File size: 8,867 Bytes
24cec02 18846f8 24cec02 2c01fed 24cec02 92c1c95 3ffe5f5 8e058cc 92c1c95 24cec02 92c1c95 fbcc88a 54904a1 aacc2e2 6de8925 aacc2e2 0d502af 34fae80 0d502af 34fae80 aacc2e2 34fae80 aacc2e2 770701f 34fae80 770701f 6de8925 fbcc88a 1ad118d 6de8925 1ad118d b909e1a 1ad118d b909e1a 1ad118d be65551 1ad118d 6de8925 556f7a1 6de8925 4032e19 1ad118d 4032e19 1ad118d 92c1c95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
task_categories:
- automatic-speech-recognition
language:
- ms
- en
- zh
- ta
- id
---
# Malaysian STT Whisper format
Up to 15k hours annotated, we done heavy postprocessing and post-translation to improve pseudolabeled Whisper Large V3.
Also include word level timestamp.
## Postprocessing
1. Check repetitive trigrams.
2. Verify Voice Activity using Silero-VAD.
3. Verify scores using Force Alignment.
## Post-translation
We use [mesolitica/nanot5-base-malaysian-translation-v2.1](https://huggingface.co/mesolitica/nanot5-base-malaysian-translation-v2.1).
## Dataset involved
1. [Malaysian context v1](https://huggingface.co/datasets/mesolitica/pseudolabel-malaya-speech-stt-train-whisper-large-v3-timestamp)
2. [Malaysian context v2](https://huggingface.co/datasets/mesolitica/pseudolabel-malaysian-youtube-whisper-large-v3-timestamp)
3. [Malay audiobook](https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp)
4. [Singaporean context](https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp)
5. [Indonesian context](https://huggingface.co/datasets/mesolitica/pseudolabel-indonesian-large-v3-timestamp)
6. [Mandarin audio](https://huggingface.co/datasets/mesolitica/pseudolabel-mandarin-large-v3-timestamp)
7. [Tamil audio](https://huggingface.co/datasets/mesolitica/pseudolabel-tamil-large-v3-timestamp)
8. [Science context](https://huggingface.co/datasets/mesolitica/pseudolabel-science-large-v3-timestamp)
9. [Malay sarawak](https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format)
10. [Scripted Malay Daily Use Speech Corpus](https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format)
11. [Malay Conversational Speech Corpus](https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format)
12. [Iban](https://huggingface.co/datasets/malaysia-ai/iban-whisper-format)
13. [Malay dialects](https://huggingface.co/datasets/mesolitica/pseudolabel-malay-dialects-large-v3-timestamp)
### Word level timestamp
1. Malaysian context v1, 658.54 hours.
```
{"audio_filename": "prepared-pseudolabel-malaya-chunks/2-0.mp3", "new_text": "<|startoftranscript|><|ms|><|transcribeprecise|><|0.00|> luar<|0.34|><|0.42|> kan<|0.60|><|1.78|> sebab<|2.06|><|2.24|> benda<|2.42|><|2.52|> ni<|2.58|><|2.70|> berlaku<|3.08|><|3.20|> contoh<|3.50|><|3.56|> kita<|3.72|><|3.80|> pergi<|3.98|><|4.10|> ke<|4.16|><|4.40|> ATM<|4.76|><|5.70|> yang<|5.80|><|5.84|> bukan<|6.02|><|6.10|> Islam,<|6.34|><|6.96|> siang<|7.12|><|7.18|> hari<|7.42|><|endoftext|>"}
```
- [Label](pseudolabel-malaya-whisper-word-timestamp.jsonl)
- [Audio](prepared-pseudolabel-malaya-chunks.zip)
2. Malaysian context v2, 8058.17 hours.
```
{"audio_filename": "prepared-pseudolabel-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|ms|><|transcribeprecise|><|0.00|> tu<|0.04|><|0.20|> So<|0.26|><|0.70|> gaji<|0.96|><|1.06|> berbeza<|1.42|><|2.46|> Gaji<|2.86|><|endoftext|>"}
```
- [Label](pseudolabel-whisper-word-timestamp.jsonl)
- [Audio](prepared-pseudolabel_alignment)
3. Singaporean context, 1829.21 hours.
```
{"audio_filename": "prepared-imda-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.00|> Households<|0.58|><|0.64|> with<|0.76|><|0.86|> target<|1.16|><|1.24|> sets<|1.50|><|1.70|> were<|1.82|><|1.90|> encouraged<|2.40|><|2.44|> to<|2.48|><|2.62|> try<|2.80|><|2.90|> keeping<|3.24|><|endoftext|>"}
```
- [Label](imda-whisper-word-timestamp.jsonl)
- [Audio](prepared-imda_alignment)
4. Science context, 4992.42 hours.
```
{"audio_filename": "prepared-science-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.00|> Visual<|0.24|><|0.30|> Studio<|0.60|><|0.76|> Code<|1.00|><|1.06|> integration.<|1.68|><|3.46|> Here's<|3.70|><|3.76|> what<|3.88|><|3.94|> will<|4.06|><|4.10|> be<|4.14|><|4.28|> new.<|4.44|><|5.36|> You<|5.42|><|5.46|> will<|5.58|><|5.62|> have<|5.74|><|5.82|> more<|5.96|><|6.08|> choice<|6.40|><|6.48|> on<|6.52|><|6.60|> runtime<|6.96|><|7.02|> experiences.<|7.82|><|8.78|> Java<|9.06|><|9.16|> interoperability<|10.04|><|10.22|> will<|10.32|><|10.36|> be<|10.40|><|10.48|> available<|10.90|><|10.96|> on<|11.00|><|11.08|> all<|11.14|><|11.22|> platforms.<|11.78|><|12.22|> Objective<|12.68|><|12.78|> C<|12.78|><|13.00|> and<|13.06|><|13.16|> Swift<|13.42|><|13.48|> interoperability<|14.38|><|14.92|> will<|15.04|><|15.08|> be<|15.12|><|15.26|> supported<|15.70|><|15.78|> on<|15.82|><|15.90|> multiple<|16.26|><|16.34|> operating<|16.78|><|16.86|> systems.<|17.28|><|18.28|> Core<|18.62|><|18.74|> FX<|18.98|><|19.20|> will<|19.30|><|19.34|> be<|19.38|><|19.46|> extended<|19.96|><|20.30|> to<|20.34|><|20.42|> support<|20.74|><|20.84|> static<|21.16|><|21.22|> compilation<|22.04|><|endoftext|>"}
```
- [Label](prepared-science-word-timestamp.jsonl)
- [Audio](#)
## how to prepare the dataset
```bash
wget https://www.7-zip.org/a/7z2301-linux-x64.tar.xz
tar -xf 7z2301-linux-x64.tar.xz
# Malaysian context
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/malaysian-stt.jsonl
huggingface-cli download --repo-type dataset \
--include 'output-audio-malaya.z*' \
--local-dir './' \
mesolitica/pseudolabel-malaya-speech-stt-train-whisper-large-v3-timestamp
./7zz x output-audio-malaya.zip -y -mmt40
huggingface-cli download --repo-type dataset \
--include 'output-audio.z*' \
--local-dir './' \
mesolitica/pseudolabel-malaysian-youtube-whisper-large-v3-timestamp
./7zz x output-audio.zip -y -mmt40
# Malay audiobook
wget https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp/resolve/main/split-nusantara.zip
wget https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp/resolve/main/prepared-nusantara.jsonl
unzip split-nusantara.zip
# Singaporean context
wget https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp/resolve/main/prepared-imda.jsonl
wget https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp/resolve/main/prepared-imda-ms.jsonl
huggingface-cli download --repo-type dataset \
--include '*.7z*' \
--local-dir './' \
mesolitica/IMDA-STT
./7zz x part1-mp3.7z.001 -y -mmt40
./7zz x part2-mp3.7z.001 -y -mmt40
./7zz x part3-same-audio-mp3.7z.001 -y -mmt40
./7zz x part3-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part4-same-audio-mp3.7z.001 -y -mmt40
./7zz x part4-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part5-same-audio-mp3.7z.001 -y -mmt40
./7zz x part5-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part6-1-audio-mp3.7z.001 -y -mmt40
./7zz x part6-2-audio-mp3.7z.001 -y -mmt40
./7zz x part6-3-audio-mp3.7z.001 -y -mmt40
# Indonesian context
huggingface-cli download --repo-type dataset \
--include 'split-indonesian.z*' \
--local-dir './' \
mesolitica/pseudolabel-indonesian-large-v3-timestamp
./7zz x split-indonesian.zip -y -mmt40
# Science context
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/science-en-stt.jsonl
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/science-ms-stt.jsonl
huggingface-cli download --repo-type dataset \
--include 'audio-chunk.z*' \
--local-dir './' \
mesolitica/pseudolabel-science-large-v3-timestamp
./7zz x audio-chunk.zip -y -mmt40
# Malay sarawak
wget https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format/resolve/main/sarawakmalay.zip
wget https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format/resolve/main/dataset.json -O sarawakmalay.json
unzip sarawakmalay.zip
# for Scripted Malay Daily Use Speech Corpus
wget https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format/resolve/main/scripted-malay-daily-use-speech-corpus-whisper-format.zip
wget https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format/resolve/main/scripted-malay-daily-use-speech-corpus-whisper-format.json
unzip scripted-malay-daily-use-speech-corpus-whisper-format.zip
# Malay Conversational Speech Corpus
wget https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format/resolve/main/malay-conversational-speech-corpus-whisper-format.zip
wget https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format/resolve/main/malay-conversational-speech-corpus-whisper-format.json
unzip malay-conversational-speech-corpus-whisper-format.zip
# Iban
wget https://huggingface.co/datasets/malaysia-ai/iban-whisper-format/resolve/main/iban-wav.zip
wget https://huggingface.co/datasets/malaysia-ai/iban-whisper-format/resolve/main/iban-dataset.json
unzip iban-wav.zip
```
## Source code
Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech-to-text-semisupervised/distilled-malaysian-whisper |