File size: 2,052 Bytes
7096388
 
e7ade10
 
 
 
 
 
 
 
 
 
7096388
e7ade10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749469b
e7ade10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: cc-by-nc-4.0
pretty_name: MerRec
size_categories:
- 1B<n<10B
language:
- en
tags:
- recommendation
- sequential recommendation
- click-through rate prediction
- e-commerce
---

# MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems

This repository contains the dataset accompanying the paper [MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems](https://arxiv.org/abs/2402.14230).

Contributors: Lichi Li, Zainul Abi Din, Zhen Tan, Sam London, Tianlong Chen, Ajay Daptardar

## Overview

The MerRec dataset is a large-scale, highly diverse, thoroughly anonymized and derived subset of item interaction event sequence data from Mercari, the C2C marketplace e-commerce platform. It is designed for researchers to study recommendation related tasks on a rich C2C environment with many item features.

Some basic statistics are:

- Unique users: Over 5 million
- Unique items: Over 80 million
- Unique events: Over 1 billion
- Unique sessions: Over 200 million
- Item title text tokens: Over 8 billion

For a detailed walkthrough and an extensive list of accurate statistics, feature interpretations, preprocessing procedure, please refer to the paper.

## File Organization

The MerRec dataset is divided into 6 directories, each containing about 300 Parquet shards from a particular month in 2023.

## Experiments

Code implementation used for the experiment section of the paper can be found [here](https://github.com/mercari/mercari-ml-merrec-pub-us).

## BibTeX

```bibtex
@misc{li2024merrec,
      title={MerRec: A Large-scale Multipurpose Mercari Dataset for Consumer-to-Consumer Recommendation Systems}, 
      author={Lichi Li and Zainul Abi Din and Zhen Tan and Sam London and Tianlong Chen and Ajay Daptardar},
      year={2024},
      eprint={2402.14230},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
```

## License

Dataset license: [CC BY-NC 4.0 International](https://creativecommons.org/licenses/by-nc/4.0/legalcode.en)