File size: 14,851 Bytes
b5b4168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd394ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c814f
bd394ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9fa030
 
 
bd394ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
---
license: mit
dataset_info:
- config_name: chords
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: root_note_name
    dtype: string
  - name: chord_type
    dtype: string
  - name: inversion
    dtype: int64
  - name: root_note_is_accidental
    dtype: bool
  - name: root_note_pitch_class
    dtype: int64
  - name: midi_program_num
    dtype: int64
  - name: midi_program_name
    dtype: string
  - name: midi_category
    dtype: string
  splits:
  - name: train
    num_bytes: 18697466628.48
    num_examples: 13248
  download_size: 18637787206
  dataset_size: 18697466628.48
- config_name: intervals
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: root_note_name
    dtype: string
  - name: root_note_pitch_class
    dtype: int64
  - name: interval
    dtype: int64
  - name: play_style
    dtype: int64
  - name: play_style_name
    dtype: string
  - name: midi_note_val
    dtype: int64
  - name: midi_program_num
    dtype: int64
  - name: midi_program_name
    dtype: string
  - name: midi_category
    dtype: string
  splits:
  - name: train
    num_bytes: 56093049925.056
    num_examples: 39744
  download_size: 56074987413
  dataset_size: 56093049925.056
- config_name: notes
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: root_note_name
    dtype: string
  - name: root_note_pitch_class
    dtype: int64
  - name: octave
    dtype: int64
  - name: root_note_is_accidental
    dtype: bool
  - name: register
    dtype: int64
  - name: midi_note_val
    dtype: int64
  - name: midi_program_num
    dtype: int64
  - name: midi_program_name
    dtype: string
  - name: midi_category
    dtype: string
  splits:
  - name: train
    num_bytes: 14023184428.832
    num_examples: 9936
  download_size: 13804952340
  dataset_size: 14023184428.832
- config_name: scales
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: root_note_name
    dtype: string
  - name: mode
    dtype: string
  - name: play_style
    dtype: int64
  - name: play_style_name
    dtype: string
  - name: midi_program_num
    dtype: int64
  - name: midi_program_name
    dtype: string
  - name: midi_category
    dtype: string
  splits:
  - name: train
    num_bytes: 21813743576.416
    num_examples: 15456
  download_size: 21806379646
  dataset_size: 21813743576.416
- config_name: simple_progressions
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: key_note_name
    dtype: string
  - name: key_note_pitch_class
    dtype: int64
  - name: chord_progression
    dtype: string
  - name: midi_program_num
    dtype: int64
  - name: midi_program_name
    dtype: string
  - name: midi_category
    dtype: string
  splits:
  - name: train
    num_bytes: 29604485544.56
    num_examples: 20976
  download_size: 29509153369
  dataset_size: 29604485544.56
- config_name: tempos
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: bpm
    dtype: int64
  - name: click_config_name
    dtype: string
  - name: midi_program_num
    dtype: int64
  - name: offset_time
    dtype: float64
  splits:
  - name: train
    num_bytes: 2840527084
    num_examples: 4025
  download_size: 1323717012
  dataset_size: 2840527084
- config_name: time_signatures
  features:
  - name: audio
    dtype:
      audio:
        sampling_rate: 44100
        mono: false
  - name: time_signature
    dtype: string
  - name: time_signature_beats
    dtype: int64
  - name: time_signature_subdivision
    dtype: int64
  - name: is_compound
    dtype: int64
  - name: bpm
    dtype: int64
  - name: click_config_name
    dtype: string
  - name: midi_program_num
    dtype: int64
  - name: offset_time
    dtype: float64
  - name: reverb_level
    dtype: int64
  splits:
  - name: train
    num_bytes: 846915090
    num_examples: 1200
  download_size: 692431621
  dataset_size: 846915090
configs:
- config_name: chords
  data_files:
  - split: train
    path: chords/train-*
- config_name: intervals
  data_files:
  - split: train
    path: intervals/train-*
- config_name: notes
  data_files:
  - split: train
    path: notes/train-*
- config_name: scales
  data_files:
  - split: train
    path: scales/train-*
- config_name: simple_progressions
  data_files:
  - split: train
    path: simple_progressions/train-*
- config_name: tempos
  data_files:
  - split: train
    path: tempos/train-*
- config_name: time_signatures
  data_files:
  - split: train
    path: time_signatures/train-*
task_categories:
- audio-classification
- feature-extraction
language:
- en
tags:
- audio
- music
- music information retrieval
size_categories:
- 100K<n<1M
---
# Dataset Card for SynTheory

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
  - [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Do Music Generation Models Encode Music Theory?](https://brown-palm.github.io/music-theory/)
- **Repository:** [SynTheory](https://github.com/brown-palm/syntheory)
- **Paper:** [Do Music Generation Models Encode Music Theory?](https://arxiv.org/abs/2410.00872)

### Dataset Summary

SynTheory is a synthetic dataset of music theory concepts, specifically rhythmic (tempos and time signatures) and tonal (notes, intervals, scales, chords, and chord progressions). 

Each of these 7 concepts has its own config.

`tempos` consist of 161 total integer tempos (`bpm`) ranging from 50 BPM to 210 BPM (inclusive), 5 percussive instrument types (`click_config_name`), and 5 random start time offsets (`offset_time`).

`time_signatures` consist of 8 time signatures (`time_signature`), 5 percussive instrument types (`click_config_name`), 10 random start time offsets (`offset_time`), and 3 reverb levels (`reverb_level`). The 8 time signatures are 2/2, 2/4, 3/4, 3/8, 4/4, 6/8, 9/8, and 12/8.

`notes` consist of 12 pitch classes (`root_note_name`), 9 octaves (`octave`), and 92 instrument types (`midi_program_name`). The 12 pitch classes are C, C#, D, D#, E, F, F#, G, G#, A, A# and B.

`intervals` consist of 12 interval sizes (`interval`), 12 root notes (`root_note_name`), 92 instrument types (`midi_program_name`), and 3 play styles (`play_style_name`). The 12 intervals are minor 2nd, Major 2nd, minor 3rd, Major 3rd, Perfect 4th, Tritone, Perfect 5th, minor 6th, Major 6th, minor 7th, Major 7th, and Perfect octave. 

`scales` consist of 7 modes (`mode`), 12 root notes (`root_note_name`), 92 instrument types (`midi_program_name`), and 2 play styles (`play_style_name`). The 7 modes are Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, and Locrian.

`chords` consist of 4 chord quality (`chord_type`), 3 inversions (`inversion`), 12 root notes (`root_note_name`), and 92 instrument types (`midi_program_name`). The 4 chord quality types are major, minor, augmented, and diminished. The 3 inversions are root position, first inversion, and second inversion.

`simple_progressions` consist of 19 chord progressions (`chord_progression`), 12 root notes (`key_note_name`), and 92 instrument types (`midi_program_name`). The 19 chord progressions consist of 10 chord progressions in major mode and 9 in natural minor mode. The major mode chord progressions are (I–IV–V–I), (I–IV–vi–V), (I–V–vi–IV), (I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi), (IV–V–iii–Vi), (V–IV–I–V), (V–vi–IV–I), and (vi–IV–I–V). The natural minor mode chord progressions are (i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i), (i–VI–III–VII), (i–VI–VII–i), (i–VI–VII–III), (i–VII–VI–IV), (iv–VII–i–i), and (VII–vi–VII–i).

### Supported Tasks and Leaderboards

- `audio-classification`: This can be used towards music theory classification tasks. 
- `feature-extraction`: Our samples can be fed into pretrained audio codecs to extract representations from the model, which can be further used for downstream MIR tasks.

### How to use

The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. 

For example, to download the notes config, simply specify the corresponding language config name (i.e., "notes"):
```python
from datasets import load_dataset

notes = load_dataset("meganwei/syntheory", "notes")
```

Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset

notes = load_dataset("meganwei/syntheory", "notes", streaming=True)

print(next(iter(notes)))
```

*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).

Local:

```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
from torch.utils.data import DataLoader

notes = load_dataset("meganwei/syntheory", "notes")
batch_sampler = BatchSampler(RandomSampler(notes), batch_size=32, drop_last=False)
dataloader = DataLoader(notes, batch_sampler=batch_sampler)
```

Streaming:

```python
from datasets import load_dataset
from torch.utils.data import DataLoader

notes = load_dataset("meganwei/syntheory", "notes", streaming=True)
dataloader = DataLoader(notes, batch_size=32)
```

To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).

### Example scripts

[More Information Needed]

## Dataset Structure

### Data Fields

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

For the notes music theory concept, there are 9,936 distinct note configurations. However, our dataset contains 9,848 non-silent samples. The 88 silent samples at extreme registers are unvoiceable with our soundfont. With a more complete soundfont, all 9,936 configurations are realizable to audio.

The silent samples are the following audio files: 0_0_C_10_Music_Box.wav, 0_0_C_56_Trumpet.wav, 0_0_C_68_Oboe.wav, 1_0_C#_10_Music_Box.wav, 1_0_C#_56_Trumpet.wav, 1_0_C#_68_Oboe.wav, 2_0_D_10_Music_Box.wav, 2_0_D_56_Trumpet.wav, 2_0_D_68_Oboe.wav, 3_0_D#_10_Music_Box.wav, 3_0_D#_56_Trumpet.wav, 3_0_D#_68_Oboe.wav, 4_0_E_10_Music_Box.wav, 4_0_E_56_Trumpet.wav, 4_0_E_68_Oboe.wav, 5_0_F_10_Music_Box.wav, 5_0_F_56_Trumpet.wav, 5_0_F_68_Oboe.wav, 6_0_F#_10_Music_Box.wav, 6_0_F#_56_Trumpet.wav, 6_0_F#_68_Oboe.wav, 7_0_G_10_Music_Box.wav, 7_0_G_56_Trumpet.wav, 7_0_G_68_Oboe.wav, 8_0_G#_10_Music_Box.wav, 8_0_G#_56_Trumpet.wav, 8_0_G#_68_Oboe.wav, 9_0_A_10_Music_Box.wav, 9_0_A_56_Trumpet.wav, 9_0_A_68_Oboe.wav, 10_0_A#_10_Music_Box.wav, 10_0_A#_56_Trumpet.wav, 10_0_A#_68_Oboe.wav, 11_0_B_10_Music_Box.wav, 11_0_B_56_Trumpet.wav, 11_0_B_68_Oboe.wav, 12_0_C_68_Oboe.wav, 13_0_C#_68_Oboe.wav, 14_0_D_68_Oboe.wav, 15_0_D#_68_Oboe.wav, 16_0_E_68_Oboe.wav, 17_0_F_68_Oboe.wav, 18_0_F#_68_Oboe.wav, 19_0_G_68_Oboe.wav, 20_0_G#_68_Oboe.wav, 21_0_A_68_Oboe.wav, 22_0_A#_68_Oboe.wav, 23_0_B_68_Oboe.wav, 24_0_C_68_Oboe.wav, 25_0_C#_68_Oboe.wav, 26_0_D_68_Oboe.wav, 27_0_D#_68_Oboe.wav, 28_0_E_68_Oboe.wav, 29_0_F_68_Oboe.wav, 30_0_F#_68_Oboe.wav, 31_0_G_68_Oboe.wav, 32_0_G#_68_Oboe.wav, 33_0_A_68_Oboe.wav, 34_0_A#_68_Oboe.wav, 35_0_B_68_Oboe.wav, 80_2_G#_67_Baritone_Sax.wav, 81_2_A_67_Baritone_Sax.wav, 82_2_A#_67_Baritone_Sax.wav, 83_2_B_67_Baritone_Sax.wav, 84_2_C_67_Baritone_Sax.wav, 85_2_C#_67_Baritone_Sax.wav, 86_2_D_67_Baritone_Sax.wav, 87_2_D#_67_Baritone_Sax.wav, 88_2_E_67_Baritone_Sax.wav, 89_2_F_67_Baritone_Sax.wav, 90_2_F#_67_Baritone_Sax.wav, 91_2_G_67_Baritone_Sax.wav, 92_2_G#_67_Baritone_Sax.wav, 93_2_A_67_Baritone_Sax.wav, 94_2_A#_67_Baritone_Sax.wav, 95_2_B_67_Baritone_Sax.wav, 96_2_C_67_Baritone_Sax.wav, 97_2_C#_67_Baritone_Sax.wav, 98_2_D_67_Baritone_Sax.wav, 99_2_D#_67_Baritone_Sax.wav, 100_2_E_67_Baritone_Sax.wav, 101_2_F_67_Baritone_Sax.wav, 102_2_F#_67_Baritone_Sax.wav, 103_2_G_67_Baritone_Sax.wav, 104_2_G#_67_Baritone_Sax.wav, 105_2_A_67_Baritone_Sax.wav, 106_2_A#_67_Baritone_Sax.wav, and 107_2_B_67_Baritone_Sax.wav.

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information
```bibtext
@inproceedings{Wei2024-music,
  title={Do Music Generation Models Encode Music Theory?},
  author={Wei, Megan and Freeman, Michael and Donahue, Chris and Sun, Chen},
  booktitle={International Society for Music Information Retrieval},
  year={2024}
}
```

### Data Statistics

| Concept            | Number of Samples |
|--------------------|-------------------|
| Tempo              | 4,025             |
| Time Signatures    | 1,200             |
| Notes              | 9,936             |
| Intervals          | 39,744            |
| Scales             | 15,456            |
| Chords             | 13,248            |
| Chord Progressions | 20,976            |