LoadingScriptPractice / LoadingScriptPractice.py
mickylan2367's picture
change repository contructure
e48cc21
raw
history blame
6.07 kB
import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
# ここに設定を記入
_NAME = "mickylan2367/LoadingScriptPractice"
_EXTENSION = [".png"]
_REVISION = "main"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/LoadingScriptPractice"
_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""
# え...なにこれ(;´・ω・)
# _IMAGES_DIR = "mickylan2367/images/data/"
# _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/docs/datasets/package_reference/builder_classes
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
# https://huggingface.co/datasets/frgfm/imagenette/blob/main/imagenette.py
# https://huggingface.co/docs/datasets/v1.2.1/add_dataset.html
# DatasetInfo : https://huggingface.co/docs/datasets/package_reference/main_classes
# 使用したデータセット(クラスラベル)
# https://huggingface.co/datasets/marsyas/gtzan
class LoadingScriptPractice(datasets.GeneratorBasedBuilder):
# データのサブセットはここで用意
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="MusicCaps data 0_3",
description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
),
# splits (dict, optional) — The mapping between split name and metadata.
# LoadingScriptPracticeConfig(
# name="MusicCaps data ",
# description="this Datasets is personal practice for using loadingScript. Data is from Google/MusicCaps",
# )
]
def _info(self) -> DatasetInfo:
return datasets.DatasetInfo(
description = self.config.description,
features=datasets.Features(
{
"image": datasets.Image(),
"caption": datasets.Value("string"),
"data_idx": datasets.Value("int32"),
"number" : datasets.Value("int32"),
"label" : datasets.ClassLabel(
names=[
"blues",
"classical",
"country",
"disco",
"hiphop",
"metal",
"pop",
"reggae",
"rock",
"jazz"
]
)
}
),
supervised_keys=("image", "caption"),
homepage=_HOMEPAGE,
citation= "",
# license=_LICENSE,
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager: DownloadManager):
# huggingfaceのディレクトリからデータを取ってくる
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
split_metadata_paths = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["jsonl", ".jsonl"],
)
# **.zipのURLをDict型として取得?
data_path = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"],
)
gs = []
for split, files in data_path.items():
'''
split : "train" or "test" or "val"
files : zip files
'''
# リポジトリからダウンロードしてとりあえずキャッシュしたURLリストを取得
split_metadata_path = dl_manager.download_and_extract(split_metadata_paths[split][0])
downloaded_files_path = dl_manager.download(files[0])
# 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
gs.append(
datasets.SplitGenerator(
name = split,
gen_kwargs={
"images" : dl_manager.iter_archive(downloaded_files_path),
"metadata_path": split_metadata_path
}
)
)
return gs
def _generate_examples(self, images, metadata_path):
"""Generate images and captions for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
file_list = list()
caption_list = list()
dataIDX_list = list()
num_list = list()
label_list = list()
with open(metadata_path) as fin:
for line in fin:
data = json.loads(line)
file_list.append(data["file_name"])
caption_list.append(data["caption"])
dataIDX_list.append(data["data_idx"])
num_list.append(data["number"])
label_list.append(data["label"])
for idx, (file_path, file_obj) in enumerate(images):
yield file_path, {
"image": {
"path": file_path,
"bytes": file_obj.read()
},
"caption" : caption_list[idx],
"data_idx" : dataIDX_list[idx],
"number" : num_list[idx],
"label": label_list[idx]
}