File size: 5,738 Bytes
6f375ac
30528a5
b079785
 
 
 
 
 
e89cc95
 
6f375ac
 
 
b079785
 
6f375ac
30528a5
6f375ac
 
 
 
 
30528a5
6f375ac
 
 
30528a5
6f375ac
 
b079785
 
 
 
 
 
6f375ac
 
 
30528a5
a986309
30528a5
6f375ac
 
 
 
 
 
283dc44
 
6f375ac
 
 
 
 
 
aa49123
6f375ac
b079785
4061607
 
 
6f375ac
b079785
6f375ac
aa49123
6f375ac
b079785
4061607
 
 
6f375ac
 
30528a5
6f375ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30528a5
b079785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4061607
b079785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30528a5
6f375ac
b079785
 
 
 
 
 
 
 
93bda80
b079785
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json

# memo
# train-00000-of-00001.parquet

# ここに設定を記入
_NAME = "mickylan2367/spectrogram_musicCaps"
_EXTENSION = [".png"]
_REVISION = "main"

# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"

_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""

# え...なにこれ(;´・ω・)
_IMAGES_DIR = "mickylan2367/images/data/"
# _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"

# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load


class spectrogram_musicCapsConfig(datasets.BuilderConfig):
    """Builder Config for spectrogram_MusicCaps"""

    def __init__(self, metadata_urls, **kwargs):
        """BuilderConfig
        Args:
          data_url: `string`, url to download the zip file from.
          metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
          **kwargs: keyword arguments forwarded to super.
        """
        super(spectrogram_musicCapsConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        # self.data_url = data_url
        self.metadata_urls = metadata_urls

class spectrogram_musicCaps(datasets.GeneratorBasedBuilder):

    # データのサブセットはここで用意
    BUILDER_CONFIGS = [
        spectrogram_musicCapsConfig(
            name="MusicCaps data 0_10",
            description="Datasets from MusicCaps by Mikan",
            # data_url="https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/data0_10.zip",
            metadata_urls = {
                "train":"https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/metadata0_10.jsonl"
            }
        ),
        
        spectrogram_musicCapsConfig(
            name="MusicCpas data 10_100",
            description="Datasets second action by Mikan",
            # data_url="https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/data10_200.zip",
            metadata_urls = {
                "train" : "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/metadata10_200.jsonl"
            }
        )
    ]

    def _info(self):
      return datasets.DatasetInfo(
          description=_DESCRIPTION,
          features=datasets.Features(
              {
                  "image": datasets.Image(),
                  "caption": datasets.Value("string")
              }
          ),
          supervised_keys=("image", "caption"),
          homepage=_HOMEPAGE,
          # citation=_CITATION,
          # license=_LICENSE,
          # task_templates=[ImageClassification(image_column="image", label_column="label")],
      )

    # def _split_generators(self, dl_manager):
    #   archive_path = dl_manager.download(self.config.data_url)
    #   split_metadata_paths = dl_manager.download(self.config.metadata_urls)
    #   return [
    #       datasets.SplitGenerator(
    #           name=datasets.Split.TRAIN,
    #           gen_kwargs={
    #               "images": dl_manager.iter_archive(archive_path),
    #               "metadata_path": split_metadata_paths["train"],
    #           }
    #       )
    #   ]

    def _split_generators(self, dl_manager: DownloadManager):
        # huggingfaceのディレクトリからデータを取ってくる
        hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
        # archive_path = dl_manager.download(self.config.data_url)
        split_metadata_paths = dl_manager.download(self.config.metadata_urls)
        
        # **.zipのファイル名をDict型として取得?
        data_files = DataFilesDict.from_hf_repo(
            {datasets.Split.TRAIN: ["**"]},
            dataset_info=hfh_dataset_info,
            allowed_extensions=["zip", ".zip"],
        )
        
        gs = []
        for split, files in data_files.items():
            downloaded_files = dl_manager.download_and_extract(files) # zipファイルを解凍してファイル名リストにする。
            # 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
            gs.append(
               datasets.SplitGenerator(
                  name = split, 
                  gen_kwargs={
                     "images" : downloaded_files, 
                     "metadata_path": split_metadata_paths["train"]
                     }
                  )
            ) 
        return gs

    def _generate_examples(self, images, metadata_path):
        """Generate images and captions for splits."""
        # with open(metadata_path, encoding="utf-8") as f:
        #     files_to_keep = set(f.read().split("\n"))
        with open(metadata_path) as fin:
            for idx, line in enumerate(fin):
                data =  json.loads(line)
                # file_path = os.path.join(data["file_name"])
                yield data["file_name"], {
                    "image": data["file_name"],
                    "caption":data["caption"]
                }