まったら、ここにホームページURLつける | |
_HOMEPAGE = "https://huggingface.co/datasets/mb23/GraySpectrogram" | |
_DESCRIPTION = f"""\ | |
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets! | |
Using for Project Learning... | |
""" | |
# 参考になりそうなURL集 | |
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html | |
# https://huggingface.co/docs/datasets/package_reference/builder_classes | |
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py | |
# https://huggingface.co/datasets/food101/blob/main/food101.py | |
# https://huggingface.co/docs/datasets/about_dataset_load | |
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py | |
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html | |
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes | |
def get_information(): | |
# データを整理? | |
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0) | |
# メタデータであるjsonlファイルのURLを取得 | |
# ここの抽出方法変えられないかな? | |
train_metadata_url = DataFilesDict.from_hf_repo( | |
{datasets.Split.TRAIN: ["data/train/**"]}, | |
dataset_info=hfh_dataset_info, | |
allowed_extensions=["jsonl", ".jsonl"], | |
) | |
test_metadata_url = DataFilesDict.from_hf_repo( | |
{datasets.Split.TEST: ["data/test/**"]}, | |
dataset_info=hfh_dataset_info, | |
allowed_extensions=["jsonl", ".jsonl"], | |
) | |
metadata_urls = dict() | |
metadata_urls["train"] = train_metadata_url["train"] | |
metadata_urls["test"] = test_metadata_url["test"] | |
# 画像データは**.zipのURLをDict型として取得? | |
# **.zipのURLをDict型として取得? | |
train_data_url = DataFilesDict.from_hf_repo( | |
{datasets.Split.TRAIN: ["data/train/**"]}, | |
dataset_info=hfh_dataset_info, | |
allowed_extensions=["zip", ".zip"], | |
) | |
test_data_url = DataFilesDict.from_hf_repo( | |
{datasets.Split.TEST: ["data/test/**"]}, | |
dataset_info=hfh_dataset_info, | |
allowed_extensions=["zip", ".zip"] | |
) | |
data_urls = dict() | |
data_urls["train"] = train_data_url["train"] | |
data_urls["test"] = test_data_url["test"] | |
return (metadata_urls, data_urls) | |
class GraySpectrogramConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Imagette.""" | |
def __init__(self, data_url, metadata_url, **kwargs): | |
"""BuilderConfig for Imagette. | |
Args: | |
data_url: `string`, url to download the zip file from. | |
matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(GraySpectrogramConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
self.data_url = data_url | |
self.metadata_url = metadata_url | |
class GraySpectrogram(datasets.GeneratorBasedBuilder): | |
# データのサブセットはここで用意 | |
metadata_urls, data_urls = get_information() | |
subset_name_list = [ | |
"data 0-200", | |
"data 200-600", | |
"data 600-1000", | |
"data 1000-1300", | |
"data 1300-1600", | |
"data 1600-2000", | |
] | |
for i in range(2000, 2800, 200): | |
subset_name_list.append(f"data {i}-{i+200}") | |
for i in range(3000, 5200, 200): | |
subset_name_list.append(f"data {i}-{i+200}") | |
subset_name_list.append("data 5200-5520") | |
config_list = list() | |
for i in range(22): | |
config_list.append( | |
GraySpectrogramConfig( | |
name = subset_name_list[i], | |
description = _DESCRIPTION, | |
data_url = { | |
"train" : data_urls["train"][i], | |
"test" : data_urls["test"][i] | |
}, | |
metadata_url = { | |
"train" : metadata_urls["train"][i], | |
"test" : metadata_urls["test"][i] | |
} | |
) | |
) | |
BUILDER_CONFIGS = config_list | |
# BUILDER_CONFIGS = [ | |
# GraySpectrogramConfig( | |
# name="data 0-200", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][0], | |
# "test" : data_urls["test"][0] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][0], | |
# "test" : metadata_urls["test"][0] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 200-600", | |
# description=_DESCRIPTION, | |
# data_url ={ | |
# "train" : data_urls["train"][1], | |
# "test" : data_urls["test"][1] | |
# }, | |
# metadata_url = { | |
# "train": metadata_urls["train"][1], | |
# "test" : metadata_urls["test"][1] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 600-1000", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][2], | |
# "test" : data_urls["test"][2] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][2], | |
# "test" : metadata_urls["test"][2] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 1000-1300", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][3], | |
# "test" : data_urls["test"][3] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][3], | |
# "test" : metadata_urls["test"][3] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 1300-1600", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][4], | |
# "test" : data_urls["test"][4] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][4], | |
# "test" : metadata_urls["test"][4] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 1600-2000", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][5], | |
# "test" : data_urls["test"][5] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][5], | |
# "test" : metadata_urls["test"][5] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 2000-2200", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][6], | |
# "test" : data_urls["test"][6] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][6], | |
# "test" : metadata_urls["test"][6] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 2200-2600", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][7], | |
# "test" : data_urls["test"][7] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][7], | |
# "test" : metadata_urls["test"][7] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 2600-2800", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][8], | |
# "test" : data_urls["test"][8] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][8], | |
# "test" : metadata_urls["test"][8] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 3000-3200", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][9], | |
# "test" : data_urls["test"][9] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][9], | |
# "test" : metadata_urls["test"][9] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 3200-3400", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][10], | |
# "test" : data_urls["test"][10] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][11], | |
# "test" : metadata_urls["test"][11] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 3400-3600", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][12], | |
# "test" : data_urls["test"][12] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][12], | |
# "test" : metadata_urls["test"][12] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 3600-3800", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][13], | |
# "test" : data_urls["test"][1] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][14], | |
# "test" : metadata_urls["test"][14] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 3800-4000", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][15], | |
# "test" : data_urls["test"][15] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][15], | |
# "test" : metadata_urls["test"][15] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 4000-4200", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][16], | |
# "test" : data_urls["test"][16] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][16], | |
# "test" : metadata_urls["test"][16] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 4200-4400", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][17], | |
# "test" : data_urls["test"][17] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][17], | |
# "test" : metadata_urls["test"][17] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 4400-4600", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][18], | |
# "test" : data_urls["test"][18] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][18], | |
# "test" : metadata_urls["test"][18] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 4600-4800", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][19], | |
# "test" : data_urls["test"][19] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][19], | |
# "test" : metadata_urls["test"][19] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 4800-5000", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][20], | |
# "test" : data_urls["test"][20] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][20], | |
# "test" : metadata_urls["test"][20] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 5000-5200", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][21], | |
# "test" : data_urls["test"][21] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][4], | |
# "test" : metadata_urls["test"][4] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 5200-5520", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][4], | |
# "test" : data_urls["test"][4] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][4], | |
# "test" : metadata_urls["test"][4] | |
# } | |
# ), | |
# GraySpectrogramConfig( | |
# name="data 2800-3000", | |
# description=_DESCRIPTION, | |
# data_url = { | |
# "train" : data_urls["train"][4], | |
# "test" : data_urls["test"][4] | |
# }, | |
# metadata_url = { | |
# "train" : metadata_urls["train"][4], | |
# "test" : metadata_urls["test"][4] | |
# } | |
# ) | |
# ] | |
def _info(self) -> DatasetInfo: | |
return datasets.DatasetInfo( | |
description = self.config.description, | |
features=datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"caption": datasets.Value("string"), | |
"data_idx": datasets.Value("int32"), | |
"number" : datasets.Value("int32"), | |
"label" : datasets.ClassLabel( | |
names=[ | |
"blues", | |
"classical", | |
"country", | |
"disco", | |
"hiphop", | |
"metal", | |
"pop", | |
"reggae", | |
"rock", | |
"jazz" | |
] | |
) | |
} | |
), | |
supervised_keys=("image", "caption"), | |
homepage=_HOMEPAGE, | |
citation= "", | |
# license=_LICENSE, | |
# task_templates=[ImageClassification(image_column="image", label_column="label")], | |
) | |
def _split_generators(self, dl_manager: DownloadManager): | |
train_metadata_path = dl_manager.download_and_extract(self.config.metadata_url["train"]) | |
test_metadata_path = dl_manager.download_and_extract(self.config.metadata_url["test"]) | |
train_data_path = dl_manager.download(self.config.data_url["train"]) | |
test_data_path = dl_manager.download(self.config.data_url["test"]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"images": dl_manager.iter_archive(train_data_path), | |
"metadata_path": train_metadata_path, | |
} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"images": dl_manager.iter_archive(test_data_path), | |
"metadata_path": test_metadata_path, | |
} | |
), | |
] | |
# # huggingfaceのディレクトリからデータを取ってくる | |
# hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0) | |
# # メタデータであるjsonlファイルのURLを取得 | |
# # ここの抽出方法変えられないかな? | |
# train_metadata_url = DataFilesDict.from_hf_repo( | |
# {datasets.Split.TRAIN: ["data/train/**"]}, | |
# dataset_info=hfh_dataset_info, | |
# allowed_extensions=["jsonl", ".jsonl"], | |
# ) | |
# test_metadata_url = DataFilesDict.from_hf_repo( | |
# {datasets.Split.TEST: ["data/test/**"]}, | |
# dataset_info=hfh_dataset_info, | |
# allowed_extensions=["jsonl", ".jsonl"], | |
# ) | |
# metadata_urls = dict() | |
# metadata_urls["train"] = train_metadata_url["train"] | |
# metadata_urls["test"] = test_metadata_url["test"] | |
# # 画像データは**.zipのURLをDict型として取得? | |
# # **.zipのURLをDict型として取得? | |
# train_data_url = DataFilesDict.from_hf_repo( | |
# {datasets.Split.TRAIN: ["data/train/**"]}, | |
# dataset_info=hfh_dataset_info, | |
# allowed_extensions=["zip", ".zip"], | |
# ) | |
# test_data_url = DataFilesDict.from_hf_repo( | |
# {datasets.Split.TEST: ["data/test/**"]}, | |
# dataset_info=hfh_dataset_info, | |
# allowed_extensions=["zip", ".zip"] | |
# ) | |
# data_urls = dict() | |
# data_urls["train"] = train_data_url["train"] | |
# data_urls["test"] = test_data_url["test"] | |
# gs = [] | |
# # for split, file_list in data_urls.items(): | |
# # metadata_list = metadata_urls[split] | |
# # for i, file_ in enumerate(file_list): | |
# # ''' | |
# # split : "train" or "test" or "val" | |
# # files : zip files | |
# # ''' | |
# # # print(file_) | |
# # # print(metadata_list[0]) | |
# # # # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得 | |
# # metadata_path = dl_manager.download_and_extract(metadata_list[i]) | |
# # downloaded_files = dl_manager.download(file_) | |
# # # # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している? | |
# # gs.append( | |
# # datasets.SplitGenerator( | |
# # name = split, | |
# # gen_kwargs = { | |
# # # "images" : iter(iter_archive[split]), | |
# # "images" : dl_manager.iter_archive(downloaded_files), | |
# # "metadata_path": metadata_path # メタデータパスを渡す | |
# # } | |
# # ) | |
# # ) | |
# return gs | |
def _generate_examples(self, images, metadata_path): | |
"""Generate images and captions for splits.""" | |
# with open(metadata_path, encoding="utf-8") as f: | |
# files_to_keep = set(f.read().split("\n")) | |
file_list = list() | |
caption_list = list() | |
dataIDX_list = list() | |
num_list = list() | |
label_list = list() | |
with open(metadata_path, encoding="utf-8") as fin: | |
for line in fin: | |
data = json.loads(line) | |
file_list.append(data["file_name"]) | |
caption_list.append(data["caption"]) | |
dataIDX_list.append(data["data_idx"]) | |
num_list.append(data["number"]) | |
label_list.append(data["label"]) | |
for idx, (file_path, file_obj) in enumerate(images): | |
yield file_path, { | |
"image": { | |
"path": file_path, | |
"bytes": file_obj.read() | |
}, | |
"caption" : caption_list[idx], | |
"data_idx" : dataIDX_list[idx], | |
"number" : num_list[idx], | |
"label": label_list[idx] | |
} | |