Datasets:
Update Readme.md
Browse files
README.md
CHANGED
@@ -23,8 +23,50 @@ task_categories:
|
|
23 |
|
24 |
- **Homepage:** [laion-5b](https://laion.ai/blog/laion-5b/)
|
25 |
- **Huggingface:** [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)
|
26 |
-
- **Point of Contact
|
27 |
|
28 |
### Dataset Summary
|
29 |
|
30 |
-
[LAION-5B](https://laion.ai/blog/laion-5b/) is a large scale openly accessible image-text dataset contains text from multiple languages. This is a Turkish subset data of [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
- **Homepage:** [laion-5b](https://laion.ai/blog/laion-5b/)
|
25 |
- **Huggingface:** [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)
|
26 |
+
- **Point of Contact:** [mcemilg](mailto:[email protected])
|
27 |
|
28 |
### Dataset Summary
|
29 |
|
30 |
+
[LAION-5B](https://laion.ai/blog/laion-5b/) is a large scale openly accessible image-text dataset contains text from multiple languages. This is a Turkish subset data of [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi). It's compatible to be used with [image2dataset](https://github.com/rom1504/img2dataset) to fetch the images at scale.
|
31 |
+
|
32 |
+
|
33 |
+
### Data Structure
|
34 |
+
|
35 |
+
```python
|
36 |
+
DatasetDict({
|
37 |
+
train: Dataset({
|
38 |
+
features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'],
|
39 |
+
num_rows: 34638627
|
40 |
+
})
|
41 |
+
})
|
42 |
+
```
|
43 |
+
|
44 |
+
```python
|
45 |
+
{
|
46 |
+
'SAMPLE_ID': Value(dtype='int64', id=None),
|
47 |
+
'URL': Value(dtype='string', id=None),
|
48 |
+
'TEXT': Value(dtype='string', id=None),
|
49 |
+
'HEIGHT': Value(dtype='int64', id=None),
|
50 |
+
'WIDTH': Value(dtype='int64', id=None),
|
51 |
+
'LICENSE': Value(dtype='string', id=None),
|
52 |
+
'LANGUAGE': Value(dtype='string', id=None),
|
53 |
+
'NSFW': Value(dtype='string', id=None),
|
54 |
+
'similarity': Value(dtype='float64', id=None)
|
55 |
+
}
|
56 |
+
```
|
57 |
+
|
58 |
+
|
59 |
+
### Notes
|
60 |
+
|
61 |
+
The data was basically processed to drop non-Turkish and irrelevant texts before published. Both [FastText](https://fasttext.cc/docs/en/language-identification.html) and [langdetect](https://pypi.org/project/langdetect/) libraries were used to identify if the text is Turkish or not. The cleaning process can be summarized as follows:
|
62 |
+
|
63 |
+
- replace \"\"\" with empty str
|
64 |
+
- remove URLs in texts
|
65 |
+
- Drop if both FastText and LangDetect are highly confident with there is no Turkish in text.
|
66 |
+
- Drop empty text fields.
|
67 |
+
|
68 |
+
### License
|
69 |
+
CC-BY-4.0
|
70 |
+
|
71 |
+
|
72 |
+
|