File size: 2,699 Bytes
51e10ea 81dd197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: cc-by-nc-nd-4.0
---
# Code-Mixed-Offensive-Language-Identification
This is a dataset for the offensive language detection task. It contains 100k code mixed data. The languages are Bangla-English-Hindi.
### Dataset Generation:
Initially, the labelling schema of OLID[^1] and SOLID[^2] serves as the seed data, from which we randomly select 100,000 data instances. The labels in this dataset are categorized as Non-Offensive and Offensive for the purpose of our task. We meticulously ensure an equal number of instances for both Non-Offensive and Offensive labels. To synthesize the Code-mixed dataset, we employ two distinct methodologies: the *Random Code-mixing Algorithm* by Krishnan et al. (2021)[^3] and *r-CM* by Santy et al. (2021)[^4].
### Class Distribution:
#### For train.csv:
| Label | Count | Percentage |
|-------|-------|------------|
| NOT | 40018 | 66.70% |
| OFF | 19982 | 33.30% |
#### For dev.csv:
| Label | Count | Percentage |
|-------|-------|------------|
| NOT | 13339 | 66.70% |
| OFF | 6661 | 33.30% |
#### For test.csv:
| Label | Count | Percentage |
|-------|-------|------------|
| NOT | 13340 | 66.70% |
| OFF | 6660 | 33.30% |
### Cite our Paper:
If you utilize this dataset, please cite our paper.
```bibtex
@article{raihan2023mixed,
title={Mixed-Distil-BERT: Code-mixed Language Modeling for Bangla, English, and Hindi},
author={Raihan, Md Nishat and Goswami, Dhiman and Mahmud, Antara},
journal={arXiv preprint arXiv:2309.10272},
year={2023}
}
```
### References
[^1]: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R. (2019). SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation (pp. 75–86). [https://aclanthology.org/S19-2010](https://aclanthology.org/S19-2010)
[^2]: Rosenthal, S., Atanasova, P., Karadzhov, G., Zampieri, M., & Nakov, P. (2021). SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 915–928). [https://aclanthology.org/2021.findings-acl.80](https://aclanthology.org/2021.findings-acl.80)
[^3]: Krishnan, J., Anastasopoulos, A., Purohit, H., & Rangwala, H. (2021). Multilingual code-switching for zero-shot cross-lingual intent prediction and slot filling. arXiv preprint arXiv:2103.07792.
[^4]: Santy, S., Srinivasan, A., & Choudhury, M. (2021). BERTologiCoMix: How does code-mixing interact with multilingual BERT? In Proceedings of the Second Workshop on Domain Adaptation for NLP (pp. 111–121).
---
|