File size: 5,738 Bytes
6f375ac 30528a5 b079785 e89cc95 6f375ac b079785 6f375ac 30528a5 6f375ac 30528a5 6f375ac 30528a5 6f375ac b079785 6f375ac 30528a5 a986309 30528a5 6f375ac 283dc44 6f375ac aa49123 6f375ac b079785 4061607 6f375ac b079785 6f375ac aa49123 6f375ac b079785 4061607 6f375ac 30528a5 6f375ac 30528a5 b079785 4061607 b079785 30528a5 6f375ac b079785 93bda80 b079785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import datasets
from huggingface_hub import HfApi
from datasets import DownloadManager, DatasetInfo
from datasets.data_files import DataFilesDict
import os
import json
# memo
# train-00000-of-00001.parquet
# ここに設定を記入
_NAME = "mickylan2367/spectrogram_musicCaps"
_EXTENSION = [".png"]
_REVISION = "main"
# _HOMEPAGE = "https://github.com/fastai/imagenette"
# プログラムを置く場所が決まったら、ここにホームページURLつける
_HOMEPAGE = "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps"
_DESCRIPTION = f"""\
{_NAME} Datasets including spectrogram.png file from Google MusicCaps Datasets!
Using for Project Learning...
"""
# え...なにこれ(;´・ω・)
_IMAGES_DIR = "mickylan2367/images/data/"
# _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
# 参考になりそうなURL集
# https://huggingface.co/docs/datasets/v1.1.1/_modules/datasets/utils/download_manager.html
# https://huggingface.co/datasets/animelover/danbooru2022/blob/main/danbooru2022.py
# https://huggingface.co/datasets/food101/blob/main/food101.py
# https://huggingface.co/docs/datasets/about_dataset_load
class spectrogram_musicCapsConfig(datasets.BuilderConfig):
"""Builder Config for spectrogram_MusicCaps"""
def __init__(self, metadata_urls, **kwargs):
"""BuilderConfig
Args:
data_url: `string`, url to download the zip file from.
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
**kwargs: keyword arguments forwarded to super.
"""
super(spectrogram_musicCapsConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
# self.data_url = data_url
self.metadata_urls = metadata_urls
class spectrogram_musicCaps(datasets.GeneratorBasedBuilder):
# データのサブセットはここで用意
BUILDER_CONFIGS = [
spectrogram_musicCapsConfig(
name="MusicCaps data 0_10",
description="Datasets from MusicCaps by Mikan",
# data_url="https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/data0_10.zip",
metadata_urls = {
"train":"https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/metadata0_10.jsonl"
}
),
spectrogram_musicCapsConfig(
name="MusicCpas data 10_100",
description="Datasets second action by Mikan",
# data_url="https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/data10_200.zip",
metadata_urls = {
"train" : "https://huggingface.co/datasets/mickylan2367/spectrogram_musicCaps/blob/main/data/metadata10_200.jsonl"
}
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"caption": datasets.Value("string")
}
),
supervised_keys=("image", "caption"),
homepage=_HOMEPAGE,
# citation=_CITATION,
# license=_LICENSE,
# task_templates=[ImageClassification(image_column="image", label_column="label")],
)
# def _split_generators(self, dl_manager):
# archive_path = dl_manager.download(self.config.data_url)
# split_metadata_paths = dl_manager.download(self.config.metadata_urls)
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "images": dl_manager.iter_archive(archive_path),
# "metadata_path": split_metadata_paths["train"],
# }
# )
# ]
def _split_generators(self, dl_manager: DownloadManager):
# huggingfaceのディレクトリからデータを取ってくる
hfh_dataset_info = HfApi().dataset_info(_NAME, revision=_REVISION, timeout=100.0)
# archive_path = dl_manager.download(self.config.data_url)
split_metadata_paths = dl_manager.download(self.config.metadata_urls)
# **.zipのファイル名をDict型として取得?
data_files = DataFilesDict.from_hf_repo(
{datasets.Split.TRAIN: ["**"]},
dataset_info=hfh_dataset_info,
allowed_extensions=["zip", ".zip"],
)
gs = []
for split, files in data_files.items():
downloaded_files = dl_manager.download_and_extract(files) # zipファイルを解凍してファイル名リストにする。
# 元のコードではzipファイルの中身を"filepath"としてそのまま_generate_exampleに引き渡している?
gs.append(
datasets.SplitGenerator(
name = split,
gen_kwargs={
"images" : downloaded_files,
"metadata_path": split_metadata_paths["train"]
}
)
)
return gs
def _generate_examples(self, images, metadata_path):
"""Generate images and captions for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
with open(metadata_path) as fin:
for idx, line in enumerate(fin):
data = json.loads(line)
# file_path = os.path.join(data["file_name"])
yield data["file_name"], {
"image": data["file_name"],
"caption":data["caption"]
} |