--- license: cc-by-sa-4.0 language: - en tags: - music - spectrogram size_categories: - 10KThe dataset viwer of this repository is truncated, so maybe you should see this one instaed. ## Dataset information
画像 caption data_idx number
1025px × 216px 音楽の説明 どのデータから生成されたデータか 5秒ずつ区切ったデータのうち、何番目か
## How this dataset was made * コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing * 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer ```python from PIL import Image import IPython.display import cv2 # 1. wavファイルを解析 y, sr = librosa.load("wavファイルなど") # 2. フーリエ変換を適用して周波数成分を取得 D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) # librosaを用いてデータを作る image = Image.fromarray(np.uint8(D), mode='L') # 'L'は1チャンネルのグレースケールモードを指定します image.save('spectrogram_{}.png') ``` ## Recover music(wave form) from sprctrogram ```python im = Image.open("pngファイル") db_ud = np.uint8(np.array(im)) amp = librosa.db_to_amplitude(db_ud) print(amp.shape) # (1025, 861)は20秒のwavファイルをスペクトログラムにした場合 # (1025, 431)は10秒のwavファイルをスペクトログラムにした場合 # (1025, 216)は5秒のwavファイルをスペクトログラムにした場合 y_inv = librosa.griffinlim(amp*200) display(IPython.display.Audio(y_inv, rate=sr)) ``` ## Example : How to use this * Subset data 1300-1600 and data 3400-3600 are not working now, so please get subset_name_list those were removed first. ### 1 : get information about this dataset: * copy this code~~ ```python ''' if you use GoogleColab, remove # to install packages below.. ''' #!pip install datasets #!pip install huggingface-hub #!huggingface-cli login import datasets from datasets import load_dataset # make subset_name_list subset_name_list = [ 'data 0-200', 'data 200-600', 'data 600-1000', 'data 1000-1300', 'data 1600-2000', 'data 2000-2200', 'data 2200-2400', 'data 2400-2600', 'data 2600-2800', 'data 3000-3200', 'data 3200-3400', 'data 3600-3800', 'data 3800-4000', 'data 4000-4200', 'data 4200-4400', 'data 4400-4600', 'data 4600-4800', 'data 4800-5000', 'data 5000-5200', 'data 5200-5520' ] # load_all_datasets data = load_dataset("mb23/GraySpectrogram", subset_name_list[0]) for subset in subset_name_list: # Confirm subset_list doesn't include "remove_list" datasets in the above cell. print(subset) new_ds = load_dataset("mb23/GraySpectrogram", subset) new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]]) new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]]) # take place of data[split] data["train"] = new_dataset_train data["test"] = new_dataset_test data ``` ### 2 : load dataset and change to dataloader: * You can use the code below: * ...but (;・∀・)I don't know whether this code works efficiently, because I haven't tried this code so far ```python import datasets from datasets import load_dataset, DatasetDict from torchvision import transforms from torch.utils.data import DataLoader # BATCH_SIZE = ??? # IMAGE_SIZE = ??? # TRAIN_SIZE = ??? # the number of training data # TEST_SIZE = ??? # the number of test data def load_datasets(): # Define data transforms data_transforms = [ transforms.Resize((IMG_SIZE, IMG_SIZE)), transforms.ToTensor(), # Scales data into [0,1] transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1] ] data_transform = transforms.Compose(data_transforms) data = load_dataset("mb23/GraySpectrogram", subset_name_list[0]) for subset in subset_name_list: # Confirm subset_list doesn't include "remove_list" datasets in the above cell. print(subset) new_ds = load_dataset("mb23/GraySpectrogram", subset) new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]]) new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]]) # take place of data[split] data["train"] = new_dataset_train data["test"] = new_dataset_test # memo: # 特徴量上手く抽出する方法が...わからん。これは力づく。 # 本当はload_dataset()の時点で抽出したかったけど、無理そう # リポジトリ作り直してpush_to_hub()したほうがいいかもしれない。 new_dataset = dict() new_dataset["train"] = Dataset.from_dict({ "image" : data["train"]["image"], "caption" : data["train"]["caption"] }) new_dataset["test"] = Dataset.from_dict({ "image" : data["test"]["image"], "caption" : data["test"]["caption"] }) data = datasets.DatasetDict(new_dataset) train = data["train"] test = data["test"] for idx in range(len(train["image"])): train["image"][idx] = data_transform(train["image"][idx]) test["image"][idx] = data_transform(test["image"][idx]) train = Dataset.from_dict(train) train = train.with_format("torch") # リスト型回避 test = Dataset.from_dict(train) test = test.with_format("torch") # リスト型回避 # or train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True) return train_loader, test_loader ``` * then try this? ``` train_loader, test_loader = load_datasets() ```