File size: 6,043 Bytes
0d98637
 
 
 
 
 
 
b24185e
 
0d98637
 
 
 
 
 
 
b24185e
0d98637
b24185e
0d98637
 
 
 
 
 
c0a8fa5
 
 
 
 
 
 
 
 
0d98637
 
 
ce45430
0d98637
 
 
e48cc21
b24185e
c0a8fa5
b24185e
 
 
 
c0a8fa5
0d98637
 
e48cc21
0d98637
e48cc21
0d98637
 
 
 
 
 
e48cc21
 
 
 
 
 
 
 
 
 
 
 
 
 
0d98637
 
e48cc21
0d98637
e48cc21
0d98637
 
 
 
 
 
 
 
b24185e
0d98637
 
 
 
b24185e
0d98637
b24185e
0d98637
 
 
 
b24185e
 
34d0edd
b24185e
 
 
 
 
34d0edd
b24185e
 
 
 
0d98637
 
b24185e
0d98637
 
 
 
 
b24185e
 
0d98637
 
 
 
 
 
ce45430
b24185e
0d98637
 
e48cc21
0d98637
 
e48cc21
0d98637
 
 
 
 
 
 
 
 
e48cc21
0d98637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
from os.path import dirname, basename
from pathlib import Path


# ここに設定を記入
_NAME = "mickylan2367/LoadingScriptPractice"
_EXTENSION = [".png"]
_REVISION = "main"

# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"

_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""

# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/docs/datasets/package_reference/builder_classes
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes



class LoadingScriptPractice(datasets.GeneratorBasedBuilder):

    # データのサブセットはここで用意
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="train",
            description=_DESCRIPTION,
            # data_url = train_data_url["train"][0],
            # metadata_urls = {
            #     "train" : train_metadata_paths["train"][0]
            # }
        )
    ]

    def _info(self) -> DatasetInfo:
      return datasets.DatasetInfo(
          description = self.config.description,
          features=datasets.Features(
              {
                  "image": datasets.Image(),
                  "caption": datasets.Value("string"),
                  "data_idx": datasets.Value("int32"),
                  "number" : datasets.Value("int32"),
                  "label" : datasets.ClassLabel(
                        names=[
                            "blues",
                            "classical",
                            "country",
                            "disco",
                            "hiphop",
                            "metal",
                            "pop",
                            "reggae",
                            "rock",
                            "jazz"
                        ]
                  )
              }
          ),
          supervised_keys=("image", "caption"),
          homepage=_HOMEPAGE,
          citation= "",
          # license=_LICENSE,
          # task_templates=[ImageClassification(image_column="image", label_column="label")],
      )

    def _split_generators(self, dl_manager: DownloadManager):
        # huggingfaceのディレクトリからデータを取ってくる
        hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)

        metadata_urls = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["jsonl", ".jsonl"],
        )

        # **.zipのURLをDict型として取得?
        data_urls = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["zip", ".zip"],
        )

        data_paths = dict()
        for path in data_urls["train"]:
            dname = dirname(path)
            folder = basename(Path(dname))
            data_paths[folder] = path

        metadata_paths = dict()
        for path in metadata_urls["train"]:
            dname = dirname(path)
            folder = basename(Path(dname))
            metadata_paths[folder] = path

        
        gs = []
        for split, files in data_paths.items():
            '''
            split : "train" or "test" or "val"
            files : zip files
            '''
            # リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
            metadata_path = dl_manager.download_and_extract(metadata_paths[split])
            downloaded_files_path = dl_manager.download(files) 
            
            # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
            gs.append(
               datasets.SplitGenerator(
                  name = split, 
                  gen_kwargs={
                     "images" : dl_manager.iter_archive(downloaded_files_path), 
                     "metadata_path": metadata_path
                     }
                  )
            )
        return gs

    def _generate_examples(self, images, metadata_path):
        """Generate images and captions for splits."""
        # with open(metadata_path, encoding="utf-8") as f:
        #     files_to_keep = set(f.read().split("\n"))
        file_list = list()
        caption_list = list()
        dataIDX_list = list()
        num_list = list()
        label_list = list()

        with open(metadata_path) as fin:
            for line in fin:
                data =  json.loads(line)
                file_list.append(data["file_name"])
                caption_list.append(data["caption"])
                dataIDX_list.append(data["data_idx"])
                num_list.append(data["number"])
                label_list.append(data["label"])

        for idx, (file_path, file_obj) in enumerate(images):
            yield file_path, {
                "image": {
                    "path": file_path, 
                    "bytes": file_obj.read()
                },
                "caption" : caption_list[idx],
                "data_idx" : dataIDX_list[idx],
                "number" : num_list[idx],
                "label": label_list[idx]
            }