File size: 5,833 Bytes
0d98637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512377
0d98637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4512377
c3b8f62
0d98637
4512377
 
0d98637
ce45430
0d98637
 
 
cf14954
ce45430
 
4512377
 
 
 
 
 
0d98637
 
1077aaf
0d98637
b5679b7
0d98637
 
 
 
 
 
9e279c6
4512377
 
 
 
 
 
 
 
 
 
 
 
 
0d98637
 
59c35bb
4512377
1077aaf
0d98637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec9b36
ef4b864
0d98637
 
 
 
 
 
ce45430
0d98637
 
 
a70982f
0d98637
 
eec9b36
0d98637
 
 
 
 
 
 
 
 
eec9b36
0d98637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json


# ここに設定を記入
_NAME = "mickylan2367/LoadingScriptPractice"
_EXTENSION = [".png"]
_REVISION = "main"

# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/LoadingScriptPractice"

_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""

# え...なにこれ(;´・ω・)
# _IMAGES_DIR = "mickylan2367/images/data/"
# _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"

# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html

# 使用したデータセット(クラスラベル)
# https://huggingface.co/datasets/marsyas/gtzan

class LoadingScriptPractice(datasets.GeneratorBasedBuilder):

    # データのサブセットはここで用意
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="MusicCaps data 0_3",
            description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
        ),

        # LoadingScriptPracticeConfig(
        #     name="MusicCaps data ",
        #     description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
        # )
    ]

    def _info(self) -> DatasetInfo:
      return datasets.DatasetInfo(
          description = self.config.description,
          features=datasets.Features(
              {
                  "image": datasets.Image(),
                  "caption": datasets.Value("string"),
                  "data_idx": datasets.Value("int32"),
                  "number" : datasets.Value("int32"),
                  "label" : datasets.ClassLabel(
                        names=[
                            "blues",
                            "classical",
                            "country",
                            "disco",
                            "hiphop",
                            "metal",
                            "pop",
                            "reggae",
                            "rock",
                            "jazz"
                        ]
                  )
              }
          ),
          supervised_keys=("image", "caption"),
          homepage=_HOMEPAGE,
          citation= "",
          # license=_LICENSE,
          # task_templates=[ImageClassification(image_column="image", label_column="label")],
      )

    def _split_generators(self, dl_manager: DownloadManager):
        # huggingfaceのディレクトリからデータを取ってくる
        hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)

        split_metadata_paths = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["jsonl", ".jsonl"],
        )
        
        # **.zipのURLをDict型として取得?
        data_path = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["zip", ".zip"],
        )
        
        gs = []
        for split, files in data_path.items():
            '''
            split : "train" or "test" or "val"
            files : zip files
            '''
            # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
            split_metadata_path = dl_manager.download_and_extract(split_metadata_paths[split][0])
            downloaded_files_path = dl_manager.download(files[0]) 
            
            # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
            gs.append(
               datasets.SplitGenerator(
                  name = split, 
                  gen_kwargs={
                     "images" : dl_manager.iter_archive(downloaded_files_path), 
                     "metadata_path": split_metadata_path
                     }
                  )
            )
        return gs

    def _generate_examples(self, images, metadata_path):
        """Generate images and captions for splits."""
        # with open(metadata_path, encoding="utf-8") as f:
        #     files_to_keep = set(f.read().split("\n"))
        file_list = list()
        caption_list = list()
        dataIDX_list = list()
        num_list = list()
        label_list = list()

        with open(metadata_path) as fin:
            for line in fin:
                data =  json.loads(line)
                file_list.append(data["file_name"])
                caption_list.append(data["caption"])
                dataIDX_list.append(data["data_idx"])
                num_list.append(data["number"])
                label_list.append(data["label"])

        for idx, (file_path, file_obj) in enumerate(images):
            yield file_path, {
                "image": {
                    "path": file_path, 
                    "bytes": file_obj.read()
                },
                "caption" : caption_list[idx],
                "data_idx" : dataIDX_list[idx],
                "number" : num_list[idx],
                "label": label_list[idx]
            }