File size: 2,052 Bytes
7096388 e7ade10 7096388 e7ade10 749469b e7ade10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: cc-by-nc-4.0
pretty_name: MerRec
size_categories:
- 1B<n<10B
language:
- en
tags:
- recommendation
- sequential recommendation
- click-through rate prediction
- e-commerce
---
# MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems
This repository contains the dataset accompanying the paper [MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems](https://arxiv.org/abs/2402.14230).
Contributors: Lichi Li, Zainul Abi Din, Zhen Tan, Sam London, Tianlong Chen, Ajay Daptardar
## Overview
The MerRec dataset is a large-scale, highly diverse, thoroughly anonymized and derived subset of item interaction event sequence data from Mercari, the C2C marketplace e-commerce platform. It is designed for researchers to study recommendation related tasks on a rich C2C environment with many item features.
Some basic statistics are:
- Unique users: Over 5 million
- Unique items: Over 80 million
- Unique events: Over 1 billion
- Unique sessions: Over 200 million
- Item title text tokens: Over 8 billion
For a detailed walkthrough and an extensive list of accurate statistics, feature interpretations, preprocessing procedure, please refer to the paper.
## File Organization
The MerRec dataset is divided into 6 directories, each containing about 300 Parquet shards from a particular month in 2023.
## Experiments
Code implementation used for the experiment section of the paper can be found [here](https://github.com/mercari/mercari-ml-merrec-pub-us).
## BibTeX
```bibtex
@misc{li2024merrec,
title={MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems},
author={Lichi Li and Zainul Abi Din and Zhen Tan and Sam London and Tianlong Chen and Ajay Daptardar},
year={2024},
eprint={2402.14230},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
## License
Dataset license: [CC BY-NC 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode.en) |