File size: 6,589 Bytes
e48cc21 208bac9 e48cc21 208bac9 e48cc21 208bac9 e48cc21 208bac9 e48cc21 208bac9 e48cc21 208bac9 e48cc21 208bac9 e48cc21 208bac9 e48cc21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
from os.path import dirname, basename
from pathlib import Path
# ここに設定を記入
_NAME = "mickylan2367/LoadingScriptPractice"
_EXTENSION = [".png"]
_REVISION = "main"
# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"
_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""
# URLを取得
# class LoadingScriptPracticeConfig(datasets.BuilderConfig):
# """BuilderConfig for Imagette."""
# def __init__(self, data_url, metadata_urls, **kwargs):
# """BuilderConfig for Imagette.
# Args:
# data_url: `string`, url to download the zip file from.
# matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
# **kwargs: keyword arguments forwarded to super.
# """
# super(LoadingScriptPracticeConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
# self.data_url = data_url
# self.metadata_urls = metadata_urls
class LoadingScriptPractice(datasets.GeneratorBasedBuilder):
# データのサブセットはここで用意
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="train",
description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
# data_url = train_data_url["train"][0],
# metadata_urls = {
# "train" : train_metadata_paths["train"][0]
# }
),
# splits (dict, optional) — The mapping between split name and metadata.
datasets.BuilderConfig(
name="test",
description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
# data_url = test_data_url["test"][0],
# metadata_urls={
# "test" : test_metadata_paths["test"][0]
# }
)
]
def _info(self) -> DatasetInfo:
return datasets.DatasetInfo(
description = self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"caption": datasets.Value("string"),
"data_idx": datasets.Value("int32"),
"number" : datasets.Value("int32"),
"label" : datasets.ClassLabel(
names=[
"blues",
"classical",
"country",
"disco",
"hiphop",
"metal",
"pop",
"reggae",
"rock",
"jazz"
]
)
}
),
supervised_keys=("image", "caption"),
homepage=_HOMEPAGE,
citation= "",
# license=_LICENSE,
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager: DownloadManager):
# huggingfaceのディレクトリからデータを取ってくる
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
metadata_urls = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
# **.zipのURLをDict型として取得?
data_urls = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"],
)
data_paths = dict()
for path in data_path["train"]:
dname = dirname(path)
folder = basename(Path(dname))
data_paths[folder] = path
metadata_paths = dict()
for path in data_path["train"]:
dname = dirname(path)
folder = basename(Path(dname))
metadata_paths[folder] = path
gs = []
for split, files in data_paths.items():
'''
split : "train" or "test" or "val"
files : zip files
'''
# リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
metadata_path = dl_manager.download_and_extract(metadata_paths[split])
downloaded_files_path = dl_manager.download(files)
# 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
gs.append(
datasets.SplitGenerator(
name = split,
gen_kwargs={
"images" : dl_manager.iter_archive(downloaded_files_path),
"metadata_path": metadata_path
}
)
)
return gs
def _generate_examples(self, images, metadata_path):
"""Generate images and captions for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
file_list = list()
caption_list = list()
dataIDX_list = list()
num_list = list()
label_list = list()
with open(metadata_path) as fin:
for line in fin:
data = json.loads(line)
file_list.append(data["file_name"])
caption_list.append(data["caption"])
dataIDX_list.append(data["data_idx"])
num_list.append(data["number"])
label_list.append(data["label"])
for idx, (file_path, file_obj) in enumerate(images):
yield file_path, {
"image": {
"path": file_path,
"bytes": file_obj.read()
},
"caption" : caption_list[idx],
"data_idx" : dataIDX_list[idx],
"number" : num_list[idx],
"label": label_list[idx]
}
|