import datasets from huggingface_hub import HfApi from datasets import DownloadManager, DatasetInfo from datasets.data_files import DataFilesDict import os import json from os.path import dirname, basename from pathlib import Path # ここに設定を記入 _NAME = "mb23/GraySpectrogram" _EXTENSION = [".png"] _REVISION = "main" # _HOMEPAGE = "https://github.com/fastai/imagenette" # プログラムを置く場所が決まったら、ここにホームページURLつける _HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps" _DESCRIPTION = f"""\ {_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets! Using for Project Learning... """ # 参考になりそうなURL集 # https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html # https://huggingface.co/docs/datasets/package_reference/builder_classes # https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py # https://huggingface.co/datasets/food101/blob/main/food101.py # https://huggingface.co/docs/datasets/about_dataset_load # https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py # https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html # DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes class GraySpectrogram2(datasets.GeneratorBasedBuilder): # データのサブセットはここで用意 BUILDER_CONFIGS = [ datasets.BuilderConfig( name="train", description=_DESCRIPTION, ) ] def _info(self) -> DatasetInfo: return datasets.DatasetInfo( description = self.config.description, features=datasets.Features( { "image": datasets.Image(), "caption": datasets.Value("string"), "data_idx": datasets.Value("int32"), "number" : datasets.Value("int32"), "label" : datasets.ClassLabel( names=[ "blues", "classical", "country", "disco", "hiphop", "metal", "pop", "reggae", "rock", "jazz" ] ) } ), supervised_keys=("image", "caption"), homepage=_HOMEPAGE, citation= "", # license=_LICENSE, # task_templates=[ImageClassification(image_column="image", label_column="label")], ) def _split_generators(self, dl_manager: DownloadManager): # huggingfaceのディレクトリからデータを取ってくる hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0) # メタデータであるjsonlファイルのURLを取得 # ここの抽出方法変えられないかな? train_metadata_url = DataFilesDict.from_hf_repo( {datasets.Split.TRAIN: ["data/train/**"]}, dataset_info=hfh_dataset_info, allowed_extensions=["jsonl", ".jsonl"], ) test_metadata_url = DataFilesDict.from_hf_repo( {datasets.Split.TEST: ["data/test/**"]}, dataset_info=hfh_dataset_info, allowed_extensions=["jsonl", ".jsonl"], ) metadata_urls = dict() metadata_urls["train"] = train_metadata_url["train"] metadata_urls["test"] = test_metadata_url["test"] # 画像データは**.zipのURLをDict型として取得? # **.zipのURLをDict型として取得? train_data_url = DataFilesDict.from_hf_repo( {datasets.Split.TRAIN: ["data/train/**"]}, dataset_info=hfh_dataset_info, allowed_extensions=["zip", ".zip"], ) test_data_url = DataFilesDict.from_hf_repo( {datasets.Split.TEST: ["data/test/**"]}, dataset_info=hfh_dataset_info, allowed_extensions=["zip", ".zip"] ) data_urls = dict() data_urls["train"] = train_data_url["train"] data_urls["test"] = test_data_url["test"] gs = [] for split, file_list in data_urls.items(): metadata_list = metadata_urls[split] for i, file_ in enumerate(file_list): ''' split : "train" or "test" or "val" files : zip files ''' # print(file_) # print(metadata_list[0]) # # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得 metadata_path = dl_manager.download_and_extract(metadata_list[i]) downloaded_files = dl_manager.download(file_) # # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している? gs.append( datasets.SplitGenerator( name = split, gen_kwargs = { # "images" : iter(iter_archive[split]), "images" : dl_manager.iter_archive(downloaded_files), "metadata_path": metadata_path # メタデータパスを渡す } ) ) return gs def _generate_examples(self, images, metadata_path): """Generate images and captions for splits.""" # with open(metadata_path, encoding="utf-8") as f: # files_to_keep = set(f.read().split("\n")) file_list = list() caption_list = list() dataIDX_list = list() num_list = list() label_list = list() with open(metadata_path) as fin: for line in fin: data = json.loads(line) file_list.append(data["file_name"]) caption_list.append(data["caption"]) dataIDX_list.append(data["data_idx"]) num_list.append(data["number"]) label_list.append(data["label"]) for idx, (file_path, file_obj) in enumerate(images): yield file_path, { "image": { "path": file_path, "bytes": file_obj.read() }, "caption" : caption_list[idx], "data_idx" : dataIDX_list[idx], "number" : num_list[idx], "label": label_list[idx] }