File size: 14,851 Bytes
b5b4168 bd394ee 92c814f bd394ee d9fa030 bd394ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
---
license: mit
dataset_info:
- config_name: chords
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: chord_type
dtype: string
- name: inversion
dtype: int64
- name: root_note_is_accidental
dtype: bool
- name: root_note_pitch_class
dtype: int64
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 18697466628.48
num_examples: 13248
download_size: 18637787206
dataset_size: 18697466628.48
- config_name: intervals
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: root_note_pitch_class
dtype: int64
- name: interval
dtype: int64
- name: play_style
dtype: int64
- name: play_style_name
dtype: string
- name: midi_note_val
dtype: int64
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 56093049925.056
num_examples: 39744
download_size: 56074987413
dataset_size: 56093049925.056
- config_name: notes
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: root_note_pitch_class
dtype: int64
- name: octave
dtype: int64
- name: root_note_is_accidental
dtype: bool
- name: register
dtype: int64
- name: midi_note_val
dtype: int64
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 14023184428.832
num_examples: 9936
download_size: 13804952340
dataset_size: 14023184428.832
- config_name: scales
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: root_note_name
dtype: string
- name: mode
dtype: string
- name: play_style
dtype: int64
- name: play_style_name
dtype: string
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 21813743576.416
num_examples: 15456
download_size: 21806379646
dataset_size: 21813743576.416
- config_name: simple_progressions
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: key_note_name
dtype: string
- name: key_note_pitch_class
dtype: int64
- name: chord_progression
dtype: string
- name: midi_program_num
dtype: int64
- name: midi_program_name
dtype: string
- name: midi_category
dtype: string
splits:
- name: train
num_bytes: 29604485544.56
num_examples: 20976
download_size: 29509153369
dataset_size: 29604485544.56
- config_name: tempos
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: bpm
dtype: int64
- name: click_config_name
dtype: string
- name: midi_program_num
dtype: int64
- name: offset_time
dtype: float64
splits:
- name: train
num_bytes: 2840527084
num_examples: 4025
download_size: 1323717012
dataset_size: 2840527084
- config_name: time_signatures
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
mono: false
- name: time_signature
dtype: string
- name: time_signature_beats
dtype: int64
- name: time_signature_subdivision
dtype: int64
- name: is_compound
dtype: int64
- name: bpm
dtype: int64
- name: click_config_name
dtype: string
- name: midi_program_num
dtype: int64
- name: offset_time
dtype: float64
- name: reverb_level
dtype: int64
splits:
- name: train
num_bytes: 846915090
num_examples: 1200
download_size: 692431621
dataset_size: 846915090
configs:
- config_name: chords
data_files:
- split: train
path: chords/train-*
- config_name: intervals
data_files:
- split: train
path: intervals/train-*
- config_name: notes
data_files:
- split: train
path: notes/train-*
- config_name: scales
data_files:
- split: train
path: scales/train-*
- config_name: simple_progressions
data_files:
- split: train
path: simple_progressions/train-*
- config_name: tempos
data_files:
- split: train
path: tempos/train-*
- config_name: time_signatures
data_files:
- split: train
path: time_signatures/train-*
task_categories:
- audio-classification
- feature-extraction
language:
- en
tags:
- audio
- music
- music information retrieval
size_categories:
- 100K<n<1M
---
# Dataset Card for SynTheory
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Do Music Generation Models Encode Music Theory?](https://brown-palm.github.io/music-theory/)
- **Repository:** [SynTheory](https://github.com/brown-palm/syntheory)
- **Paper:** [Do Music Generation Models Encode Music Theory?](https://arxiv.org/abs/2410.00872)
### Dataset Summary
SynTheory is a synthetic dataset of music theory concepts, specifically rhythmic (tempos and time signatures) and tonal (notes, intervals, scales, chords, and chord progressions).
Each of these 7 concepts has its own config.
`tempos` consist of 161 total integer tempos (`bpm`) ranging from 50 BPM to 210 BPM (inclusive), 5 percussive instrument types (`click_config_name`), and 5 random start time offsets (`offset_time`).
`time_signatures` consist of 8 time signatures (`time_signature`), 5 percussive instrument types (`click_config_name`), 10 random start time offsets (`offset_time`), and 3 reverb levels (`reverb_level`). The 8 time signatures are 2/2, 2/4, 3/4, 3/8, 4/4, 6/8, 9/8, and 12/8.
`notes` consist of 12 pitch classes (`root_note_name`), 9 octaves (`octave`), and 92 instrument types (`midi_program_name`). The 12 pitch classes are C, C#, D, D#, E, F, F#, G, G#, A, A# and B.
`intervals` consist of 12 interval sizes (`interval`), 12 root notes (`root_note_name`), 92 instrument types (`midi_program_name`), and 3 play styles (`play_style_name`). The 12 intervals are minor 2nd, Major 2nd, minor 3rd, Major 3rd, Perfect 4th, Tritone, Perfect 5th, minor 6th, Major 6th, minor 7th, Major 7th, and Perfect octave.
`scales` consist of 7 modes (`mode`), 12 root notes (`root_note_name`), 92 instrument types (`midi_program_name`), and 2 play styles (`play_style_name`). The 7 modes are Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, and Locrian.
`chords` consist of 4 chord quality (`chord_type`), 3 inversions (`inversion`), 12 root notes (`root_note_name`), and 92 instrument types (`midi_program_name`). The 4 chord quality types are major, minor, augmented, and diminished. The 3 inversions are root position, first inversion, and second inversion.
`simple_progressions` consist of 19 chord progressions (`chord_progression`), 12 root notes (`key_note_name`), and 92 instrument types (`midi_program_name`). The 19 chord progressions consist of 10 chord progressions in major mode and 9 in natural minor mode. The major mode chord progressions are (I–IV–V–I), (I–IV–vi–V), (I–V–vi–IV), (I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi), (IV–V–iii–Vi), (V–IV–I–V), (V–vi–IV–I), and (vi–IV–I–V). The natural minor mode chord progressions are (i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i), (i–VI–III–VII), (i–VI–VII–i), (i–VI–VII–III), (i–VII–VI–IV), (iv–VII–i–i), and (VII–vi–VII–i).
### Supported Tasks and Leaderboards
- `audio-classification`: This can be used towards music theory classification tasks.
- `feature-extraction`: Our samples can be fed into pretrained audio codecs to extract representations from the model, which can be further used for downstream MIR tasks.
### How to use
The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
For example, to download the notes config, simply specify the corresponding language config name (i.e., "notes"):
```python
from datasets import load_dataset
notes = load_dataset("meganwei/syntheory", "notes")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset
notes = load_dataset("meganwei/syntheory", "notes", streaming=True)
print(next(iter(notes)))
```
*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
Local:
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
from torch.utils.data import DataLoader
notes = load_dataset("meganwei/syntheory", "notes")
batch_sampler = BatchSampler(RandomSampler(notes), batch_size=32, drop_last=False)
dataloader = DataLoader(notes, batch_sampler=batch_sampler)
```
Streaming:
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
notes = load_dataset("meganwei/syntheory", "notes", streaming=True)
dataloader = DataLoader(notes, batch_size=32)
```
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
### Example scripts
[More Information Needed]
## Dataset Structure
### Data Fields
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
For the notes music theory concept, there are 9,936 distinct note configurations. However, our dataset contains 9,848 non-silent samples. The 88 silent samples at extreme registers are unvoiceable with our soundfont. With a more complete soundfont, all 9,936 configurations are realizable to audio.
The silent samples are the following audio files: 0_0_C_10_Music_Box.wav, 0_0_C_56_Trumpet.wav, 0_0_C_68_Oboe.wav, 1_0_C#_10_Music_Box.wav, 1_0_C#_56_Trumpet.wav, 1_0_C#_68_Oboe.wav, 2_0_D_10_Music_Box.wav, 2_0_D_56_Trumpet.wav, 2_0_D_68_Oboe.wav, 3_0_D#_10_Music_Box.wav, 3_0_D#_56_Trumpet.wav, 3_0_D#_68_Oboe.wav, 4_0_E_10_Music_Box.wav, 4_0_E_56_Trumpet.wav, 4_0_E_68_Oboe.wav, 5_0_F_10_Music_Box.wav, 5_0_F_56_Trumpet.wav, 5_0_F_68_Oboe.wav, 6_0_F#_10_Music_Box.wav, 6_0_F#_56_Trumpet.wav, 6_0_F#_68_Oboe.wav, 7_0_G_10_Music_Box.wav, 7_0_G_56_Trumpet.wav, 7_0_G_68_Oboe.wav, 8_0_G#_10_Music_Box.wav, 8_0_G#_56_Trumpet.wav, 8_0_G#_68_Oboe.wav, 9_0_A_10_Music_Box.wav, 9_0_A_56_Trumpet.wav, 9_0_A_68_Oboe.wav, 10_0_A#_10_Music_Box.wav, 10_0_A#_56_Trumpet.wav, 10_0_A#_68_Oboe.wav, 11_0_B_10_Music_Box.wav, 11_0_B_56_Trumpet.wav, 11_0_B_68_Oboe.wav, 12_0_C_68_Oboe.wav, 13_0_C#_68_Oboe.wav, 14_0_D_68_Oboe.wav, 15_0_D#_68_Oboe.wav, 16_0_E_68_Oboe.wav, 17_0_F_68_Oboe.wav, 18_0_F#_68_Oboe.wav, 19_0_G_68_Oboe.wav, 20_0_G#_68_Oboe.wav, 21_0_A_68_Oboe.wav, 22_0_A#_68_Oboe.wav, 23_0_B_68_Oboe.wav, 24_0_C_68_Oboe.wav, 25_0_C#_68_Oboe.wav, 26_0_D_68_Oboe.wav, 27_0_D#_68_Oboe.wav, 28_0_E_68_Oboe.wav, 29_0_F_68_Oboe.wav, 30_0_F#_68_Oboe.wav, 31_0_G_68_Oboe.wav, 32_0_G#_68_Oboe.wav, 33_0_A_68_Oboe.wav, 34_0_A#_68_Oboe.wav, 35_0_B_68_Oboe.wav, 80_2_G#_67_Baritone_Sax.wav, 81_2_A_67_Baritone_Sax.wav, 82_2_A#_67_Baritone_Sax.wav, 83_2_B_67_Baritone_Sax.wav, 84_2_C_67_Baritone_Sax.wav, 85_2_C#_67_Baritone_Sax.wav, 86_2_D_67_Baritone_Sax.wav, 87_2_D#_67_Baritone_Sax.wav, 88_2_E_67_Baritone_Sax.wav, 89_2_F_67_Baritone_Sax.wav, 90_2_F#_67_Baritone_Sax.wav, 91_2_G_67_Baritone_Sax.wav, 92_2_G#_67_Baritone_Sax.wav, 93_2_A_67_Baritone_Sax.wav, 94_2_A#_67_Baritone_Sax.wav, 95_2_B_67_Baritone_Sax.wav, 96_2_C_67_Baritone_Sax.wav, 97_2_C#_67_Baritone_Sax.wav, 98_2_D_67_Baritone_Sax.wav, 99_2_D#_67_Baritone_Sax.wav, 100_2_E_67_Baritone_Sax.wav, 101_2_F_67_Baritone_Sax.wav, 102_2_F#_67_Baritone_Sax.wav, 103_2_G_67_Baritone_Sax.wav, 104_2_G#_67_Baritone_Sax.wav, 105_2_A_67_Baritone_Sax.wav, 106_2_A#_67_Baritone_Sax.wav, and 107_2_B_67_Baritone_Sax.wav.
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```bibtext
@inproceedings{Wei2024-music,
title={Do Music Generation Models Encode Music Theory?},
author={Wei, Megan and Freeman, Michael and Donahue, Chris and Sun, Chen},
booktitle={International Society for Music Information Retrieval},
year={2024}
}
```
### Data Statistics
| Concept | Number of Samples |
|--------------------|-------------------|
| Tempo | 4,025 |
| Time Signatures | 1,200 |
| Notes | 9,936 |
| Intervals | 39,744 |
| Scales | 15,456 |
| Chords | 13,248 |
| Chord Progressions | 20,976 |
|