File size: 5,651 Bytes
0d98637 ce45430 0d98637 ce45430 0d98637 ce45430 0d98637 ce45430 0d98637 ce45430 0d98637 ce45430 0d98637 ce45430 0d98637 ce45430 0d98637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
# ここに設定を記入
_NAME = "mickylan2367/LoadingScriptPractice"
_EXTENSION = [".png"]
_REVISION = "main"
# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"
_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""
# え...なにこれ(;´・ω・)
# _IMAGES_DIR = "mickylan2367/images/data/"
# _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
class LoadingScriptPracticeConfig(datasets.BuilderConfig):
"""Builder Config for spectrogram_MusicCaps"""
def __init__(self, **kwargs):
"""BuilderConfig
Args:
data_url: `string`, url to download the zip file from.
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
**kwargs: keyword arguments forwarded to super.
"""
super(LoadingScriptPracticeConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
# self.data_url = data_url
# self.metadata_urls = metadata_urls
class LoadingScriptPractice(datasets.GeneratorBasedBuilder):
# データのサブセットはここで用意
BUILDER_CONFIGS = [
LoadingScriptPracticeConfig(
name="MusicCaps data 0_3",
description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"caption": datasets.Value("string"),
"data_idx": datasets.Value("int32"),
"number" : datasets.Value("int32"),
"label" : datasets.Value("string")
}
),
supervised_keys=("image", "caption", "data_idx", "number", "label"),
homepage=_HOMEPAGE,
# citation=_CITATION,
# license=_LICENSE,
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager: DownloadManager):
# huggingfaceのディレクトリからデータを取ってくる
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
split_metadata_paths = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
# **.zipのURLをDict型として取得?
data_path = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"],
)
gs = []
for split, files in data_path.items():
'''
split : "train" or "test" or "val"
files : zip files
'''
# リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
split_metadata_path = split_metadata_paths[split][0]
downloaded_files_path = dl_manager.download_and_extract(files)
# 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
gs.append(
datasets.SplitGenerator(
name = split,
gen_kwargs={
"images" : dl_manager.iter_archive(downloaded_files_path),
"metadata_path": split_metadata_path
}
)
)
return gs
def _generate_examples(self, images, metadata_path, dl_manager:DownloadManager):
"""Generate images and captions for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
file_list = list()
caption_list = list()
dataIDX_list = list()
num_list = list()
label_list = list()
with open(dl_manager.download_and_extract(metadata_path)) as fin:
for line in fin:
data = json.loads(line)
file_list.append(data["file_name"])
caption_list.append(data["caption"])
dataIDX_list.append(data["data_idx"])
num_list.append(data["number"])
label_list.append(data["label"])
for idx, (file_path, file_obj) in enumerate(images):
yield file_path, {
"image": {
"path": file_path,
"bytes": file_obj.read()
},
"caption" : caption_list[idx],
"data_idx" : dataIDX_list[idx],
"number" : num_list[idx],
"label": label_list[idx]
}
|