file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.set | val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v) | val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v) | let set s x y v = s.(x +! 5ul *! y) <- v | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 65,
"start_col": 0,
"start_line": 65
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Hacl.Impl.SHA3.state ->
x: Hacl.Impl.SHA3.index ->
y: Hacl.Impl.SHA3.index ->
v: Lib.IntTypes.uint64
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Hacl.Impl.SHA3.index",
"Lib.IntTypes.uint64",
"Lib.Buffer.op_Array_Assignment",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.IntTypes.op_Star_Bang",
"Prims.unit"
] | [] | false | true | false | false | false | let set s x y v =
| s.(x +! 5ul *! y) <- v | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_theta0 | val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C)) | val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C)) | let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 93,
"start_col": 0,
"start_line": 80
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.SHA3.state -> _C: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.loop1",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.op_Array_Assignment",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Hacl.Impl.SHA3.get",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SHA3.state_theta_inner_C"
] | [] | false | true | false | false | false | let state_theta0 s _C =
| [@@ inline_let ]let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0
5ul
_C
spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <- get s x 0ul ^. get s x 1ul ^. get s x 2ul ^. get s x 3ul ^. get s x 4ul) | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.index_map | val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i)) | val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i)) | let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 161,
"start_col": 0,
"start_line": 156
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} -> | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> b) -> l: Prims.list a -> i: Prims.nat{i < FStar.List.Tot.Base.length l}
-> FStar.Pervasives.Lemma
(ensures
FStar.List.Tot.Base.index (FStar.List.Tot.Base.map f l) i == f (FStar.List.Tot.Base.index l i)
) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.list",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.List.Tot.Base.length",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Hacl.Impl.SHA3.index_map",
"Prims.op_Subtraction",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec index_map #a #b f l i =
| if i = 0
then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1) | false |
Pulse.Soundness.Common.fst | Pulse.Soundness.Common.elab_comp_post | val elab_comp_post (c: comp_st) : R.term | val elab_comp_post (c: comp_st) : R.term | let elab_comp_post (c:comp_st) : R.term =
let t = elab_term (comp_res c) in
let post = elab_term (comp_post c) in
mk_abs t R.Q_Explicit post | {
"file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 353,
"start_col": 0,
"start_line": 350
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Soundness.Common
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Typing
open Pulse.Elaborate
let ln_comp = c:comp_st { ln_c c }
let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes)
: Lemma
(ensures
RT.lookup_fvar_uinst (extend_env_l g sg) fv us ==
RT.lookup_fvar_uinst g fv us)
[SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)]
= match sg with
| [] -> ()
| hd::tl -> extend_env_l_lookup_fvar g tl fv us
let elab_term_opt (b:option term) =
match b with
| Some b -> Some (elab_term b)
| None -> None
// let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var)
// : Lemma
// (requires (forall x. RT.lookup_bvar g x == None))
// (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x)))
// (decreases sg)
// [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)]
// = match sg with
// | [] -> ()
// | hd :: tl -> extend_env_l_lookup_bvar g tl x
let lookup_elab_env (g:env) (x:var)
: Lemma
(ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x)))
[SMTPat (RT.lookup_bvar (elab_env g) x)]
= admit () // TODO: FIX ME!!!!
let tot_typing_soundness (#g:env)
(#e:term)
(#t:term)
(d:tot_typing g e t)
: GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t))
= let E d = d in
d
let ghost_typing_soundness (#g:env)
(#e:term)
(#t:term)
(d:ghost_typing g e t)
: GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t))
= let E d = d in
d
#push-options "--z3rlimit_factor 4"
let mk_t_abs_tot (g:env)
(#u:universe)
(#q:option qualifier)
(#ty:term)
(ppname:ppname)
(t_typing:tot_typing g ty (tm_type u))
(#body:term)
(#body_ty:term)
(#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) })
(body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty)
: GTot (RT.tot_typing (elab_env g)
(mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body))
(elab_term (tm_arrow (mk_binder_ppname ty ppname) q (close_comp (C_Tot body_ty) x))))
= let c = C_Tot body_ty in
let r_ty = elab_term ty in
let r_body = elab_term (open_term body x) in
let r_c = elab_comp c in
let r_t_typing = tot_typing_soundness t_typing in
let r_body_typing = tot_typing_soundness body_typing in
RT.well_typed_terms_are_ln _ _ _ r_body_typing;
RT.open_close_inverse r_body x;
elab_comp_close_commute c x;
elab_freevars body;
assert (~ (x `Set.mem` RT.freevars (elab_term body)));
assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x)));
RT.close_term_spec (elab_comp c) x;
assert (elab_term (tm_type u) == RT.tm_type u);
let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u)
= coerce_eq () r_t_typing //strange that this coercion is needed
in
let d : RT.tot_typing (elab_env g)
(mk_abs_with_name ppname.name (elab_term ty) (elab_qual q)
(RT.close_term (elab_term (open_term body x)) x))
(elab_term (tm_arrow (mk_binder_ppname ty ppname) q (close_comp (C_Tot body_ty) x)))
=
RT.T_Abs (elab_env g)
x
r_ty
(RT.close_term r_body x)
(T.E_Total, r_c)
u ppname.name (elab_qual q)
_
r_t_typing
r_body_typing
in
elab_open_commute' body (null_var x) 0;
RT.open_term_spec (elab_term body) x;
assert (elab_term (open_term body x) ==
RT.open_term (elab_term body) x);
let d : RT.typing _
(mk_abs_with_name ppname.name (elab_term ty) (elab_qual q)
(RT.close_term (RT.open_term (elab_term body) x) x))
_
= d
in
RT.close_open_inverse (elab_term body) x;
d
let mk_t_abs (g:env)
(#u:universe)
(#ty:term)
(#q:option qualifier)
(#t_typing:typing g ty T.E_Total (tm_type u))
(ppname:ppname)
(r_t_typing:RT.tot_typing (elab_env g)
(elab_term ty)
(elab_comp (C_Tot (tm_type u))))
(#body:st_term)
(#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) })
(#c:comp)
(#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c)
(r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty))
(elab_st_typing body_typing)
(elab_comp c))
: GTot (RT.tot_typing (elab_env g)
(mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x))
(elab_term (tm_arrow (mk_binder_ppname ty ppname) q (close_comp c x))))
= let r_ty = elab_term ty in
let r_body = elab_st_typing body_typing in
let r_c = elab_comp c in
RT.well_typed_terms_are_ln _ _ _ r_body_typing;
RT.open_close_inverse r_body x;
elab_comp_close_commute c x;
assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x)));
RT.close_term_spec (elab_comp c) x;
RT.T_Abs (elab_env g)
x
r_ty
(RT.close_term r_body x)
(T.E_Total, r_c)
u ppname.name (elab_qual q)
_
r_t_typing
r_body_typing
(*** Typing of combinators used
in the elaboration **)
(** Type of bind **)
let bind_res (u2:R.universe) (t2 pre post2:R.term) =
mk_stt_comp u2 t2 pre post2
let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) =
mk_arrow (t1, R.Q_Explicit)
(bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2)
let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) =
mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit)
(bind_res u2 t2 pre post2)
let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) =
let f_type = mk_stt_comp u1 t1 pre post1 in
mk_arrow (f_type, R.Q_Explicit)
(bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2)
let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm
let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) =
let var = 0 in
let post2 = mk_name var in
mk_arrow (post2_type_bind t2, R.Q_Implicit)
(RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2)
[ RT.ND var 0 ])
let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm
let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) =
let var = 1 in
let post1 = mk_name var in
mk_arrow (post1_type_bind t1, R.Q_Implicit)
(RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1)
[ RT.ND var 0 ])
let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) =
let var = 2 in
let pre = mk_name var in
let pre_type = vprop_tm in
mk_arrow (pre_type, R.Q_Implicit)
(RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre)
[ RT.ND var 0 ])
let bind_type_t1 (u1 u2:R.universe) (t1:R.term) =
let var = 3 in
let t2 = mk_name var in
let t2_type = RT.tm_type u2 in
mk_arrow (t2_type, R.Q_Implicit)
(RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2)
[ RT.ND var 0 ])
let bind_type (u1 u2:R.universe) =
let var = 4 in
let t1 = mk_name var in
let t1_type = RT.tm_type u1 in
mk_arrow (t1_type, R.Q_Implicit)
(RT.subst_term (bind_type_t1 u1 u2 t1)
[ RT.ND var 0 ])
(** Type of frame **)
let mk_star (l r:R.term) =
let open R in
let head = pack_ln (Tv_FVar (pack_fv star_lid)) in
R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)]
let frame_res (u:R.universe) (t pre post frame:R.term) =
mk_stt_comp u t
(mk_star pre frame)
(mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame))
let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) =
let open R in
let f_type = mk_stt_comp u t pre post in
mk_arrow (f_type, Q_Explicit)
(frame_res u t pre post frame)
let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) =
let var = 0 in
let frame = mk_name var in
mk_arrow (vprop_tm, R.Q_Explicit)
(RT.close_term (frame_res u t pre post frame) var)
let frame_type_t_pre (u:R.universe) (t pre:R.term) =
let var = 1 in
let post = mk_name var in
let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in
mk_arrow (post_type, R.Q_Implicit)
(RT.close_term (frame_type_t_pre_post u t pre post) var)
let frame_type_t (u:R.universe) (t:R.term) =
let var = 2 in
let pre = mk_name var in
let pre_type = vprop_tm in
mk_arrow (pre_type, R.Q_Implicit)
(RT.close_term (frame_type_t_pre u t pre) var)
let frame_type (u:R.universe) =
let var = 3 in
let t = mk_name var in
let t_type = RT.tm_type u in
mk_arrow (t_type, R.Q_Implicit)
(RT.close_term (frame_type_t u t) var)
(** Type of sub_stt **)
let stt_vprop_post_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_post_equiv")
let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u])
let stt_vprop_post_equiv (u:R.universe) (t t1 t2:R.term) =
R.mk_app (stt_vprop_post_equiv_univ_inst u)
[(t, R.Q_Implicit); (t1, R.Q_Explicit); (t2, R.Q_Explicit)]
let sub_stt_res u t pre post = mk_stt_comp u t pre post
let sub_stt_equiv_post u t pre1 post1 pre2 post2 =
mk_arrow (stt_vprop_post_equiv u t post1 post2, R.Q_Explicit)
(sub_stt_res u t pre2 post2)
let sub_stt_equiv_pre u t pre1 post1 pre2 post2 =
mk_arrow (stt_vprop_equiv pre1 pre2, R.Q_Explicit)
(sub_stt_equiv_post u t pre1 pre2 post1 post2)
let sub_stt_post2 u t pre1 post1 pre2 =
let var = 0 in
let post2 = mk_name var in
let post2_type = mk_arrow (t, R.Q_Explicit) vprop_tm in
mk_arrow (post2_type, R.Q_Explicit)
(RT.close_term (sub_stt_equiv_pre u t pre1 pre2 post1 post2) var)
let sub_stt_pre2 u t pre1 post1 =
let var = 1 in
let pre2 = mk_name var in
let pre2_type = vprop_tm in
mk_arrow (pre2_type, R.Q_Explicit)
(RT.close_term (sub_stt_post2 u t pre1 post1 pre2) var)
let sub_stt_post1 u t pre1 =
let var = 2 in
let post1 = mk_name var in
let post1_type = mk_arrow (t, R.Q_Explicit) vprop_tm in
mk_arrow (post1_type, R.Q_Explicit)
(RT.close_term (sub_stt_pre2 u t pre1 post1) var)
let sub_stt_pre1 u t =
let var = 3 in
let pre1 = mk_name var in
let pre1_type = vprop_tm in
mk_arrow (pre1_type, R.Q_Explicit)
(RT.close_term (sub_stt_post1 u t pre1) var)
let sub_stt_type u =
let var = 4 in
let t = mk_name var in
let ty_typ = RT.tm_type u in
mk_arrow (ty_typ, R.Q_Explicit)
(RT.close_term (sub_stt_pre1 u t) var)
(** Properties of environments suitable for elaboration **)
let has_stt_bindings (f:RT.fstar_top_env) =
RT.lookup_fvar f RT.bool_fv == Some (RT.tm_type RT.u_zero) /\
RT.lookup_fvar f vprop_fv == Some (RT.tm_type u2) /\ True
//(forall (u1 u2:R.universe). RT.lookup_fvar_uinst f bind_fv [u1; u2] == Some (bind_type u1 u2)) /\
//(forall (u:R.universe). RT.lookup_fvar_uinst f frame_fv [u] == Some (frame_type u)) /\
//(forall (u:R.universe). RT.lookup_fvar_uinst f subsumption_fv [u] == Some (sub_stt_type u))
let stt_env = e:env { has_stt_bindings (fstar_env e) }
let check_top_level_environment (f:RT.fstar_top_env)
: option stt_env
= admit(); Some (mk_env f) //we should implement this as a runtime check | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Soundness.Common.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Pulse.Syntax.Base.comp_st -> FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.comp_st",
"Pulse.Reflection.Util.mk_abs",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.comp_res"
] | [] | false | false | false | true | false | let elab_comp_post (c: comp_st) : R.term =
| let t = elab_term (comp_res c) in
let post = elab_term (comp_post c) in
mk_abs t R.Q_Explicit post | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.keccak_rotc | val keccak_rotc:x: glbuffer rotc_t 24ul {witnessed x keccak_rotc /\ recallable x} | val keccak_rotc:x: glbuffer rotc_t 24ul {witnessed x keccak_rotc /\ recallable x} | let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 26,
"start_col": 8,
"start_line": 25
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x:
(c:
Lib.Buffer.lbuffer_t Lib.Buffer.CONST Spec.SHA3.Constants.rotc_t (24ul <: FStar.UInt32.t)
{LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE})
{Lib.Buffer.witnessed x Spec.SHA3.Constants.keccak_rotc /\ Lib.Buffer.recallable x} | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.createL_global",
"Spec.SHA3.Constants.rotc_t",
"Spec.SHA3.Constants.rotc_list",
"Lib.Buffer.glbuffer",
"Lib.IntTypes.size",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_nat",
"FStar.List.Tot.Base.length"
] | [] | false | false | false | false | false | let keccak_rotc:x: glbuffer rotc_t 24ul {witnessed x keccak_rotc /\ recallable x} =
| createL_global rotc_list | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.keccak_piln | val keccak_piln:x: glbuffer piln_t 24ul {witnessed x keccak_piln /\ recallable x} | val keccak_piln:x: glbuffer piln_t 24ul {witnessed x keccak_piln /\ recallable x} | let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 29,
"start_col": 8,
"start_line": 28
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x:
(c:
Lib.Buffer.lbuffer_t Lib.Buffer.CONST Spec.SHA3.Constants.piln_t (24ul <: FStar.UInt32.t)
{LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE})
{Lib.Buffer.witnessed x Spec.SHA3.Constants.keccak_piln /\ Lib.Buffer.recallable x} | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.createL_global",
"Spec.SHA3.Constants.piln_t",
"Spec.SHA3.Constants.piln_list",
"Lib.Buffer.glbuffer",
"Lib.IntTypes.size",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_nat",
"FStar.List.Tot.Base.length"
] | [] | false | false | false | false | false | let keccak_piln:x: glbuffer piln_t 24ul {witnessed x keccak_piln /\ recallable x} =
| createL_global piln_list | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_theta | val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s)) | val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s)) | let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 148,
"start_col": 0,
"start_line": 143
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.SHA3.state -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.SHA3.state_theta1",
"Hacl.Impl.SHA3.state_theta0",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u64",
"Lib.Buffer.lbuffer",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let state_theta s =
| push_frame ();
let h0 = ST.get () in
let _C = create 5ul (u64 0) in
state_theta0 s _C;
state_theta1 s _C;
pop_frame () | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.storeState_inner | val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block)) | val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block)) | let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 340,
"start_col": 0,
"start_line": 335
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Hacl.Impl.SHA3.state ->
j: Lib.IntTypes.size_t{Lib.IntTypes.v j < 25} ->
block: Lib.Buffer.lbuffer Lib.IntTypes.uint8 200ul
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.update_sub_f",
"Lib.IntTypes.op_Star_Bang",
"FStar.Monotonic.HyperStack.mem",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.lseq",
"Prims.unit",
"Lib.ByteBuffer.uint_to_bytes_le",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.mk_int",
"Lib.Buffer.sub",
"FStar.HyperStack.ST.get",
"Lib.Buffer.op_Array_Access",
"Lib.IntTypes.uint64"
] | [] | false | true | false | false | false | let storeState_inner s j block =
| let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0
block
(j *! 8ul)
8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj) | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.keccak_rndc | val keccak_rndc:x: glbuffer pub_uint64 24ul {witnessed x keccak_rndc /\ recallable x} | val keccak_rndc:x: glbuffer pub_uint64 24ul {witnessed x keccak_rndc /\ recallable x} | let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 32,
"start_col": 8,
"start_line": 31
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x:
(c:
Lib.Buffer.lbuffer_t Lib.Buffer.CONST
(Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.PUB)
(24ul <: FStar.UInt32.t) {LowStar.ConstBuffer.qual_of c == LowStar.ConstBuffer.IMMUTABLE})
{Lib.Buffer.witnessed x Spec.SHA3.Constants.keccak_rndc /\ Lib.Buffer.recallable x} | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.createL_global",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.PUB",
"Spec.SHA3.Constants.rndc_list",
"Lib.Buffer.glbuffer",
"Lib.IntTypes.size",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_nat",
"FStar.List.Tot.Base.length"
] | [] | false | false | false | false | false | let keccak_rndc:x: glbuffer pub_uint64 24ul {witnessed x keccak_rndc /\ recallable x} =
| createL_global rndc_list | false |
Pulse.Soundness.Common.fst | Pulse.Soundness.Common.elab_term_opt | val elab_term_opt : b: FStar.Pervasives.Native.option Pulse.Syntax.Base.term
-> FStar.Pervasives.Native.option FStar.Stubs.Reflection.Types.term | let elab_term_opt (b:option term) =
match b with
| Some b -> Some (elab_term b)
| None -> None | {
"file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 16,
"end_line": 44,
"start_col": 0,
"start_line": 41
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Soundness.Common
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Typing
open Pulse.Elaborate
let ln_comp = c:comp_st { ln_c c }
let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes)
: Lemma
(ensures
RT.lookup_fvar_uinst (extend_env_l g sg) fv us ==
RT.lookup_fvar_uinst g fv us)
[SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)]
= match sg with
| [] -> ()
| hd::tl -> extend_env_l_lookup_fvar g tl fv us | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Pulse.Soundness.Common.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Pervasives.Native.option Pulse.Syntax.Base.term
-> FStar.Pervasives.Native.option FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.term",
"FStar.Pervasives.Native.Some",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Pervasives.Native.None"
] | [] | false | false | false | true | false | let elab_term_opt (b: option term) =
| match b with
| Some b -> Some (elab_term b)
| None -> None | false |
|
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.squeeze_inner | val squeeze_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> s:state
-> output:lbuffer uint8 rateInBytes
-> i:size_t{v i < v (outputByteLen /. rateInBytes)}
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
(as_seq h1 s, as_seq h1 output) ==
S.squeeze_inner (v rateInBytes) (v outputByteLen) (v i) (as_seq h0 s)) | val squeeze_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> s:state
-> output:lbuffer uint8 rateInBytes
-> i:size_t{v i < v (outputByteLen /. rateInBytes)}
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
(as_seq h1 s, as_seq h1 output) ==
S.squeeze_inner (v rateInBytes) (v outputByteLen) (v i) (as_seq h0 s)) | let squeeze_inner rateInBytes outputByteLen s output i =
storeState rateInBytes s output;
state_permute s | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 474,
"start_col": 0,
"start_line": 472
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s))
let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame()
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes))
let absorb_next s rateInBytes =
push_frame();
let h0 = ST.get() in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 nextBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame()
inline_for_extraction noextract
val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem)
(as_seq h0 input) (as_seq h0 s))
let absorb_last delimitedSuffix rateInBytes rem input s =
push_frame();
let h0 = ST.get() in
let lastBlock_ = create 200ul (u8 0) in
let lastBlock = sub lastBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 lastBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
let open Lib.RawIntTypes in
update_sub lastBlock (size 0) rem input;
lastBlock.(rem) <- byte_to_uint8 delimitedSuffix;
loadState rateInBytes lastBlock s;
if not ((delimitedSuffix &. byte 0x80) =. byte 0) &&
(size_to_UInt32 rem = size_to_UInt32 (rateInBytes -. 1ul))
then state_permute s;
absorb_next s rateInBytes;
pop_frame()
val absorb_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> block:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_inner (v rateInBytes) (as_seq h0 block) (as_seq h0 s))
let absorb_inner rateInBytes block s =
loadState rateInBytes block s;
state_permute s
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
private val absorb:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb (as_seq h0 s) (v rateInBytes) (v inputByteLen)
(as_seq h0 input) delimitedSuffix)
let absorb s rateInBytes inputByteLen input delimitedSuffix =
let n_blocks = inputByteLen /. rateInBytes in
let rem = inputByteLen %. rateInBytes in
loop_blocks rateInBytes n_blocks rem input
(S.absorb_inner (v rateInBytes))
(S.absorb_last delimitedSuffix (v rateInBytes))
(absorb_inner rateInBytes)
(absorb_last delimitedSuffix rateInBytes) s
inline_for_extraction noextract
val squeeze_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> s:state
-> output:lbuffer uint8 rateInBytes
-> i:size_t{v i < v (outputByteLen /. rateInBytes)}
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
(as_seq h1 s, as_seq h1 output) == | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
rateInBytes:
Lib.IntTypes.size_t{0 < Lib.IntTypes.v rateInBytes /\ Lib.IntTypes.v rateInBytes <= 200} ->
outputByteLen: Lib.IntTypes.size_t ->
s: Hacl.Impl.SHA3.state ->
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 rateInBytes ->
i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v (outputByteLen /. rateInBytes)}
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Hacl.Impl.SHA3.state",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.op_Slash_Dot",
"Hacl.Impl.SHA3.state_permute",
"Prims.unit",
"Hacl.Impl.SHA3.storeState"
] | [] | false | true | false | false | false | let squeeze_inner rateInBytes outputByteLen s output i =
| storeState rateInBytes s output;
state_permute s | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_chi | val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s)) | val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s)) | let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 264,
"start_col": 0,
"start_line": 252
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.SHA3.state -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Spec.SHA3.Equivalence.state_chi_equivalence",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Spec.SHA3.Equivalence.state_chi",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.loop1",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Impl.SHA3.state_chi_inner",
"Lib.LoopCombinators.unfold_repeati",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SHA3.Equivalence.state_chi_inner"
] | [] | false | true | false | false | false | let state_chi st =
| let h0 = ST.get () in
[@@ inline_let ]let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0
5ul
st
spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y);
let h1 = ST.get () in
assert (as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st) | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.absorb | val absorb:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb (as_seq h0 s) (v rateInBytes) (v inputByteLen)
(as_seq h0 input) delimitedSuffix) | val absorb:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb (as_seq h0 s) (v rateInBytes) (v inputByteLen)
(as_seq h0 input) delimitedSuffix) | let absorb s rateInBytes inputByteLen input delimitedSuffix =
let n_blocks = inputByteLen /. rateInBytes in
let rem = inputByteLen %. rateInBytes in
loop_blocks rateInBytes n_blocks rem input
(S.absorb_inner (v rateInBytes))
(S.absorb_last delimitedSuffix (v rateInBytes))
(absorb_inner rateInBytes)
(absorb_last delimitedSuffix rateInBytes) s | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 457,
"start_col": 0,
"start_line": 450
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s))
let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame()
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes))
let absorb_next s rateInBytes =
push_frame();
let h0 = ST.get() in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 nextBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame()
inline_for_extraction noextract
val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem)
(as_seq h0 input) (as_seq h0 s))
let absorb_last delimitedSuffix rateInBytes rem input s =
push_frame();
let h0 = ST.get() in
let lastBlock_ = create 200ul (u8 0) in
let lastBlock = sub lastBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 lastBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
let open Lib.RawIntTypes in
update_sub lastBlock (size 0) rem input;
lastBlock.(rem) <- byte_to_uint8 delimitedSuffix;
loadState rateInBytes lastBlock s;
if not ((delimitedSuffix &. byte 0x80) =. byte 0) &&
(size_to_UInt32 rem = size_to_UInt32 (rateInBytes -. 1ul))
then state_permute s;
absorb_next s rateInBytes;
pop_frame()
val absorb_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> block:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_inner (v rateInBytes) (as_seq h0 block) (as_seq h0 s))
let absorb_inner rateInBytes block s =
loadState rateInBytes block s;
state_permute s
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
private val absorb:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb (as_seq h0 s) (v rateInBytes) (v inputByteLen) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Hacl.Impl.SHA3.state ->
rateInBytes:
Lib.IntTypes.size_t{0 < Lib.IntTypes.v rateInBytes /\ Lib.IntTypes.v rateInBytes <= 200} ->
inputByteLen: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 inputByteLen ->
delimitedSuffix: Lib.IntTypes.byte_t
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.byte_t",
"Lib.Buffer.loop_blocks",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Spec.SHA3.absorb_inner",
"Spec.SHA3.absorb_last",
"Hacl.Impl.SHA3.absorb_inner",
"Hacl.Impl.SHA3.absorb_last",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Percent_Dot",
"Lib.IntTypes.op_Slash_Dot"
] | [] | false | true | false | false | false | let absorb s rateInBytes inputByteLen input delimitedSuffix =
| let n_blocks = inputByteLen /. rateInBytes in
let rem = inputByteLen %. rateInBytes in
loop_blocks rateInBytes
n_blocks
rem
input
(S.absorb_inner (v rateInBytes))
(S.absorb_last delimitedSuffix (v rateInBytes))
(absorb_inner rateInBytes)
(absorb_last delimitedSuffix rateInBytes)
s | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_theta_inner_s | val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s)) | val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s)) | let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 114,
"start_col": 0,
"start_line": 105
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _C: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> x: Hacl.Impl.SHA3.index -> s: Hacl.Impl.SHA3.state
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.SHA3.index",
"Hacl.Impl.SHA3.state",
"Lib.Buffer.loop1",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.SHA3.set",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Hacl.Impl.SHA3.get",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SHA3.state_theta_inner_s_inner",
"Hacl.Impl.SHA3.rotl",
"Lib.Buffer.op_Array_Access",
"Lib.IntTypes.op_Percent_Dot",
"Lib.IntTypes.op_Plus_Dot"
] | [] | false | true | false | false | false | let state_theta_inner_s _C x s =
| let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@@ inline_let ]let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0
5ul
s
spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)) | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.storeState | val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s)) | val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s)) | let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 364,
"start_col": 0,
"start_line": 351
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
rateInBytes: Lib.IntTypes.size_t{Lib.IntTypes.v rateInBytes <= 200} ->
s: Hacl.Impl.SHA3.state ->
res: Lib.Buffer.lbuffer Lib.IntTypes.uint8 rateInBytes
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.SHA3.state",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Lib.Buffer.copy",
"Lib.Buffer.MUT",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.sub",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.loop1",
"Prims.op_LessThan",
"Hacl.Impl.SHA3.storeState_inner",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.Buffer.as_seq",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SHA3.storeState_inner",
"Lib.IntTypes.uint64",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let storeState rateInBytes s res =
| push_frame ();
let h0 = ST.get () in
let block = create 200ul (u8 0) in
[@@ inline_let ]let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0
25ul
block
spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block);
copy res (sub block 0ul rateInBytes);
pop_frame () | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_pi_rho_inner | val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s')) | val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s')) | let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 187,
"start_col": 0,
"start_line": 177
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
i: Lib.IntTypes.size_t{Lib.IntTypes.v i < 24} ->
current: Lib.Buffer.lbuffer Lib.IntTypes.uint64 1ul ->
s: Hacl.Impl.SHA3.state
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.SHA3.state",
"Lib.Buffer.op_Array_Assignment",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Impl.SHA3.rotl",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Spec.SHA3.Constants.rotc_t",
"Lib.Buffer.CONST",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.SHA3.keccak_rotc",
"Spec.SHA3.Constants.piln_t",
"Hacl.Impl.SHA3.keccak_piln",
"Hacl.Impl.SHA3.index_map",
"Lib.IntTypes.range_t",
"Spec.SHA3.Constants.piln_list",
"Lib.Buffer.recall_contents",
"Spec.SHA3.Constants.keccak_piln",
"Spec.SHA3.Constants.keccak_rotc",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length"
] | [] | false | true | false | false | false | let state_pi_rho_inner i current s =
| assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.keccak | val keccak:
rate:size_t{v rate % 8 == 0 /\ v rate / 8 > 0 /\ v rate <= 1600}
-> capacity:size_t{v capacity + v rate == 1600}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h -> live h input /\ live h output /\ disjoint input output)
(ensures fun h0 _ h1 ->
modifies1 output h0 h1 /\
as_seq h1 output ==
S.keccak (v rate) (v capacity) (v inputByteLen) (as_seq h0 input) delimitedSuffix (v outputByteLen)) | val keccak:
rate:size_t{v rate % 8 == 0 /\ v rate / 8 > 0 /\ v rate <= 1600}
-> capacity:size_t{v capacity + v rate == 1600}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h -> live h input /\ live h output /\ disjoint input output)
(ensures fun h0 _ h1 ->
modifies1 output h0 h1 /\
as_seq h1 output ==
S.keccak (v rate) (v capacity) (v inputByteLen) (as_seq h0 input) delimitedSuffix (v outputByteLen)) | let keccak rate capacity inputByteLen input delimitedSuffix outputByteLen output =
push_frame();
let rateInBytes = rate /. size 8 in
let s:state = create 25ul (u64 0) in
absorb s rateInBytes inputByteLen input delimitedSuffix;
squeeze s rateInBytes outputByteLen output;
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 532,
"start_col": 0,
"start_line": 526
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s))
let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame()
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes))
let absorb_next s rateInBytes =
push_frame();
let h0 = ST.get() in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 nextBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame()
inline_for_extraction noextract
val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem)
(as_seq h0 input) (as_seq h0 s))
let absorb_last delimitedSuffix rateInBytes rem input s =
push_frame();
let h0 = ST.get() in
let lastBlock_ = create 200ul (u8 0) in
let lastBlock = sub lastBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 lastBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
let open Lib.RawIntTypes in
update_sub lastBlock (size 0) rem input;
lastBlock.(rem) <- byte_to_uint8 delimitedSuffix;
loadState rateInBytes lastBlock s;
if not ((delimitedSuffix &. byte 0x80) =. byte 0) &&
(size_to_UInt32 rem = size_to_UInt32 (rateInBytes -. 1ul))
then state_permute s;
absorb_next s rateInBytes;
pop_frame()
val absorb_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> block:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_inner (v rateInBytes) (as_seq h0 block) (as_seq h0 s))
let absorb_inner rateInBytes block s =
loadState rateInBytes block s;
state_permute s
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
private val absorb:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb (as_seq h0 s) (v rateInBytes) (v inputByteLen)
(as_seq h0 input) delimitedSuffix)
let absorb s rateInBytes inputByteLen input delimitedSuffix =
let n_blocks = inputByteLen /. rateInBytes in
let rem = inputByteLen %. rateInBytes in
loop_blocks rateInBytes n_blocks rem input
(S.absorb_inner (v rateInBytes))
(S.absorb_last delimitedSuffix (v rateInBytes))
(absorb_inner rateInBytes)
(absorb_last delimitedSuffix rateInBytes) s
inline_for_extraction noextract
val squeeze_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> s:state
-> output:lbuffer uint8 rateInBytes
-> i:size_t{v i < v (outputByteLen /. rateInBytes)}
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
(as_seq h1 s, as_seq h1 output) ==
S.squeeze_inner (v rateInBytes) (v outputByteLen) (v i) (as_seq h0 s))
let squeeze_inner rateInBytes outputByteLen s output i =
storeState rateInBytes s output;
state_permute s
private
let mult_plus_lt (i a b:nat) : Lemma (requires i < a) (ensures i * b + b <= a * b) =
assert (i <= a - 1)
val squeeze:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
as_seq h1 output == S.squeeze (as_seq h0 s) (v rateInBytes) (v outputByteLen))
let squeeze s rateInBytes outputByteLen output =
let outBlocks = outputByteLen /. rateInBytes in
let remOut = outputByteLen %. rateInBytes in
assert_spinoff (v outputByteLen - v remOut == v outBlocks * v rateInBytes);
let last = sub output (outputByteLen -. remOut) remOut in
[@ inline_let]
let a_spec (i:nat{i <= v outputByteLen / v rateInBytes}) = S.state in
let blocks = sub output (size 0) (outBlocks *! rateInBytes) in
let h0 = ST.get() in
fill_blocks h0 rateInBytes outBlocks blocks a_spec
(fun h i -> as_seq h s)
(fun _ -> loc s)
(fun h0 -> S.squeeze_inner (v rateInBytes) (v outputByteLen))
(fun i ->
mult_plus_lt (v i) (v outBlocks) (v rateInBytes);
squeeze_inner rateInBytes outputByteLen s (sub blocks (i *! rateInBytes) rateInBytes) i);
storeState remOut s last;
let h1 = ST.get() in
Seq.lemma_split (as_seq h1 output) (v outBlocks * v rateInBytes);
norm_spec [delta_only [`%S.squeeze]] (S.squeeze (as_seq h0 s) (v rateInBytes) (v outputByteLen))
val keccak:
rate:size_t{v rate % 8 == 0 /\ v rate / 8 > 0 /\ v rate <= 1600}
-> capacity:size_t{v capacity + v rate == 1600}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h -> live h input /\ live h output /\ disjoint input output)
(ensures fun h0 _ h1 ->
modifies1 output h0 h1 /\
as_seq h1 output == | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
rate:
Lib.IntTypes.size_t
{Lib.IntTypes.v rate % 8 == 0 /\ Lib.IntTypes.v rate / 8 > 0 /\ Lib.IntTypes.v rate <= 1600} ->
capacity: Lib.IntTypes.size_t{Lib.IntTypes.v capacity + Lib.IntTypes.v rate == 1600} ->
inputByteLen: Lib.IntTypes.size_t ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 inputByteLen ->
delimitedSuffix: Lib.IntTypes.byte_t ->
outputByteLen: Lib.IntTypes.size_t ->
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 outputByteLen
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_Division",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Lib.IntTypes.byte_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.SHA3.squeeze",
"Hacl.Impl.SHA3.absorb",
"Hacl.Impl.SHA3.state",
"Lib.Buffer.create",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u64",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Slash_Dot",
"Lib.IntTypes.size",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let keccak rate capacity inputByteLen input delimitedSuffix outputByteLen output =
| push_frame ();
let rateInBytes = rate /. size 8 in
let s:state = create 25ul (u64 0) in
absorb s rateInBytes inputByteLen input delimitedSuffix;
squeeze s rateInBytes outputByteLen output;
pop_frame () | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.loadState | val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s)) | val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s)) | let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 323,
"start_col": 0,
"start_line": 308
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
rateInBytes: Lib.IntTypes.size_t{Lib.IntTypes.v rateInBytes <= 200} ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 rateInBytes ->
s: Hacl.Impl.SHA3.state
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.Impl.SHA3.state",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Lib.Buffer.loop1",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.op_LessThan",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Lib.ByteBuffer.uint_from_bytes_le",
"Lib.IntTypes.uint_t",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.mk_int",
"Lib.Buffer.sub",
"Lib.IntTypes.op_Star_Bang",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.Buffer.as_seq",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SHA3.loadState_inner",
"Lib.Buffer.update_sub",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let loadState rateInBytes input s =
| push_frame ();
let h0 = ST.get () in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@@ inline_let ]let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0
25ul
s
spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get () in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x);
pop_frame () | false |
Spec.SHA3.Equivalence.fst | Spec.SHA3.Equivalence.state_chi_inner_equivalence0 | val state_chi_inner_equivalence0 (st_old: state) (y: index) (st: state)
: Lemma
(requires
(forall y'.
(y' >= y /\ y' < 5) ==>
get st_old 0 y' == get st 0 y' /\ get st_old 1 y' == get st 1 y' /\
get st_old 2 y' == get st 2 y' /\ get st_old 3 y' == get st 3 y' /\
get st_old 4 y' == get st 4 y'))
(ensures
(let st_new = state_chi_inner1 st_old y st in
st_new == state_chi_inner y st)) | val state_chi_inner_equivalence0 (st_old: state) (y: index) (st: state)
: Lemma
(requires
(forall y'.
(y' >= y /\ y' < 5) ==>
get st_old 0 y' == get st 0 y' /\ get st_old 1 y' == get st 1 y' /\
get st_old 2 y' == get st 2 y' /\ get st_old 3 y' == get st 3 y' /\
get st_old 4 y' == get st 4 y'))
(ensures
(let st_new = state_chi_inner1 st_old y st in
st_new == state_chi_inner y st)) | let state_chi_inner_equivalence0 (st_old:state) (y:index) (st:state) :
Lemma (requires (forall y'. (y' >= y /\ y' < 5) ==>
get st_old 0 y' == get st 0 y' /\
get st_old 1 y' == get st 1 y' /\
get st_old 2 y' == get st 2 y' /\
get st_old 3 y' == get st 3 y' /\
get st_old 4 y' == get st 4 y'))
(ensures (let st_new = state_chi_inner1 st_old y st in
st_new == state_chi_inner y st)) =
Lib.LoopCombinators.eq_repeati0 5 (state_chi_inner0 st_old y) st;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 0;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 1;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 2;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 3;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 4;
assert (repeati 5 (state_chi_inner0 st_old y) st ==
state_chi_inner0 st_old y 4 (state_chi_inner0 st_old y 3 (state_chi_inner0 st_old y 2 (state_chi_inner0 st_old y 1 (state_chi_inner0 st_old y 0 st)))));
() | {
"file_name": "specs/lemmas/Spec.SHA3.Equivalence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 48,
"start_col": 0,
"start_line": 30
} | module Spec.SHA3.Equivalence
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open FStar.Mul
open Lib.LoopCombinators
open Spec.SHA3.Constants
open Spec.SHA3
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
let state_chi_inner (y:index) (s:state) : Tot state =
let v0 = get s 0 y ^. ((lognot (get s 1 y)) &. get s 2 y) in
let v1 = get s 1 y ^. ((lognot (get s 2 y)) &. get s 3 y) in
let v2 = get s 2 y ^. ((lognot (get s 3 y)) &. get s 4 y) in
let v3 = get s 3 y ^. ((lognot (get s 4 y)) &. get s 0 y) in
let v4 = get s 4 y ^. ((lognot (get s 0 y)) &. get s 1 y) in
let s = set s 0 y v0 in
let s = set s 1 y v1 in
let s = set s 2 y v2 in
let s = set s 3 y v3 in
let s = set s 4 y v4 in
s
let state_chi (s_pi_rho:state) : Tot state =
repeati 5 state_chi_inner s_pi_rho | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SHA3.Equivalence.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st_old: Spec.SHA3.state -> y: Spec.SHA3.index -> st: Spec.SHA3.state
-> FStar.Pervasives.Lemma
(requires
forall (y':
i:
Prims.int
{ i >= 0 /\ i <= Lib.IntTypes.max_size_t /\ i < 5 /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) /\
(i >= 0) /\ (i <= Lib.IntTypes.max_size_t) /\ (i < 5) }).
y' >= y /\ y' < 5 ==>
Spec.SHA3.get st_old 0 y' == Spec.SHA3.get st 0 y' /\
Spec.SHA3.get st_old 1 y' == Spec.SHA3.get st 1 y' /\
Spec.SHA3.get st_old 2 y' == Spec.SHA3.get st 2 y' /\
Spec.SHA3.get st_old 3 y' == Spec.SHA3.get st 3 y' /\
Spec.SHA3.get st_old 4 y' == Spec.SHA3.get st 4 y')
(ensures
(let st_new = Spec.SHA3.state_chi_inner1 st_old y st in
st_new == Spec.SHA3.Equivalence.state_chi_inner y st)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.SHA3.state",
"Spec.SHA3.index",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.LoopCombinators.repeati",
"Spec.SHA3.state_chi_inner0",
"Lib.LoopCombinators.unfold_repeati",
"Lib.LoopCombinators.eq_repeati0",
"Prims.l_Forall",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.max_size_t",
"Prims.op_LessThan",
"Prims.l_imp",
"Lib.IntTypes.uint64",
"Spec.SHA3.get",
"Prims.squash",
"Spec.SHA3.Equivalence.state_chi_inner",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Spec.SHA3.state_chi_inner1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let state_chi_inner_equivalence0 (st_old: state) (y: index) (st: state)
: Lemma
(requires
(forall y'.
(y' >= y /\ y' < 5) ==>
get st_old 0 y' == get st 0 y' /\ get st_old 1 y' == get st 1 y' /\
get st_old 2 y' == get st 2 y' /\ get st_old 3 y' == get st 3 y' /\
get st_old 4 y' == get st 4 y'))
(ensures
(let st_new = state_chi_inner1 st_old y st in
st_new == state_chi_inner y st)) =
| Lib.LoopCombinators.eq_repeati0 5 (state_chi_inner0 st_old y) st;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 0;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 1;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 2;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 3;
Lib.LoopCombinators.unfold_repeati 5 (state_chi_inner0 st_old y) st 4;
assert (repeati 5 (state_chi_inner0 st_old y) st ==
state_chi_inner0 st_old
y
4
(state_chi_inner0 st_old
y
3
(state_chi_inner0 st_old
y
2
(state_chi_inner0 st_old y 1 (state_chi_inner0 st_old y 0 st)))));
() | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.absorb_next | val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes)) | val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes)) | let absorb_next s rateInBytes =
push_frame();
let h0 = ST.get() in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 nextBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 388,
"start_col": 0,
"start_line": 378
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s))
let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame()
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Hacl.Impl.SHA3.state ->
rateInBytes:
Lib.IntTypes.size_t{Lib.IntTypes.v rateInBytes > 0 /\ Lib.IntTypes.v rateInBytes <= 200}
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.SHA3.state_permute",
"Hacl.Impl.SHA3.loadState",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.uint8",
"Lib.IntTypes.op_Subtraction_Bang",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u8",
"Prims._assert",
"FStar.Seq.Base.equal",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.Sequence.create",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.sub",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let absorb_next s rateInBytes =
| push_frame ();
let h0 = ST.get () in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert ((as_seq h1 nextBlock) `Seq.equal` (Lib.Sequence.create (v rateInBytes) (u8 0)));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame () | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_chi_inner | val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st)) | val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st)) | let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st)) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 242,
"start_col": 0,
"start_line": 228
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Hacl.Impl.SHA3.state -> y: Hacl.Impl.SHA3.index -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Hacl.Impl.SHA3.index",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Spec.SHA3.Equivalence.state_chi_inner",
"Prims.unit",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.SHA3.set",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.op_Amp_Dot",
"Hacl.Impl.SHA3.get",
"Lib.IntTypes.lognot"
] | [] | false | true | false | false | false | let state_chi_inner st y =
| let h0 = ST.get () in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get () in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st)) | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.state_pi_rho | val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s)) | val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s)) | let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 216,
"start_col": 0,
"start_line": 197
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.SHA3.state -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Lib.Buffer.loop",
"FStar.UInt32.__uint_to_t",
"Spec.SHA3.state_pi_rho_s",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.SHA3.state_pi_rho_inner",
"Lib.LoopCombinators.unfold_repeat_gen",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.lseq",
"Spec.SHA3.state_pi_rho_inner",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"LowStar.Monotonic.Buffer.loc",
"Lib.IntTypes.size_nat",
"LowStar.Monotonic.Buffer.loc_union",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"Spec.SHA3.state",
"Lib.Buffer.bget",
"Lib.Buffer.as_seq",
"Prims._assert",
"Prims.eq2",
"Spec.SHA3.get",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.create",
"Lib.Buffer.lbuffer",
"Hacl.Impl.SHA3.get",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let state_pi_rho s =
| push_frame ();
let x = get s 1ul 0ul in
let h0 = ST.get () in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@@ inline_let ]let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@@ inline_let ]let footprint i = loc_union (loc current) (loc s) in
[@@ inline_let ]let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0
24ul
S.state_pi_rho_s
refl
footprint
spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s);
pop_frame () | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.squeeze | val squeeze:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
as_seq h1 output == S.squeeze (as_seq h0 s) (v rateInBytes) (v outputByteLen)) | val squeeze:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
as_seq h1 output == S.squeeze (as_seq h0 s) (v rateInBytes) (v outputByteLen)) | let squeeze s rateInBytes outputByteLen output =
let outBlocks = outputByteLen /. rateInBytes in
let remOut = outputByteLen %. rateInBytes in
assert_spinoff (v outputByteLen - v remOut == v outBlocks * v rateInBytes);
let last = sub output (outputByteLen -. remOut) remOut in
[@ inline_let]
let a_spec (i:nat{i <= v outputByteLen / v rateInBytes}) = S.state in
let blocks = sub output (size 0) (outBlocks *! rateInBytes) in
let h0 = ST.get() in
fill_blocks h0 rateInBytes outBlocks blocks a_spec
(fun h i -> as_seq h s)
(fun _ -> loc s)
(fun h0 -> S.squeeze_inner (v rateInBytes) (v outputByteLen))
(fun i ->
mult_plus_lt (v i) (v outBlocks) (v rateInBytes);
squeeze_inner rateInBytes outputByteLen s (sub blocks (i *! rateInBytes) rateInBytes) i);
storeState remOut s last;
let h1 = ST.get() in
Seq.lemma_split (as_seq h1 output) (v outBlocks * v rateInBytes);
norm_spec [delta_only [`%S.squeeze]] (S.squeeze (as_seq h0 s) (v rateInBytes) (v outputByteLen)) | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 98,
"end_line": 510,
"start_col": 0,
"start_line": 491
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s))
let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame()
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes))
let absorb_next s rateInBytes =
push_frame();
let h0 = ST.get() in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 nextBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame()
inline_for_extraction noextract
val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem)
(as_seq h0 input) (as_seq h0 s))
let absorb_last delimitedSuffix rateInBytes rem input s =
push_frame();
let h0 = ST.get() in
let lastBlock_ = create 200ul (u8 0) in
let lastBlock = sub lastBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 lastBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
let open Lib.RawIntTypes in
update_sub lastBlock (size 0) rem input;
lastBlock.(rem) <- byte_to_uint8 delimitedSuffix;
loadState rateInBytes lastBlock s;
if not ((delimitedSuffix &. byte 0x80) =. byte 0) &&
(size_to_UInt32 rem = size_to_UInt32 (rateInBytes -. 1ul))
then state_permute s;
absorb_next s rateInBytes;
pop_frame()
val absorb_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> block:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_inner (v rateInBytes) (as_seq h0 block) (as_seq h0 s))
let absorb_inner rateInBytes block s =
loadState rateInBytes block s;
state_permute s
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
private val absorb:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> inputByteLen:size_t
-> input:lbuffer uint8 inputByteLen
-> delimitedSuffix:byte_t
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb (as_seq h0 s) (v rateInBytes) (v inputByteLen)
(as_seq h0 input) delimitedSuffix)
let absorb s rateInBytes inputByteLen input delimitedSuffix =
let n_blocks = inputByteLen /. rateInBytes in
let rem = inputByteLen %. rateInBytes in
loop_blocks rateInBytes n_blocks rem input
(S.absorb_inner (v rateInBytes))
(S.absorb_last delimitedSuffix (v rateInBytes))
(absorb_inner rateInBytes)
(absorb_last delimitedSuffix rateInBytes) s
inline_for_extraction noextract
val squeeze_inner:
rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> s:state
-> output:lbuffer uint8 rateInBytes
-> i:size_t{v i < v (outputByteLen /. rateInBytes)}
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\
(as_seq h1 s, as_seq h1 output) ==
S.squeeze_inner (v rateInBytes) (v outputByteLen) (v i) (as_seq h0 s))
let squeeze_inner rateInBytes outputByteLen s output i =
storeState rateInBytes s output;
state_permute s
private
let mult_plus_lt (i a b:nat) : Lemma (requires i < a) (ensures i * b + b <= a * b) =
assert (i <= a - 1)
val squeeze:
s:state
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> outputByteLen:size_t
-> output:lbuffer uint8 outputByteLen
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 output /\ disjoint s output)
(ensures fun h0 _ h1 ->
modifies2 s output h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Hacl.Impl.SHA3.state ->
rateInBytes:
Lib.IntTypes.size_t{0 < Lib.IntTypes.v rateInBytes /\ Lib.IntTypes.v rateInBytes <= 200} ->
outputByteLen: Lib.IntTypes.size_t ->
output: Lib.Buffer.lbuffer Lib.IntTypes.uint8 outputByteLen
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.SHA3.state",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.Pervasives.norm_spec",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_only",
"Prims.string",
"Prims.Nil",
"Lib.ByteSequence.lbytes",
"Spec.SHA3.squeeze",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Seq.Properties.lemma_split",
"FStar.Mul.op_Star",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.SHA3.storeState",
"Lib.Buffer.fill_blocks",
"Lib.IntTypes.size_nat",
"Lib.Buffer.loc",
"LowStar.Monotonic.Buffer.loc",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.address_liveness_insensitive_locs",
"Spec.SHA3.squeeze_inner",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Addition",
"Lib.Sequence.lseq",
"Hacl.Impl.SHA3.squeeze_inner",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.sub",
"Lib.IntTypes.op_Star_Bang",
"Hacl.Impl.SHA3.mult_plus_lt",
"Lib.IntTypes.mul",
"Lib.IntTypes.size",
"Prims.nat",
"Prims.op_Division",
"Spec.SHA3.state",
"Lib.IntTypes.op_Subtraction_Dot",
"FStar.Pervasives.assert_spinoff",
"Prims.eq2",
"Prims.int",
"Prims.op_Subtraction",
"Lib.IntTypes.op_Percent_Dot",
"Lib.IntTypes.op_Slash_Dot"
] | [] | false | true | false | false | false | let squeeze s rateInBytes outputByteLen output =
| let outBlocks = outputByteLen /. rateInBytes in
let remOut = outputByteLen %. rateInBytes in
assert_spinoff (v outputByteLen - v remOut == v outBlocks * v rateInBytes);
let last = sub output (outputByteLen -. remOut) remOut in
[@@ inline_let ]let a_spec (i: nat{i <= v outputByteLen / v rateInBytes}) = S.state in
let blocks = sub output (size 0) (outBlocks *! rateInBytes) in
let h0 = ST.get () in
fill_blocks h0
rateInBytes
outBlocks
blocks
a_spec
(fun h i -> as_seq h s)
(fun _ -> loc s)
(fun h0 -> S.squeeze_inner (v rateInBytes) (v outputByteLen))
(fun i ->
mult_plus_lt (v i) (v outBlocks) (v rateInBytes);
squeeze_inner rateInBytes outputByteLen s (sub blocks (i *! rateInBytes) rateInBytes) i);
storeState remOut s last;
let h1 = ST.get () in
Seq.lemma_split (as_seq h1 output) (v outBlocks * v rateInBytes);
norm_spec [delta_only [`%S.squeeze]] (S.squeeze (as_seq h0 s) (v rateInBytes) (v outputByteLen)) | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.nat_mod_comm_monoid | val nat_mod_comm_monoid : Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod Spec.K256.PointOps.q) | let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 12,
"start_col": 0,
"start_line": 12
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod Spec.K256.PointOps.q) | Prims.Tot | [
"total"
] | [] | [
"Lib.NatMod.mk_nat_mod_comm_monoid",
"Spec.K256.PointOps.q"
] | [] | false | false | false | true | false | let nat_mod_comm_monoid =
| M.mk_nat_mod_comm_monoid S.q | false |
|
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qsquare_times | val qsquare_times (a: S.qelem) (b: nat) : S.qelem | val qsquare_times (a: S.qelem) (b: nat) : S.qelem | let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 37,
"start_col": 0,
"start_line": 36
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
} | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.K256.PointOps.qelem -> b: Prims.nat -> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"Spec.Exponentiation.exp_pow2",
"Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops"
] | [] | false | false | false | true | false | let qsquare_times (a: S.qelem) (b: nat) : S.qelem =
| SE.exp_pow2 mk_nat_mod_concrete_ops a b | false |
Hacl.Impl.Curve25519.Fields.fst | Hacl.Impl.Curve25519.Fields.set_one | val set_one:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 1) | val set_one:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 1) | let set_one #s f =
match s with
| M51 -> F51.set_one f
| M64 -> F64.set_one f | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 95,
"start_col": 0,
"start_line": 92
} | module Hacl.Impl.Curve25519.Fields
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Impl.Curve25519.Fields.Core
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module P = Spec.Curve25519
module F51 = Hacl.Impl.Curve25519.Field51
module F64 = Hacl.Impl.Curve25519.Field64
#set-options "--z3rlimit 50 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --record_options"
inline_for_extraction noextract
val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0)
let create_felem s =
match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s
inline_for_extraction noextract
val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\
as_nat h1 f == BSeq.nat_from_intseq_le (as_seq h0 u64s))
let load_felem #s f b =
match s with
| M51 -> F51.load_felem f b
| M64 -> F64.load_felem f b
val store_felem:
#s:field_spec
-> b:lbuffer uint64 4ul
-> f:felem s
-> Stack unit
(requires fun h ->
live h f /\ live h b /\ disjoint f b /\ state_inv_t h f)
(ensures fun h0 _ h1 ->
modifies (loc b |+| loc f) h0 h1 /\
as_seq h1 b == BSeq.nat_to_intseq_le 4 (feval h0 f))
[@ Meta.Attribute.specialize ]
let store_felem #s b f =
match s with
| M51 -> F51.store_felem b f
| M64 -> F64.store_felem b f
inline_for_extraction noextract
val set_zero:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 0)
let set_zero #s f =
match s with
| M51 -> F51.set_zero f
| M64 -> F64.set_zero f
inline_for_extraction noextract
val set_one:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Field64.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Fields.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field64",
"short_module": "F64"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Impl.Curve25519.Fields.Core.felem s -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Field51.set_one",
"Prims.unit",
"Hacl.Impl.Curve25519.Field64.set_one"
] | [] | false | true | false | false | false | let set_one #s f =
| match s with
| M51 -> F51.set_one f
| M64 -> F64.set_one f | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_r0_r1 | val qinv_r0_r1 (x14: S.qelem) : S.qelem | val qinv_r0_r1 (x14: S.qelem) : S.qelem | let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 59,
"start_col": 0,
"start_line": 54
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x14: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv_r0_r1 x14 =
| let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1 | false |
Hacl.Impl.Curve25519.Fields.fst | Hacl.Impl.Curve25519.Fields.set_zero | val set_zero:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 0) | val set_zero:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 0) | let set_zero #s f =
match s with
| M51 -> F51.set_zero f
| M64 -> F64.set_zero f | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 81,
"start_col": 0,
"start_line": 78
} | module Hacl.Impl.Curve25519.Fields
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Impl.Curve25519.Fields.Core
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module P = Spec.Curve25519
module F51 = Hacl.Impl.Curve25519.Field51
module F64 = Hacl.Impl.Curve25519.Field64
#set-options "--z3rlimit 50 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --record_options"
inline_for_extraction noextract
val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0)
let create_felem s =
match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s
inline_for_extraction noextract
val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\
as_nat h1 f == BSeq.nat_from_intseq_le (as_seq h0 u64s))
let load_felem #s f b =
match s with
| M51 -> F51.load_felem f b
| M64 -> F64.load_felem f b
val store_felem:
#s:field_spec
-> b:lbuffer uint64 4ul
-> f:felem s
-> Stack unit
(requires fun h ->
live h f /\ live h b /\ disjoint f b /\ state_inv_t h f)
(ensures fun h0 _ h1 ->
modifies (loc b |+| loc f) h0 h1 /\
as_seq h1 b == BSeq.nat_to_intseq_le 4 (feval h0 f))
[@ Meta.Attribute.specialize ]
let store_felem #s b f =
match s with
| M51 -> F51.store_felem b f
| M64 -> F64.store_felem b f
inline_for_extraction noextract
val set_zero:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Field64.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Fields.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field64",
"short_module": "F64"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Impl.Curve25519.Fields.Core.felem s -> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Field51.set_zero",
"Prims.unit",
"Hacl.Impl.Curve25519.Field64.set_zero"
] | [] | false | true | false | false | false | let set_zero #s f =
| match s with
| M51 -> F51.set_zero f
| M64 -> F64.set_zero f | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.crypto_kem_enc_ss | val crypto_kem_enc_ss:
a:frodo_alg
-> k:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> lbytes (crypto_bytes a) | val crypto_kem_enc_ss:
a:frodo_alg
-> k:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> lbytes (crypto_bytes a) | let crypto_kem_enc_ss a k ct =
let shake_input_ss = concat ct k in
let ss = frodo_shake a (crypto_ciphertextbytes a + crypto_bytes a) shake_input_ss (crypto_bytes a) in
ss | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 136,
"start_col": 0,
"start_line": 133
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix
val crypto_kem_enc_ct_pack_c2:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> lbytes (ct2bytes_len a)
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix in
let ct2 = frodo_pack (params_logq a) v_matrix in
ct2
val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar
let get_sp_ep_epp_matrices a seed_se =
let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + 2 * params_nbar * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len) in
let epp_matrix = frodo_sample_matrix a params_nbar params_nbar (LSeq.sub r (2 * s_bytes_len) (2 * params_nbar * params_nbar)) in
sp_matrix, ep_matrix, epp_matrix
val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a)
let crypto_kem_enc_ct a gen_a mu pk seed_se =
expand_crypto_publickeybytes a;
let seed_a = LSeq.sub pk 0 bytes_seed_a in
let b = LSeq.sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix, ep_matrix, epp_matrix = get_sp_ep_epp_matrices a seed_se in
let c1 = crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix in
let c2 = crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix in
expand_crypto_ciphertextbytes a;
let ct = concat c1 c2 in
ct
val crypto_kem_enc_ss:
a:frodo_alg
-> k:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> lbytes (crypto_bytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
k: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a) ->
ct: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_ciphertextbytes a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.crypto_bytes",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Frodo.Params.frodo_shake",
"Prims.op_Addition",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.uint_t"
] | [] | false | false | false | false | false | let crypto_kem_enc_ss a k ct =
| let shake_input_ss = concat ct k in
let ss =
frodo_shake a (crypto_ciphertextbytes a + crypto_bytes a) shake_input_ss (crypto_bytes a)
in
ss | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.mul_mod | val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid | val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid | let mul_mod x y = S.qmul x y | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 24,
"start_col": 0,
"start_line": 24
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.Exponentiation.mul_st Spec.K256.PointOps.qelem Hacl.Spec.K256.Qinv.mk_to_nat_mod_comm_monoid | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul"
] | [] | false | false | false | true | false | let mul_mod x y =
| S.qmul x y | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.crypto_kem_enc | val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | let crypto_kem_enc a gen_a state pk =
let mu, _ = Spec.Frodo.Random.randombytes_ state (bytes_mu a) in
crypto_kem_enc_ a gen_a mu pk | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 178,
"start_col": 0,
"start_line": 176
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix
val crypto_kem_enc_ct_pack_c2:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> lbytes (ct2bytes_len a)
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix in
let ct2 = frodo_pack (params_logq a) v_matrix in
ct2
val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar
let get_sp_ep_epp_matrices a seed_se =
let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + 2 * params_nbar * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len) in
let epp_matrix = frodo_sample_matrix a params_nbar params_nbar (LSeq.sub r (2 * s_bytes_len) (2 * params_nbar * params_nbar)) in
sp_matrix, ep_matrix, epp_matrix
val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a)
let crypto_kem_enc_ct a gen_a mu pk seed_se =
expand_crypto_publickeybytes a;
let seed_a = LSeq.sub pk 0 bytes_seed_a in
let b = LSeq.sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix, ep_matrix, epp_matrix = get_sp_ep_epp_matrices a seed_se in
let c1 = crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix in
let c2 = crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix in
expand_crypto_ciphertextbytes a;
let ct = concat c1 c2 in
ct
val crypto_kem_enc_ss:
a:frodo_alg
-> k:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> lbytes (crypto_bytes a)
let crypto_kem_enc_ss a k ct =
let shake_input_ss = concat ct k in
let ss = frodo_shake a (crypto_ciphertextbytes a + crypto_bytes a) shake_input_ss (crypto_bytes a) in
ss
val crypto_kem_enc_seed_se_k:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (2 * crypto_bytes a)
let crypto_kem_enc_seed_se_k a mu pk =
let pkh = frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) in
let pkh_mu = concat pkh mu in
let seed_se_k = frodo_shake a (bytes_pkhash a + bytes_mu a) pkh_mu (2 * crypto_bytes a) in
seed_se_k
val crypto_kem_enc_:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a)
let crypto_kem_enc_ a gen_a mu pk =
let seed_se_k = crypto_kem_enc_seed_se_k a mu pk in
let seed_se = LSeq.sub seed_se_k 0 (crypto_bytes a) in
let k = LSeq.sub seed_se_k (crypto_bytes a) (crypto_bytes a) in
let ct = crypto_kem_enc_ct a gen_a mu pk seed_se in
let ss = crypto_kem_enc_ss a k ct in
ct, ss
val crypto_kem_enc:
a:frodo_alg
-> gen_a:frodo_gen_a
-> state:Spec.Frodo.Random.state_t
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
state: Spec.Frodo.Random.state_t ->
pk: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_publickeybytes a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_ciphertextbytes a) *
Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Spec.Frodo.Random.state_t",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.crypto_publickeybytes",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.Frodo.Params.bytes_mu",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_",
"FStar.Pervasives.Native.tuple2",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"Spec.Frodo.Params.crypto_bytes",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Frodo.Random.randombytes_"
] | [] | false | false | false | false | false | let crypto_kem_enc a gen_a state pk =
| let mu, _ = Spec.Frodo.Random.randombytes_ state (bytes_mu a) in
crypto_kem_enc_ a gen_a mu pk | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_r24_r25 | val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem | val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem | let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 103,
"start_col": 0,
"start_line": 100
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r23: Spec.K256.PointOps.qelem -> x_1: Spec.K256.PointOps.qelem -> x6: Spec.K256.PointOps.qelem
-> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv_r24_r25 r23 x_1 x6 =
| let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25 | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_r2_r8 | val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem | val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem | let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 71,
"start_col": 0,
"start_line": 63
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r1: Spec.K256.PointOps.qelem ->
x_101: Spec.K256.PointOps.qelem ->
x_111: Spec.K256.PointOps.qelem ->
x_1011: Spec.K256.PointOps.qelem
-> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv_r2_r8 r1 x_101 x_111 x_1011 =
| let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8 | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e_plus_mu | val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar | val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar | let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 75,
"start_col": 0,
"start_line": 71
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
mu: Lib.ByteSequence.lbytes (Spec.Frodo.Params.bytes_mu a) ->
b: Lib.ByteSequence.lbytes (Spec.Frodo.Params.publicmatrixbytes_len a) ->
sp_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a) ->
epp_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar Spec.Frodo.Params.params_nbar
-> Spec.Matrix.matrix Spec.Frodo.Params.params_nbar Spec.Frodo.Params.params_nbar | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.bytes_mu",
"Spec.Frodo.Params.publicmatrixbytes_len",
"Spec.Matrix.matrix",
"Spec.Frodo.Params.params_nbar",
"Spec.Frodo.Params.params_n",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.eq2",
"Spec.Matrix.mget",
"Lib.IntTypes.add_mod",
"Spec.Matrix.add",
"Spec.Frodo.Encode.frodo_key_encode",
"Spec.Frodo.Params.params_logq",
"Spec.Frodo.Params.params_extracted_bits",
"Spec.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e"
] | [] | false | false | false | false | false | let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
| let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.frodo_mul_add_sa_plus_e | val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a) | val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a) | let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 33,
"start_col": 0,
"start_line": 30
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
seed_a: Lib.ByteSequence.lbytes Spec.Frodo.Params.bytes_seed_a ->
sp_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a) ->
ep_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a)
-> Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.bytes_seed_a",
"Spec.Matrix.matrix",
"Spec.Frodo.Params.params_nbar",
"Spec.Frodo.Params.params_n",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.eq2",
"Spec.Matrix.mget",
"Lib.IntTypes.add_mod",
"Spec.Matrix.mul",
"Spec.Matrix.add",
"Spec.Frodo.Params.frodo_gen_matrix"
] | [] | false | false | false | false | false | let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
| let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.sqr_mod | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid | let sqr_mod x = S.qmul x x | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 27,
"start_col": 0,
"start_line": 27
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.Exponentiation.sqr_st Spec.K256.PointOps.qelem Hacl.Spec.K256.Qinv.mk_to_nat_mod_comm_monoid | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul"
] | [] | false | false | false | true | false | let sqr_mod x =
| S.qmul x x | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_r16_r23 | val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem | val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem | let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 96,
"start_col": 0,
"start_line": 87
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r15: Spec.K256.PointOps.qelem ->
x8: Spec.K256.PointOps.qelem ->
x_11: Spec.K256.PointOps.qelem ->
x_1001: Spec.K256.PointOps.qelem ->
x_1011: Spec.K256.PointOps.qelem ->
x_1101: Spec.K256.PointOps.qelem
-> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
| let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23 | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_r0_r25 | val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem | val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem | let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 116,
"start_col": 0,
"start_line": 107
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x_1: Spec.K256.PointOps.qelem ->
x_11: Spec.K256.PointOps.qelem ->
x_101: Spec.K256.PointOps.qelem ->
x_111: Spec.K256.PointOps.qelem ->
x_1001: Spec.K256.PointOps.qelem ->
x_1011: Spec.K256.PointOps.qelem ->
x_1101: Spec.K256.PointOps.qelem
-> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Hacl.Spec.K256.Qinv.qinv_r24_r25",
"Hacl.Spec.K256.Qinv.qinv_r16_r23",
"Hacl.Spec.K256.Qinv.qinv_r9_r15",
"Hacl.Spec.K256.Qinv.qinv_r2_r8",
"Hacl.Spec.K256.Qinv.qinv_r0_r1",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
| let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6 | false |
Hacl.Impl.Curve25519.Fields.fst | Hacl.Impl.Curve25519.Fields.copy_felem | val copy_felem:
#s:field_spec
-> f:felem s
-> f':felem s
-> Stack unit
(requires fun h ->
live h f /\ live h f' /\ disjoint f f')
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_seq h1 f == as_seq h0 f') | val copy_felem:
#s:field_spec
-> f:felem s
-> f':felem s
-> Stack unit
(requires fun h ->
live h f /\ live h f' /\ disjoint f f')
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_seq h1 f == as_seq h0 f') | let copy_felem #s f f' =
match s with
| M51 -> F51.copy_felem f f'
| M64 -> F64.copy_felem f f' | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 111,
"start_col": 0,
"start_line": 108
} | module Hacl.Impl.Curve25519.Fields
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Impl.Curve25519.Fields.Core
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module P = Spec.Curve25519
module F51 = Hacl.Impl.Curve25519.Field51
module F64 = Hacl.Impl.Curve25519.Field64
#set-options "--z3rlimit 50 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --record_options"
inline_for_extraction noextract
val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0)
let create_felem s =
match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s
inline_for_extraction noextract
val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\
as_nat h1 f == BSeq.nat_from_intseq_le (as_seq h0 u64s))
let load_felem #s f b =
match s with
| M51 -> F51.load_felem f b
| M64 -> F64.load_felem f b
val store_felem:
#s:field_spec
-> b:lbuffer uint64 4ul
-> f:felem s
-> Stack unit
(requires fun h ->
live h f /\ live h b /\ disjoint f b /\ state_inv_t h f)
(ensures fun h0 _ h1 ->
modifies (loc b |+| loc f) h0 h1 /\
as_seq h1 b == BSeq.nat_to_intseq_le 4 (feval h0 f))
[@ Meta.Attribute.specialize ]
let store_felem #s b f =
match s with
| M51 -> F51.store_felem b f
| M64 -> F64.store_felem b f
inline_for_extraction noextract
val set_zero:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 0)
let set_zero #s f =
match s with
| M51 -> F51.set_zero f
| M64 -> F64.set_zero f
inline_for_extraction noextract
val set_one:
#s:field_spec
-> f:felem s
-> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 1)
let set_one #s f =
match s with
| M51 -> F51.set_one f
| M64 -> F64.set_one f
inline_for_extraction noextract
val copy_felem:
#s:field_spec
-> f:felem s
-> f':felem s
-> Stack unit
(requires fun h ->
live h f /\ live h f' /\ disjoint f f')
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Field64.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Fields.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field64",
"short_module": "F64"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Impl.Curve25519.Fields.Core.felem s -> f': Hacl.Impl.Curve25519.Fields.Core.felem s
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Field51.copy_felem",
"Prims.unit",
"Hacl.Impl.Curve25519.Field64.copy_felem"
] | [] | false | true | false | false | false | let copy_felem #s f f' =
| match s with
| M51 -> F51.copy_felem f f'
| M64 -> F64.copy_felem f f' | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.one_mod | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid | let one_mod _ = 1 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
} | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.Exponentiation.one_st Spec.K256.PointOps.qelem Hacl.Spec.K256.Qinv.mk_to_nat_mod_comm_monoid | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Spec.K256.PointOps.qelem"
] | [] | false | false | false | true | false | let one_mod _ =
| 1 | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv | val qinv: f:S.qelem -> S.qelem | val qinv: f:S.qelem -> S.qelem | let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 130,
"start_col": 0,
"start_line": 120
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Hacl.Spec.K256.Qinv.qinv_r0_r25",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv f =
| let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e | val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar | val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar | let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 60,
"start_col": 0,
"start_line": 57
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
b: Lib.ByteSequence.lbytes (Spec.Frodo.Params.publicmatrixbytes_len a) ->
sp_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a) ->
epp_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar Spec.Frodo.Params.params_nbar
-> Spec.Matrix.matrix Spec.Frodo.Params.params_nbar Spec.Frodo.Params.params_nbar | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.publicmatrixbytes_len",
"Spec.Matrix.matrix",
"Spec.Frodo.Params.params_nbar",
"Spec.Frodo.Params.params_n",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.eq2",
"Spec.Matrix.mget",
"Lib.IntTypes.add_mod",
"Spec.Matrix.mul",
"Spec.Matrix.add",
"Spec.Frodo.Pack.frodo_unpack",
"Spec.Frodo.Params.params_logq"
] | [] | false | false | false | false | false | let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
| let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_r9_r15 | val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem | val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem | let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 83,
"start_col": 0,
"start_line": 75
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r8: Spec.K256.PointOps.qelem ->
x_101: Spec.K256.PointOps.qelem ->
x_111: Spec.K256.PointOps.qelem ->
x_1001: Spec.K256.PointOps.qelem ->
x_1101: Spec.K256.PointOps.qelem
-> Spec.K256.PointOps.qelem | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times"
] | [] | false | false | false | true | false | let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
| let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15 | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.crypto_kem_enc_ | val crypto_kem_enc_:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | val crypto_kem_enc_:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | let crypto_kem_enc_ a gen_a mu pk =
let seed_se_k = crypto_kem_enc_seed_se_k a mu pk in
let seed_se = LSeq.sub seed_se_k 0 (crypto_bytes a) in
let k = LSeq.sub seed_se_k (crypto_bytes a) (crypto_bytes a) in
let ct = crypto_kem_enc_ct a gen_a mu pk seed_se in
let ss = crypto_kem_enc_ss a k ct in
ct, ss | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 166,
"start_col": 0,
"start_line": 159
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix
val crypto_kem_enc_ct_pack_c2:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> lbytes (ct2bytes_len a)
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix in
let ct2 = frodo_pack (params_logq a) v_matrix in
ct2
val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar
let get_sp_ep_epp_matrices a seed_se =
let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + 2 * params_nbar * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len) in
let epp_matrix = frodo_sample_matrix a params_nbar params_nbar (LSeq.sub r (2 * s_bytes_len) (2 * params_nbar * params_nbar)) in
sp_matrix, ep_matrix, epp_matrix
val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a)
let crypto_kem_enc_ct a gen_a mu pk seed_se =
expand_crypto_publickeybytes a;
let seed_a = LSeq.sub pk 0 bytes_seed_a in
let b = LSeq.sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix, ep_matrix, epp_matrix = get_sp_ep_epp_matrices a seed_se in
let c1 = crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix in
let c2 = crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix in
expand_crypto_ciphertextbytes a;
let ct = concat c1 c2 in
ct
val crypto_kem_enc_ss:
a:frodo_alg
-> k:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> lbytes (crypto_bytes a)
let crypto_kem_enc_ss a k ct =
let shake_input_ss = concat ct k in
let ss = frodo_shake a (crypto_ciphertextbytes a + crypto_bytes a) shake_input_ss (crypto_bytes a) in
ss
val crypto_kem_enc_seed_se_k:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (2 * crypto_bytes a)
let crypto_kem_enc_seed_se_k a mu pk =
let pkh = frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) in
let pkh_mu = concat pkh mu in
let seed_se_k = frodo_shake a (bytes_pkhash a + bytes_mu a) pkh_mu (2 * crypto_bytes a) in
seed_se_k
val crypto_kem_enc_:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (crypto_ciphertextbytes a) & lbytes (crypto_bytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
mu: Lib.ByteSequence.lbytes (Spec.Frodo.Params.bytes_mu a) ->
pk: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_publickeybytes a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_ciphertextbytes a) *
Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.bytes_mu",
"Spec.Frodo.Params.crypto_publickeybytes",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"Spec.Frodo.Params.crypto_bytes",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_ss",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Multiply",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"FStar.Mul.op_Star",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_seed_se_k",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let crypto_kem_enc_ a gen_a mu pk =
| let seed_se_k = crypto_kem_enc_seed_se_k a mu pk in
let seed_se = LSeq.sub seed_se_k 0 (crypto_bytes a) in
let k = LSeq.sub seed_se_k (crypto_bytes a) (crypto_bytes a) in
let ct = crypto_kem_enc_ct a gen_a mu pk seed_se in
let ss = crypto_kem_enc_ss a k ct in
ct, ss | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.get_sp_ep_epp_matrices | val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar | val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar | let get_sp_ep_epp_matrices a seed_se =
let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + 2 * params_nbar * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len) in
let epp_matrix = frodo_sample_matrix a params_nbar params_nbar (LSeq.sub r (2 * s_bytes_len) (2 * params_nbar * params_nbar)) in
sp_matrix, ep_matrix, epp_matrix | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 103,
"start_col": 0,
"start_line": 97
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix
val crypto_kem_enc_ct_pack_c2:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> lbytes (ct2bytes_len a)
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix in
let ct2 = frodo_pack (params_logq a) v_matrix in
ct2
val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
seed_se: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a)
-> (Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a) *
Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a)) *
Spec.Matrix.matrix Spec.Frodo.Params.params_nbar Spec.Frodo.Params.params_nbar | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.crypto_bytes",
"FStar.Pervasives.Native.Mktuple3",
"Spec.Matrix.matrix",
"Spec.Frodo.Params.params_nbar",
"Spec.Frodo.Params.params_n",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Spec.Frodo.Sample.frodo_sample_matrix",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Spec.Frodo.KEM.KeyGen.frodo_shake_r",
"Lib.IntTypes.u8",
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.Frodo.Params.secretmatrixbytes_len",
"FStar.Pervasives.Native.tuple3"
] | [] | false | false | false | false | false | let get_sp_ep_epp_matrices a seed_se =
| let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + (2 * params_nbar) * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix =
frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len)
in
let epp_matrix =
frodo_sample_matrix a
params_nbar
params_nbar
(LSeq.sub r (2 * s_bytes_len) ((2 * params_nbar) * params_nbar))
in
sp_matrix, ep_matrix, epp_matrix | false |
Platform.Error.fst | Platform.Error.correct | val correct (#a #r: Type) (x: r) : Tot (optResult a r) | val correct (#a #r: Type) (x: r) : Tot (optResult a r) | let correct (#a:Type) (#r:Type) (x:r) : Tot (optResult a r) = Correct x | {
"file_name": "ucontrib/Platform/fst/Platform.Error.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 32,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Error
type optResult 'a 'b =
| Error of 'a
| Correct of 'b
//allowing inverting optResult without having to globally increase the fuel just for this
val invertOptResult : a:Type -> b:Type -> Lemma
(requires True)
(ensures (forall (x:optResult a b). Error? x \/ Correct? x))
[SMTPat (optResult a b)]
let invertOptResult a b = allow_inversion (optResult a b)
assume val perror: string -> int -> string -> Tot string | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked"
],
"interface_file": false,
"source_file": "Platform.Error.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: r -> Platform.Error.optResult a r | Prims.Tot | [
"total"
] | [] | [
"Platform.Error.Correct",
"Platform.Error.optResult"
] | [] | false | false | false | true | false | let correct (#a #r: Type) (x: r) : Tot (optResult a r) =
| Correct x | false |
Platform.Error.fst | Platform.Error.unreachable | val unreachable (#a: Type) (s: string) : Div a (requires False) (ensures (fun _ -> False)) | val unreachable (#a: Type) (s: string) : Div a (requires False) (ensures (fun _ -> False)) | let rec unreachable (#a:Type) (s:string) : Div a
(requires False)
(ensures (fun _ -> False)) =
let _ = FStar.IO.debug_print_string ("Platform.Error.unreachable: " ^ s) in
unreachable s | {
"file_name": "ucontrib/Platform/fst/Platform.Error.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 49,
"start_col": 0,
"start_line": 45
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Error
type optResult 'a 'b =
| Error of 'a
| Correct of 'b
//allowing inverting optResult without having to globally increase the fuel just for this
val invertOptResult : a:Type -> b:Type -> Lemma
(requires True)
(ensures (forall (x:optResult a b). Error? x \/ Correct? x))
[SMTPat (optResult a b)]
let invertOptResult a b = allow_inversion (optResult a b)
assume val perror: string -> int -> string -> Tot string
//assume val correct: #a:Type -> #b:Type -> x:a -> Tot (y:(optResult b a){y = Correct(x)})
let correct (#a:Type) (#r:Type) (x:r) : Tot (optResult a r) = Correct x
(* Both unexpected and unreachable are aliases for failwith;
they indicate code that should never be executed at runtime.
This is verified by typing only for the unreachable function;
this matters e.g. when dynamic errors are security-critical *)
let rec unexpected (#a:Type) (s:string) : Div a
(requires True)
(ensures (fun _ -> True)) =
let _ = FStar.IO.debug_print_string ("Platform.Error.unexpected: " ^ s) in
unexpected s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked"
],
"interface_file": false,
"source_file": "Platform.Error.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> FStar.Pervasives.Div a | FStar.Pervasives.Div | [] | [] | [
"Prims.string",
"Platform.Error.unreachable",
"Prims.bool",
"FStar.IO.debug_print_string",
"Prims.op_Hat",
"Prims.l_False"
] | [
"recursion"
] | false | true | false | false | false | let rec unreachable (#a: Type) (s: string) : Div a (requires False) (ensures (fun _ -> False)) =
| let _ = FStar.IO.debug_print_string ("Platform.Error.unreachable: " ^ s) in
unreachable s | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c1 | val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a) | val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a) | let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1 | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 47,
"start_col": 0,
"start_line": 44
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
seed_a: Lib.ByteSequence.lbytes Spec.Frodo.Params.bytes_seed_a ->
sp_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a) ->
ep_matrix: Spec.Matrix.matrix Spec.Frodo.Params.params_nbar (Spec.Frodo.Params.params_n a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.ct1bytes_len a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.bytes_seed_a",
"Spec.Matrix.matrix",
"Spec.Frodo.Params.params_nbar",
"Spec.Frodo.Params.params_n",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Spec.Frodo.Params.params_logq",
"Prims.op_Division",
"Spec.Frodo.Pack.frodo_pack",
"Lib.IntTypes.U16",
"Spec.Frodo.KEM.Encaps.frodo_mul_add_sa_plus_e",
"Spec.Frodo.Params.ct1bytes_len"
] | [] | false | false | false | false | false | let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
| let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1 | false |
Hacl.Impl.Curve25519.Fields.fst | Hacl.Impl.Curve25519.Fields.create_felem | val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0) | val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0) | let create_felem s =
match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 34,
"start_col": 0,
"start_line": 31
} | module Hacl.Impl.Curve25519.Fields
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Impl.Curve25519.Fields.Core
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module P = Spec.Curve25519
module F51 = Hacl.Impl.Curve25519.Field51
module F64 = Hacl.Impl.Curve25519.Field64
#set-options "--z3rlimit 50 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --record_options"
inline_for_extraction noextract
val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Field64.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Fields.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field64",
"short_module": "F64"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.Curve25519.Fields.Core.field_spec
-> FStar.HyperStack.ST.StackInline (Hacl.Impl.Curve25519.Fields.Core.felem s) | FStar.HyperStack.ST.StackInline | [] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Field51.create_felem",
"Hacl.Impl.Curve25519.Field51.felem",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Field64.create_felem",
"Hacl.Impl.Curve25519.Field64.felem"
] | [] | false | true | false | false | false | let create_felem s =
| match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s | false |
Platform.Error.fst | Platform.Error.unexpected | val unexpected (#a: Type) (s: string) : Div a (requires True) (ensures (fun _ -> True)) | val unexpected (#a: Type) (s: string) : Div a (requires True) (ensures (fun _ -> True)) | let rec unexpected (#a:Type) (s:string) : Div a
(requires True)
(ensures (fun _ -> True)) =
let _ = FStar.IO.debug_print_string ("Platform.Error.unexpected: " ^ s) in
unexpected s | {
"file_name": "ucontrib/Platform/fst/Platform.Error.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 43,
"start_col": 0,
"start_line": 39
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Error
type optResult 'a 'b =
| Error of 'a
| Correct of 'b
//allowing inverting optResult without having to globally increase the fuel just for this
val invertOptResult : a:Type -> b:Type -> Lemma
(requires True)
(ensures (forall (x:optResult a b). Error? x \/ Correct? x))
[SMTPat (optResult a b)]
let invertOptResult a b = allow_inversion (optResult a b)
assume val perror: string -> int -> string -> Tot string
//assume val correct: #a:Type -> #b:Type -> x:a -> Tot (y:(optResult b a){y = Correct(x)})
let correct (#a:Type) (#r:Type) (x:r) : Tot (optResult a r) = Correct x
(* Both unexpected and unreachable are aliases for failwith;
they indicate code that should never be executed at runtime.
This is verified by typing only for the unreachable function;
this matters e.g. when dynamic errors are security-critical *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked"
],
"interface_file": false,
"source_file": "Platform.Error.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> FStar.Pervasives.Div a | FStar.Pervasives.Div | [] | [] | [
"Prims.string",
"Platform.Error.unexpected",
"Prims.bool",
"FStar.IO.debug_print_string",
"Prims.op_Hat",
"Prims.l_True"
] | [
"recursion"
] | false | true | false | false | false | let rec unexpected (#a: Type) (s: string) : Div a (requires True) (ensures (fun _ -> True)) =
| let _ = FStar.IO.debug_print_string ("Platform.Error.unexpected: " ^ s) in
unexpected s | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.crypto_kem_enc_seed_se_k | val crypto_kem_enc_seed_se_k:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (2 * crypto_bytes a) | val crypto_kem_enc_seed_se_k:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (2 * crypto_bytes a) | let crypto_kem_enc_seed_se_k a mu pk =
let pkh = frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) in
let pkh_mu = concat pkh mu in
let seed_se_k = frodo_shake a (bytes_pkhash a + bytes_mu a) pkh_mu (2 * crypto_bytes a) in
seed_se_k | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 149,
"start_col": 0,
"start_line": 145
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix
val crypto_kem_enc_ct_pack_c2:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> lbytes (ct2bytes_len a)
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix in
let ct2 = frodo_pack (params_logq a) v_matrix in
ct2
val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar
let get_sp_ep_epp_matrices a seed_se =
let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + 2 * params_nbar * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len) in
let epp_matrix = frodo_sample_matrix a params_nbar params_nbar (LSeq.sub r (2 * s_bytes_len) (2 * params_nbar * params_nbar)) in
sp_matrix, ep_matrix, epp_matrix
val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a)
let crypto_kem_enc_ct a gen_a mu pk seed_se =
expand_crypto_publickeybytes a;
let seed_a = LSeq.sub pk 0 bytes_seed_a in
let b = LSeq.sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix, ep_matrix, epp_matrix = get_sp_ep_epp_matrices a seed_se in
let c1 = crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix in
let c2 = crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix in
expand_crypto_ciphertextbytes a;
let ct = concat c1 c2 in
ct
val crypto_kem_enc_ss:
a:frodo_alg
-> k:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> lbytes (crypto_bytes a)
let crypto_kem_enc_ss a k ct =
let shake_input_ss = concat ct k in
let ss = frodo_shake a (crypto_ciphertextbytes a + crypto_bytes a) shake_input_ss (crypto_bytes a) in
ss
val crypto_kem_enc_seed_se_k:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> lbytes (2 * crypto_bytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
mu: Lib.ByteSequence.lbytes (Spec.Frodo.Params.bytes_mu a) ->
pk: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_publickeybytes a)
-> Lib.ByteSequence.lbytes (2 * Spec.Frodo.Params.crypto_bytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.bytes_mu",
"Spec.Frodo.Params.crypto_publickeybytes",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Spec.Frodo.Params.crypto_bytes",
"Spec.Frodo.Params.frodo_shake",
"Prims.op_Addition",
"Spec.Frodo.Params.bytes_pkhash",
"FStar.Mul.op_Star",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.uint_t"
] | [] | false | false | false | false | false | let crypto_kem_enc_seed_se_k a mu pk =
| let pkh = frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) in
let pkh_mu = concat pkh mu in
let seed_se_k = frodo_shake a (bytes_pkhash a + bytes_mu a) pkh_mu (2 * crypto_bytes a) in
seed_se_k | false |
Spec.Frodo.KEM.Encaps.fst | Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct | val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a) | val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a) | let crypto_kem_enc_ct a gen_a mu pk seed_se =
expand_crypto_publickeybytes a;
let seed_a = LSeq.sub pk 0 bytes_seed_a in
let b = LSeq.sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix, ep_matrix, epp_matrix = get_sp_ep_epp_matrices a seed_se in
let c1 = crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix in
let c2 = crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix in
expand_crypto_ciphertextbytes a;
let ct = concat c1 c2 in
ct | {
"file_name": "specs/frodo/Spec.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 124,
"start_col": 0,
"start_line": 114
} | module Spec.Frodo.KEM.Encaps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Matrix
open Spec.Frodo.Lemmas
open Spec.Frodo.Params
open Spec.Frodo.Encode
open Spec.Frodo.Pack
open Spec.Frodo.Sample
module LSeq = Lib.Sequence
module Matrix = Spec.Matrix
module KG = Spec.Frodo.KEM.KeyGen
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val frodo_mul_add_sa_plus_e:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> matrix params_nbar (params_n a)
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix =
let a_matrix = frodo_gen_matrix gen_a (params_n a) seed_a in
let b_matrix = Matrix.add (Matrix.mul sp_matrix a_matrix) ep_matrix in
b_matrix
val crypto_kem_enc_ct_pack_c1:
a:frodo_alg
-> gen_a:frodo_gen_a
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix params_nbar (params_n a)
-> ep_matrix:matrix params_nbar (params_n a)
-> lbytes (ct1bytes_len a)
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix =
let bp_matrix = frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix in
let ct1 = frodo_pack (params_logq a) bp_matrix in
ct1
val frodo_mul_add_sb_plus_e:
a:frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix =
let b_matrix = frodo_unpack #(params_n a) #params_nbar (params_logq a) b in
let v_matrix = Matrix.add (Matrix.mul sp_matrix b_matrix) epp_matrix in
v_matrix
val frodo_mul_add_sb_plus_e_plus_mu:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> matrix params_nbar params_nbar
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix in
let mu_encode = frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu in
let v_matrix = Matrix.add v_matrix mu_encode in
v_matrix
val crypto_kem_enc_ct_pack_c2:
a:frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix params_nbar (params_n a)
-> epp_matrix:matrix params_nbar params_nbar
-> lbytes (ct2bytes_len a)
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix =
let v_matrix = frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix in
let ct2 = frodo_pack (params_logq a) v_matrix in
ct2
val get_sp_ep_epp_matrices:
a:frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> matrix params_nbar (params_n a) & matrix params_nbar (params_n a) & matrix params_nbar params_nbar
let get_sp_ep_epp_matrices a seed_se =
let s_bytes_len = secretmatrixbytes_len a in
let r = KG.frodo_shake_r a (u8 0x96) seed_se (2 * s_bytes_len + 2 * params_nbar * params_nbar) in
let sp_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r 0 s_bytes_len) in
let ep_matrix = frodo_sample_matrix a params_nbar (params_n a) (LSeq.sub r s_bytes_len s_bytes_len) in
let epp_matrix = frodo_sample_matrix a params_nbar params_nbar (LSeq.sub r (2 * s_bytes_len) (2 * params_nbar * params_nbar)) in
sp_matrix, ep_matrix, epp_matrix
val crypto_kem_enc_ct:
a:frodo_alg
-> gen_a:frodo_gen_a
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> lbytes (crypto_ciphertextbytes a) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Sample.fst.checked",
"Spec.Frodo.Random.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.Pack.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "Matrix"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
mu: Lib.ByteSequence.lbytes (Spec.Frodo.Params.bytes_mu a) ->
pk: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_publickeybytes a) ->
seed_se: Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_bytes a)
-> Lib.ByteSequence.lbytes (Spec.Frodo.Params.crypto_ciphertextbytes a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Lib.ByteSequence.lbytes",
"Spec.Frodo.Params.bytes_mu",
"Spec.Frodo.Params.crypto_publickeybytes",
"Spec.Frodo.Params.crypto_bytes",
"Spec.Matrix.matrix",
"Spec.Frodo.Params.params_nbar",
"Spec.Frodo.Params.params_n",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Addition",
"Spec.Frodo.Params.ct1bytes_len",
"Spec.Frodo.Params.ct2bytes_len",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Lib.IntTypes.uint_t",
"Prims.unit",
"Spec.Frodo.Params.expand_crypto_ciphertextbytes",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c2",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c1",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"FStar.Pervasives.Native.tuple3",
"Lib.IntTypes.U16",
"Prims.op_Multiply",
"Spec.Frodo.KEM.Encaps.get_sp_ep_epp_matrices",
"Spec.Frodo.Params.publicmatrixbytes_len",
"Prims.l_and",
"FStar.Seq.Base.slice",
"Spec.Frodo.Params.bytes_seed_a",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Spec.Frodo.Params.expand_crypto_publickeybytes"
] | [] | false | false | false | false | false | let crypto_kem_enc_ct a gen_a mu pk seed_se =
| expand_crypto_publickeybytes a;
let seed_a = LSeq.sub pk 0 bytes_seed_a in
let b = LSeq.sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix, ep_matrix, epp_matrix = get_sp_ep_epp_matrices a seed_se in
let c1 = crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix in
let c2 = crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix in
expand_crypto_ciphertextbytes a;
let ct = concat c1 c2 in
ct | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qsquare_times_lemma | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q) | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q) | let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b) | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 45,
"start_col": 0,
"start_line": 41
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat -> | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.K256.PointOps.qelem -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.K256.Qinv.qsquare_times a b ==
Lib.NatMod.pow a (Prims.pow2 b) % Spec.K256.PointOps.q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"Lib.NatMod.lemma_pow_nat_mod_is_pow",
"Spec.K256.PointOps.q",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Lib.Exponentiation.Definition.pow",
"Lib.NatMod.nat_mod",
"Hacl.Spec.K256.Qinv.nat_mod_comm_monoid",
"Lib.Exponentiation.exp_pow2_lemma",
"Spec.Exponentiation.exp_pow2_lemma",
"Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops"
] | [] | true | false | true | false | false | let qsquare_times_lemma a b =
| SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b) | false |
Platform.Error.fst | Platform.Error.invertOptResult | val invertOptResult : a:Type -> b:Type -> Lemma
(requires True)
(ensures (forall (x:optResult a b). Error? x \/ Correct? x))
[SMTPat (optResult a b)] | val invertOptResult : a:Type -> b:Type -> Lemma
(requires True)
(ensures (forall (x:optResult a b). Error? x \/ Correct? x))
[SMTPat (optResult a b)] | let invertOptResult a b = allow_inversion (optResult a b) | {
"file_name": "ucontrib/Platform/fst/Platform.Error.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 27,
"start_col": 0,
"start_line": 27
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Platform.Error
type optResult 'a 'b =
| Error of 'a
| Correct of 'b
//allowing inverting optResult without having to globally increase the fuel just for this
val invertOptResult : a:Type -> b:Type -> Lemma
(requires True)
(ensures (forall (x:optResult a b). Error? x \/ Correct? x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IO.fst.checked"
],
"interface_file": false,
"source_file": "Platform.Error.fst"
} | [
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: Type
-> FStar.Pervasives.Lemma
(ensures forall (x: Platform.Error.optResult a b). Error? x \/ Correct? x)
[SMTPat (Platform.Error.optResult a b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Pervasives.allow_inversion",
"Platform.Error.optResult",
"Prims.unit"
] | [] | true | false | true | false | false | let invertOptResult a b =
| allow_inversion (optResult a b) | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.lemma_pow_mod_1 | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q) | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q) | let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q) | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 138,
"start_col": 0,
"start_line": 134
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.K256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures f == Lib.NatMod.pow f 1 % Spec.K256.PointOps.q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pow2",
"FStar.Math.Lemmas.small_mod",
"Lib.NatMod.lemma_pow1"
] | [] | true | false | true | false | false | let lemma_pow_mod_1 f =
| M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q) | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.qinv_is_qinv_lemma | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | let qinv_is_qinv_lemma f =
qinv_lemma f;
assert (qinv f == M.pow f (S.q - 2) % S.q);
M.lemma_pow_mod #S.q f (S.q - 2) | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 378,
"start_col": 0,
"start_line": 375
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q)
let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
(==) {
M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q }
M.pow (M.pow f a) b * M.pow f c % S.q;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
(==) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
}
// S.q - 2 = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f
val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.q - 2) % S.q)
let qinv_lemma f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.q);
let x_11 = S.qmul x_10 x_1 in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.q);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.q);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.q);
let x_1001 = S.qmul x_10 x_111 in
lemma_pow_mod_mul f 0x2 0x7;
assert (x_1001 == M.pow f 0x9 % S.q);
let x_1011 = S.qmul x_10 x_1001 in
lemma_pow_mod_mul f 0x2 0x9;
assert (x_1011 == M.pow f 0xb % S.q);
let x_1101 = S.qmul x_10 x_1011 in
lemma_pow_mod_mul f 0x2 0xb;
assert (x_1101 == M.pow f 0xd % S.q);
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
qsquare_times_lemma x_1101 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0xd 0x4 0xb;
assert (x6 == M.pow f 0x3f % S.q);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.q);
let x14 = S.qmul (qsquare_times x8 6) x6 in
qsquare_times_lemma x8 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xff 0x40 0x3f;
assert (x14 == M.pow f 0x3fff % S.q);
let x28 = S.qmul (qsquare_times x14 14) x14 in
qsquare_times_lemma x14 14;
assert_norm (pow2 14 = 0x4000);
lemma_pow_pow_mod_mul f 0x3fff 0x4000 0x3fff;
assert (x28 == M.pow f 0xfffffff % S.q);
let x56 = S.qmul (qsquare_times x28 28) x28 in
qsquare_times_lemma x28 28;
assert_norm (pow2 28 = 0x10000000);
lemma_pow_pow_mod_mul f 0xfffffff 0x10000000 0xfffffff;
assert (x56 == M.pow f 0xffffffffffffff % S.q);
let r0 = S.qmul (qsquare_times x56 56) x56 in
qsquare_times_lemma x56 56;
assert_norm (pow2 56 = 0x100000000000000);
lemma_pow_pow_mod_mul f 0xffffffffffffff 0x100000000000000 0xffffffffffffff;
assert (r0 == M.pow f 0xffffffffffffffffffffffffffff % S.q);
let r1 = S.qmul (qsquare_times r0 14) x14 in
qsquare_times_lemma r0 14;
lemma_pow_pow_mod_mul f 0xffffffffffffffffffffffffffff 0x4000 0x3fff;
assert (r1 == M.pow f 0x3fffffffffffffffffffffffffffffff % S.q);
let r2 = S.qmul (qsquare_times r1 3) x_101 in
qsquare_times_lemma r1 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffff 0x8 0x5;
assert (r2 == M.pow f 0x1fffffffffffffffffffffffffffffffd % S.q);
let r3 = S.qmul (qsquare_times r2 4) x_111 in
qsquare_times_lemma r2 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd 0x10 0x7;
assert (r3 == M.pow f 0x1fffffffffffffffffffffffffffffffd7 % S.q);
let r4 = S.qmul (qsquare_times r3 4) x_101 in
qsquare_times_lemma r3 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd7 0x10 0x5;
assert (r4 == M.pow f 0x1fffffffffffffffffffffffffffffffd75 % S.q);
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
qsquare_times_lemma r4 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd75 0x20 0xb;
assert (r5 == M.pow f 0x3fffffffffffffffffffffffffffffffaeab % S.q);
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
qsquare_times_lemma r5 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeab 0x10 0xb;
assert (r6 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb % S.q);
let r7 = S.qmul (qsquare_times r6 4) x_111 in
qsquare_times_lemma r6 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb 0x10 0x7;
assert (r7 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb7 % S.q);
let r8 = S.qmul (qsquare_times r7 5) x_111 in
qsquare_times_lemma r7 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb7 0x20 0x7;
assert (r8 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7 % S.q);
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
qsquare_times_lemma r8 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7 0x40 0xd;
assert (r9 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd % S.q);
let r10 = S.qmul (qsquare_times r9 4) x_101 in
qsquare_times_lemma r9 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd 0x10 0x5;
assert (r10 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5 % S.q);
let r11 = S.qmul (qsquare_times r10 3) x_111 in
qsquare_times_lemma r10 3;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5 0x8 0x7;
assert (r11 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af % S.q);
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
qsquare_times_lemma r11 5;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af 0x20 0x9;
assert (r12 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 % S.q);
let r13 = S.qmul (qsquare_times r12 6) x_101 in
qsquare_times_lemma r12 6;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 0x40 0x5;
assert (r13 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 % S.q);
let r14 = S.qmul (qsquare_times r13 10) x_111 in
qsquare_times_lemma r13 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 0x400 0x7;
assert (r14 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 % S.q);
let r15 = S.qmul (qsquare_times r14 4) x_111 in
qsquare_times_lemma r14 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 0x10 0x7;
assert (r15 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 % S.q);
let r16 = S.qmul (qsquare_times r15 9) x8 in
qsquare_times_lemma r15 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 0x200 0xff;
assert (r16 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff % S.q);
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
qsquare_times_lemma r16 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff 0x20 0x9;
assert (r17 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 % S.q);
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
qsquare_times_lemma r17 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 0x40 0xb;
assert (r18 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b % S.q);
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
qsquare_times_lemma r18 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b 0x10 0xd;
assert (r19 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd % S.q);
let r20 = S.qmul (qsquare_times r19 5) x_11 in
qsquare_times_lemma r19 5;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd 0x20 0x3;
assert (r20 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 % S.q);
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
qsquare_times_lemma r20 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 0x40 0xd;
assert (r21 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd % S.q);
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
qsquare_times_lemma r21 10;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd 0x400 0xd;
assert (r22 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d % S.q);
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
qsquare_times_lemma r22 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d 0x10 0x9;
assert (r23 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 % S.q);
let r24 = S.qmul (qsquare_times r23 6) x_1 in
qsquare_times_lemma r23 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 0x40 0x1;
assert (r24 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 % S.q);
let r25 = S.qmul (qsquare_times r24 8) x6 in
qsquare_times_lemma r24 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 0x100 0x3f;
assert (r25 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f % S.q) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.K256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.Qinv.qinv f == Spec.K256.PointOps.qinv f) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.qelem",
"Lib.NatMod.lemma_pow_mod",
"Spec.K256.PointOps.q",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.K256.Qinv.qinv",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Hacl.Spec.K256.Qinv.qinv_lemma"
] | [] | true | false | true | false | false | let qinv_is_qinv_lemma f =
| qinv_lemma f;
assert (qinv f == M.pow f (S.q - 2) % S.q);
M.lemma_pow_mod #S.q f (S.q - 2) | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.lemma_pow_mod_mul | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q) | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q) | let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
} | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 152,
"start_col": 0,
"start_line": 143
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.K256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Spec.K256.PointOps.qmul (Lib.NatMod.pow f a % Spec.K256.PointOps.q)
(Lib.NatMod.pow f b % Spec.K256.PointOps.q) ==
Lib.NatMod.pow f (a + b) % Spec.K256.PointOps.q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Spec.K256.PointOps.qmul",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Prims.squash",
"Lib.NatMod.lemma_pow_add"
] | [] | false | false | true | false | false | let lemma_pow_mod_mul f a b =
| calc ( == ) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
( == ) { (Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q) }
M.pow f a * M.pow f b % S.q;
( == ) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
} | false |
Hacl.Spec.K256.Qinv.fst | Hacl.Spec.K256.Qinv.lemma_pow_pow_mod_mul | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q) | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q) | let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
(==) {
M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q }
M.pow (M.pow f a) b * M.pow f c % S.q;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
(==) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
} | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 169,
"start_col": 0,
"start_line": 157
} | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat -> | {
"checked_file": "/",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.K256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Spec.K256.PointOps.qmul (Lib.NatMod.pow (Lib.NatMod.pow f a % Spec.K256.PointOps.q) b %
Spec.K256.PointOps.q)
(Lib.NatMod.pow f c % Spec.K256.PointOps.q) ==
Lib.NatMod.pow f (a * b + c) % Spec.K256.PointOps.q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Spec.K256.PointOps.qmul",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Lib.NatMod.lemma_pow_mod_base",
"Prims.squash",
"Lib.NatMod.lemma_pow_mul",
"Lib.NatMod.lemma_pow_add"
] | [] | false | false | true | false | false | let lemma_pow_pow_mod_mul f a b c =
| calc ( == ) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
( == ) { (M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q) }
M.pow (M.pow f a) b * M.pow f c % S.q;
( == ) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
( == ) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
} | false |
Hacl.Impl.Curve25519.Fields.fst | Hacl.Impl.Curve25519.Fields.load_felem | val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\
as_nat h1 f == BSeq.nat_from_intseq_le (as_seq h0 u64s)) | val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\
as_nat h1 f == BSeq.nat_from_intseq_le (as_seq h0 u64s)) | let load_felem #s f b =
match s with
| M51 -> F51.load_felem f b
| M64 -> F64.load_felem f b | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 51,
"start_col": 0,
"start_line": 48
} | module Hacl.Impl.Curve25519.Fields
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Impl.Curve25519.Fields.Core
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module P = Spec.Curve25519
module F51 = Hacl.Impl.Curve25519.Field51
module F64 = Hacl.Impl.Curve25519.Field64
#set-options "--z3rlimit 50 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --record_options"
inline_for_extraction noextract
val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0)
let create_felem s =
match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s
inline_for_extraction noextract
val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Field64.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Fields.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field64",
"short_module": "F64"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Impl.Curve25519.Fields.Core.felem s -> u64s: Lib.Buffer.lbuffer Lib.IntTypes.uint64 4ul
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Field51.load_felem",
"Prims.unit",
"Hacl.Impl.Curve25519.Field64.load_felem"
] | [] | false | true | false | false | false | let load_felem #s f b =
| match s with
| M51 -> F51.load_felem f b
| M64 -> F64.load_felem f b | false |
Fibonacci.fst | Fibonacci.fib | val fib (n: nat) : nat | val fib (n: nat) : nat | let rec fib (n:nat) : nat =
if n <= 1 then 1
else fib (n - 1) + fib (n - 2) | {
"file_name": "share/steel/examples/pulse/Fibonacci.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 32,
"end_line": 24,
"start_col": 0,
"start_line": 22
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Fibonacci
open Pulse.Lib.Pervasives
module U32 = FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection' --ext 'pulse:rvalues'" | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.BoundedIntegers.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Fibonacci.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.bool",
"Prims.op_Addition",
"Fibonacci.fib",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | false | false | true | false | let rec fib (n: nat) : nat =
| if n <= 1 then 1 else fib (n - 1) + fib (n - 2) | false |
Fibonacci.fst | Fibonacci.fib_mono | val fib_mono (n: nat) (m: nat{m <= n}) : Lemma (ensures fib m <= fib n) | val fib_mono (n: nat) (m: nat{m <= n}) : Lemma (ensures fib m <= fib n) | let rec fib_mono (n:nat) (m:nat { m <= n})
: Lemma
(ensures fib m <= fib n)
= if n = m then ()
else fib_mono (n - 1) m | {
"file_name": "share/steel/examples/pulse/Fibonacci.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 27,
"end_line": 30,
"start_col": 0,
"start_line": 26
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Fibonacci
open Pulse.Lib.Pervasives
module U32 = FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection' --ext 'pulse:rvalues'"
let rec fib (n:nat) : nat =
if n <= 1 then 1
else fib (n - 1) + fib (n - 2) | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.BoundedIntegers.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Fibonacci.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> m: Prims.nat{m <= n}
-> FStar.Pervasives.Lemma (ensures Fibonacci.fib m <= Fibonacci.fib n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.bool",
"Fibonacci.fib_mono",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Fibonacci.fib",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec fib_mono (n: nat) (m: nat{m <= n}) : Lemma (ensures fib m <= fib n) =
| if n = m then () else fib_mono (n - 1) m | false |
Hacl.Impl.Curve25519.Fields.fst | Hacl.Impl.Curve25519.Fields.store_felem | val store_felem:
#s:field_spec
-> b:lbuffer uint64 4ul
-> f:felem s
-> Stack unit
(requires fun h ->
live h f /\ live h b /\ disjoint f b /\ state_inv_t h f)
(ensures fun h0 _ h1 ->
modifies (loc b |+| loc f) h0 h1 /\
as_seq h1 b == BSeq.nat_to_intseq_le 4 (feval h0 f)) | val store_felem:
#s:field_spec
-> b:lbuffer uint64 4ul
-> f:felem s
-> Stack unit
(requires fun h ->
live h f /\ live h b /\ disjoint f b /\ state_inv_t h f)
(ensures fun h0 _ h1 ->
modifies (loc b |+| loc f) h0 h1 /\
as_seq h1 b == BSeq.nat_to_intseq_le 4 (feval h0 f)) | let store_felem #s b f =
match s with
| M51 -> F51.store_felem b f
| M64 -> F64.store_felem b f | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Fields.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 67,
"start_col": 0,
"start_line": 64
} | module Hacl.Impl.Curve25519.Fields
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Impl.Curve25519.Fields.Core
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module P = Spec.Curve25519
module F51 = Hacl.Impl.Curve25519.Field51
module F64 = Hacl.Impl.Curve25519.Field64
#set-options "--z3rlimit 50 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --record_options"
inline_for_extraction noextract
val create_felem:
s:field_spec
-> StackInline (felem s)
(requires fun h -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create (v (nlimb s)) (limb_zero s)) /\
as_nat h1 f == 0)
let create_felem s =
match s with
| M51 -> (F51.create_felem ()) <: felem s
| M64 -> (F64.create_felem ()) <: felem s
inline_for_extraction noextract
val load_felem:
#s:field_spec
-> f:felem s
-> u64s:lbuffer uint64 4ul
-> Stack unit
(requires fun h ->
live h f /\ live h u64s /\ disjoint f u64s /\
v (LSeq.index (as_seq h u64s) 3) < pow2 63)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\ state_inv_t h1 f /\
as_nat h1 f == BSeq.nat_from_intseq_le (as_seq h0 u64s))
let load_felem #s f b =
match s with
| M51 -> F51.load_felem f b
| M64 -> F64.load_felem f b
val store_felem:
#s:field_spec
-> b:lbuffer uint64 4ul
-> f:felem s
-> Stack unit
(requires fun h ->
live h f /\ live h b /\ disjoint f b /\ state_inv_t h f)
(ensures fun h0 _ h1 ->
modifies (loc b |+| loc f) h0 h1 /\
as_seq h1 b == BSeq.nat_to_intseq_le 4 (feval h0 f)) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Field64.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Fields.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field64",
"short_module": "F64"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Buffer.lbuffer Lib.IntTypes.uint64 4ul -> f: Hacl.Impl.Curve25519.Fields.Core.felem s
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Field51.store_felem",
"Prims.unit",
"Hacl.Impl.Curve25519.Field64.store_felem"
] | [] | false | true | false | false | false | let store_felem #s b f =
| match s with
| M51 -> F51.store_felem b f
| M64 -> F64.store_felem b f | false |
Hacl.Impl.SHA3.fst | Hacl.Impl.SHA3.absorb_last | val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem)
(as_seq h0 input) (as_seq h0 s)) | val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem)
(as_seq h0 input) (as_seq h0 s)) | let absorb_last delimitedSuffix rateInBytes rem input s =
push_frame();
let h0 = ST.get() in
let lastBlock_ = create 200ul (u8 0) in
let lastBlock = sub lastBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 lastBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
let open Lib.RawIntTypes in
update_sub lastBlock (size 0) rem input;
lastBlock.(rem) <- byte_to_uint8 delimitedSuffix;
loadState rateInBytes lastBlock s;
if not ((delimitedSuffix &. byte 0x80) =. byte 0) &&
(size_to_UInt32 rem = size_to_UInt32 (rateInBytes -. 1ul))
then state_permute s;
absorb_next s rateInBytes;
pop_frame() | {
"file_name": "code/sha3/Hacl.Impl.SHA3.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 419,
"start_col": 0,
"start_line": 404
} | module Hacl.Impl.SHA3
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open LowStar.BufferOps
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Spec.SHA3.Constants
module ST = FStar.HyperStack.ST
module B = LowStar.Buffer
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module Loop = Lib.LoopCombinators
module S = Spec.SHA3
module Equiv = Spec.SHA3.Equivalence
private let keccak_rotc :x:glbuffer rotc_t 24ul{witnessed x keccak_rotc /\ recallable x}
= createL_global rotc_list
private let keccak_piln :x:glbuffer piln_t 24ul{witnessed x keccak_piln /\ recallable x}
= createL_global piln_list
private let keccak_rndc :x:glbuffer pub_uint64 24ul{witnessed x keccak_rndc /\ recallable x}
= createL_global rndc_list
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
let state = lbuffer uint64 25ul
inline_for_extraction noextract
let index = n:size_t{v n < 5}
inline_for_extraction noextract
val get:
s:state
-> x:index
-> y:index
-> Stack uint64
(requires fun h -> live h s)
(ensures fun h0 r h1 ->
modifies loc_none h0 h1 /\
r == S.get (as_seq h0 s) (v x) (v y))
let get s x y = s.(x +! 5ul *! y)
inline_for_extraction noextract
val set:
s:state
-> x:index
-> y:index
-> v:uint64
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.set (as_seq h0 s) (size_v x) (size_v y) v)
let set s x y v = s.(x +! 5ul *! y) <- v
inline_for_extraction noextract
let rotl (a:uint64) (b:size_t{0 < uint_v b /\ uint_v b < 64}) =
rotate_left a b
inline_for_extraction noextract
val state_theta0:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h -> live h s /\ live h _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc _C) h0 h1 /\
as_seq h1 _C == S.state_theta0 (as_seq h0 s) (as_seq h0 _C))
let state_theta0 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_C (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 5ul _C spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 _C) (v x);
_C.(x) <-
get s x 0ul ^.
get s x 1ul ^.
get s x 2ul ^.
get s x 3ul ^.
get s x 4ul
)
inline_for_extraction noextract
val state_theta_inner_s:
_C:lbuffer uint64 5ul
-> x:index
-> s:state
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta_inner_s (as_seq h0 _C) (v x) (as_seq h0 s))
let state_theta_inner_s _C x s =
let _D = _C.((x +. 4ul) %. 5ul) ^. rotl _C.((x +. 1ul) %. 5ul) 1ul in
[@ inline_let]
let spec h0 = S.state_theta_inner_s_inner (v x) _D in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v y);
set s x y (get s x y ^. _D)
)
inline_for_extraction noextract
val state_theta1:
s:state
-> _C:lbuffer uint64 5ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 _C /\ disjoint _C s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta1 (as_seq h0 s) (as_seq h0 _C))
let state_theta1 s _C =
[@ inline_let]
let spec h0 = S.state_theta_inner_s (as_seq h0 _C) in
let h0 = ST.get () in
loop1 h0 5ul s spec
(fun x ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 s) (v x);
state_theta_inner_s _C x s
)
inline_for_extraction noextract
val state_theta:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_theta (as_seq h0 s))
let state_theta s =
push_frame ();
let h0 = ST.get() in
let _C = create 5ul (u64 0) in
state_theta0 s _C; state_theta1 s _C;
pop_frame()
#reset-options "--max_fuel 1 --max_ifuel 1 --z3rlimit 50"
private
val index_map: #a:Type -> #b:Type -> f:(a -> b) -> l:list a -> i:nat{i < List.Tot.length l} ->
Lemma (List.Tot.index (List.Tot.map f l) i == f (List.Tot.index l i))
let rec index_map #a #b f l i =
if i = 0 then ()
else
match l with
| [] -> ()
| _ :: l' -> index_map f l' (i - 1)
#reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
inline_for_extraction noextract
val state_pi_rho_inner:
i:size_t{v i < 24}
-> current:lbuffer uint64 1ul
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h current /\ disjoint current s)
(ensures fun h0 _ h1 ->
modifies (loc_union (loc s) (loc current)) h0 h1 /\
(let c', s' = S.state_pi_rho_inner (v i) (bget h0 current 0, as_seq h0 s) in
bget h1 current 0 == c' /\
as_seq h1 s == s'))
let state_pi_rho_inner i current s =
assert_norm (List.Tot.length piln_list == 24);
let h0 = ST.get () in
recall_contents keccak_rotc Spec.SHA3.Constants.keccak_rotc;
recall_contents keccak_piln Spec.SHA3.Constants.keccak_piln;
index_map v piln_list (v i);
let _Y = keccak_piln.(i) in
let r = keccak_rotc.(i) in
let temp = s.(_Y) in
s.(_Y) <- rotl current.(0ul) r;
current.(0ul) <- temp
inline_for_extraction noextract
val state_pi_rho:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_pi_rho (as_seq h0 s))
let state_pi_rho s =
push_frame();
let x = get s 1ul 0ul in
let h0 = ST.get() in
let current = create 1ul x in
let h1 = ST.get () in
assert (bget h1 current 0 == S.get (as_seq h0 s) 1 0);
[@ inline_let]
let refl h i : GTot (uint64 & S.state) = bget h current 0, as_seq h s in
[@ inline_let]
let footprint i = loc_union (loc current) (loc s) in
[@ inline_let]
let spec h0 = S.state_pi_rho_inner in
let h0 = ST.get () in
loop h0 24ul S.state_pi_rho_s refl footprint spec
(fun i ->
Loop.unfold_repeat_gen 24 S.state_pi_rho_s (spec h0) (refl h0 0) (v i);
state_pi_rho_inner i current s
);
pop_frame()
inline_for_extraction noextract
val state_chi_inner:
st:state
-> y:index
-> Stack unit
(requires fun h0 -> live h0 st)
(ensures fun h0 _ h1 ->
modifies (loc st) h0 h1 /\
as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
let state_chi_inner st y =
let h0 = ST.get() in
let v0 = get st 0ul y ^. ((lognot (get st 1ul y)) &. get st 2ul y) in
let v1 = get st 1ul y ^. ((lognot (get st 2ul y)) &. get st 3ul y) in
let v2 = get st 2ul y ^. ((lognot (get st 3ul y)) &. get st 4ul y) in
let v3 = get st 3ul y ^. ((lognot (get st 4ul y)) &. get st 0ul y) in
let v4 = get st 4ul y ^. ((lognot (get st 0ul y)) &. get st 1ul y) in
set st 0ul y v0;
set st 1ul y v1;
set st 2ul y v2;
set st 3ul y v3;
set st 4ul y v4;
let h1 = ST.get() in
assert (modifies (loc st) h0 h1);
assert (as_seq h1 st == Equiv.state_chi_inner (v y) (as_seq h0 st))
inline_for_extraction noextract
val state_chi:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_chi (as_seq h0 s))
let state_chi st =
let h0 = ST.get() in
[@ inline_let]
let spec h0 = Equiv.state_chi_inner in
let h0 = ST.get () in
loop1 h0 5ul st spec
(fun y ->
Loop.unfold_repeati 5 (spec h0) (as_seq h0 st) (v y);
state_chi_inner st y
);
let h1 = ST.get() in
assert(as_seq h1 st == Equiv.state_chi (as_seq h0 st));
Equiv.state_chi_equivalence (as_seq h0 st)
inline_for_extraction noextract
val state_iota:
s:state
-> round:size_t{v round < 24}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_iota (as_seq h0 s) (v round))
let state_iota s round =
recall_contents keccak_rndc Spec.SHA3.Constants.keccak_rndc;
let c = keccak_rndc.(round) in
set s 0ul 0ul (get s 0ul 0ul ^. secret c)
private val state_permute:
s:state
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.state_permute (as_seq h0 s))
let state_permute s =
[@ inline_let]
let spec h0 = S.state_permute1 in
let h0 = ST.get () in
loop1 h0 24ul s spec
(fun round ->
Loop.unfold_repeati 24 (spec h0) (as_seq h0 s) (v round);
state_theta s;
state_pi_rho s;
state_chi s;
state_iota s round)
private val loadState:
rateInBytes:size_t{v rateInBytes <= 200}
-> input:lbuffer uint8 rateInBytes
-> s:state
-> Stack unit
(requires fun h -> live h input /\ live h s /\ disjoint input s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.loadState (v rateInBytes) (as_seq h0 input) (as_seq h0 s))
let loadState rateInBytes input s =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
update_sub block 0ul rateInBytes input;
[@ inline_let]
let spec h0 = S.loadState_inner (as_seq h0 block) in
let h0 = ST.get () in
loop1 h0 25ul s spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 s) (v j);
let h0 = ST.get() in
let x = uint_from_bytes_le #U64 (sub block (j *! 8ul) 8ul) in
s.(j) <- s.(j) ^. x
);
pop_frame()
inline_for_extraction noextract
val storeState_inner:
s:state
-> j:size_t{v j < 25}
-> block:lbuffer uint8 200ul
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 block /\ disjoint s block)
(ensures fun h0 _ h1 ->
modifies (loc block) h0 h1 /\
as_seq h1 block == S.storeState_inner (as_seq h0 s) (v j) (as_seq h0 block))
let storeState_inner s j block =
let sj = s.(j) in
let h0 = ST.get () in
update_sub_f h0 block (j *! 8ul) 8ul
(fun h -> Lib.ByteSequence.uint_to_bytes_le sj)
(fun _ -> uint_to_bytes_le #U64 (sub block (j *! 8ul) 8ul) sj)
private val storeState:
rateInBytes:size_t{v rateInBytes <= 200}
-> s:state
-> res:lbuffer uint8 rateInBytes
-> Stack unit
(requires fun h0 -> live h0 s /\ live h0 res)
(ensures fun h0 _ h1 ->
modifies (loc res) h0 h1 /\
as_seq h1 res == S.storeState (v rateInBytes) (as_seq h0 s))
let storeState rateInBytes s res =
push_frame();
let h0 = ST.get() in
let block = create 200ul (u8 0) in
[@ inline_let]
let spec h0 = S.storeState_inner (as_seq h0 s) in
let h0 = ST.get () in
loop1 h0 25ul block spec
(fun j ->
Loop.unfold_repeati 25 (spec h0) (as_seq h0 block) (v j);
storeState_inner s j block
);
copy res (sub block 0ul rateInBytes);
pop_frame()
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val absorb_next:
s:state
-> rateInBytes:size_t{v rateInBytes > 0 /\ v rateInBytes <= 200}
-> Stack unit
(requires fun h -> live h s)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s == S.absorb_next (as_seq h0 s) (v rateInBytes))
let absorb_next s rateInBytes =
push_frame();
let h0 = ST.get() in
let nextBlock_ = create 200ul (u8 0) in
let nextBlock = sub nextBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert (as_seq h1 nextBlock `Seq.equal` Lib.Sequence.create (v rateInBytes) (u8 0));
nextBlock.(rateInBytes -! 1ul) <- u8 0x80;
loadState rateInBytes nextBlock s;
state_permute s;
pop_frame()
inline_for_extraction noextract
val absorb_last:
delimitedSuffix:byte_t
-> rateInBytes:size_t{0 < v rateInBytes /\ v rateInBytes <= 200}
-> rem:size_t{v rem < v rateInBytes}
-> input:lbuffer uint8 rem
-> s:state
-> Stack unit
(requires fun h -> live h s /\ live h input /\ disjoint s input)
(ensures fun h0 _ h1 ->
modifies (loc s) h0 h1 /\
as_seq h1 s ==
S.absorb_last delimitedSuffix (v rateInBytes) (v rem) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Equivalence.fst.checked",
"Spec.SHA3.Constants.fst.checked",
"Spec.SHA3.fst.checked",
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SHA3.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.SHA3.Equivalence",
"short_module": "Equiv"
},
{
"abbrev": true,
"full_module": "Spec.SHA3",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loop"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Spec.SHA3.Constants",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
delimitedSuffix: Lib.IntTypes.byte_t ->
rateInBytes:
Lib.IntTypes.size_t{0 < Lib.IntTypes.v rateInBytes /\ Lib.IntTypes.v rateInBytes <= 200} ->
rem: Lib.IntTypes.size_t{Lib.IntTypes.v rem < Lib.IntTypes.v rateInBytes} ->
input: Lib.Buffer.lbuffer Lib.IntTypes.uint8 rem ->
s: Hacl.Impl.SHA3.state
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.byte_t",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"Hacl.Impl.SHA3.state",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.SHA3.absorb_next",
"Prims.op_AmpAmp",
"Prims.op_Negation",
"Lib.IntTypes.op_Equals_Dot",
"Lib.IntTypes.U8",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.byte",
"Prims.op_Equality",
"FStar.UInt32.t",
"Prims.l_or",
"Prims.int",
"Lib.IntTypes.range",
"FStar.UInt.size",
"FStar.UInt32.n",
"Lib.IntTypes.uint_v",
"FStar.UInt32.v",
"Lib.IntTypes.op_Subtraction_Dot",
"FStar.UInt32.__uint_to_t",
"Lib.RawIntTypes.size_to_UInt32",
"Hacl.Impl.SHA3.state_permute",
"Prims.bool",
"Hacl.Impl.SHA3.loadState",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.byte_to_uint8",
"Lib.Buffer.update_sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.size",
"Prims._assert",
"FStar.Seq.Base.equal",
"Lib.Buffer.as_seq",
"Lib.Sequence.create",
"Lib.IntTypes.u8",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.Buffer.sub",
"FStar.UInt32.uint_to_t",
"Lib.Buffer.create",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let absorb_last delimitedSuffix rateInBytes rem input s =
| push_frame ();
let h0 = ST.get () in
let lastBlock_ = create 200ul (u8 0) in
let lastBlock = sub lastBlock_ 0ul rateInBytes in
let h1 = ST.get () in
assert ((as_seq h1 lastBlock) `Seq.equal` (Lib.Sequence.create (v rateInBytes) (u8 0)));
let open Lib.RawIntTypes in
update_sub lastBlock (size 0) rem input;
lastBlock.(rem) <- byte_to_uint8 delimitedSuffix;
loadState rateInBytes lastBlock s;
if
not ((delimitedSuffix &. byte 0x80) =. byte 0) &&
(size_to_UInt32 rem = size_to_UInt32 (rateInBytes -. 1ul))
then state_permute s;
absorb_next s rateInBytes;
pop_frame () | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.bezout_prop' | val bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop | val bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop | let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 24,
"end_line": 91,
"start_col": 0,
"start_line": 80
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
l: Prims.nat ->
d: Prims.pos ->
q_n: Prims.nat ->
q_l: Prims.nat ->
u_n: Prims.int ->
u_l: Prims.int
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.pos",
"Prims.int",
"Prims.l_and",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.prop"
] | [] | false | false | false | true | true | let bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop =
| n == d * q_n /\ l == d * q_l /\ d == n * u_n + l * u_l | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.int_semiring | val int_semiring : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed () | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 22,
"end_line": 68,
"start_col": 0,
"start_line": 65
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.trefl",
"FStar.Tactics.CanonCommSemiring.int_semiring"
] | [] | false | true | false | false | false | let int_semiring () =
| FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed () | false |
|
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.bezout_prop | val bezout_prop (n l: nat) (b: bezout_t) : Tot prop | val bezout_prop (n l: nat) (b: bezout_t) : Tot prop | let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 98,
"start_col": 0,
"start_line": 93
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> l: Prims.nat -> b: Steel.ST.GenArraySwap.Proof.bezout_t -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout_t",
"Steel.ST.GenArraySwap.Proof.bezout_prop'",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_l",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_l",
"Prims.prop"
] | [] | false | false | false | true | true | let bezout_prop (n l: nat) (b: bezout_t) : Tot prop =
| bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l | false |
FStar.Map.fst | FStar.Map.sel | val sel: #key:eqtype -> #value:Type -> t key value -> key -> Tot value | val sel: #key:eqtype -> #value:Type -> t key value -> key -> Tot value | let sel #key #value m k = m.mappings k | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 38,
"start_col": 0,
"start_line": 38
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Map.t key value -> k: key -> value | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.__proj__Mkt__item__mappings"
] | [] | false | false | false | false | false | let sel #key #value m k =
| m.mappings k | false |
FStar.Map.fst | FStar.Map.domain | val domain: #key:eqtype -> #value:Type -> t key value -> Tot (S.set key) | val domain: #key:eqtype -> #value:Type -> t key value -> Tot (S.set key) | let domain #key #value m = m.domain | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 54,
"start_col": 0,
"start_line": 54
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Map.t key value -> FStar.Set.set key | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.__proj__Mkt__item__domain",
"FStar.Set.set"
] | [] | false | false | false | false | false | let domain #key #value m =
| m.domain | false |
FStar.Map.fst | FStar.Map.const | val const: #key:eqtype -> #value:Type -> value -> Tot (t key value) | val const: #key:eqtype -> #value:Type -> value -> Tot (t key value) | let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
} | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 52,
"start_col": 0,
"start_line": 49
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: value -> FStar.Map.t key value | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Set.complement",
"FStar.Set.empty",
"FStar.Map.t"
] | [] | false | false | false | false | false | let const #key #value v =
| { mappings = F.on key (fun _ -> v); domain = complement empty } | false |
FStar.Map.fst | FStar.Map.contains | val contains: #key:eqtype -> #value:Type -> t key value -> key -> Tot bool | val contains: #key:eqtype -> #value:Type -> t key value -> key -> Tot bool | let contains #key #value m k = mem k m.domain | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 56,
"start_col": 0,
"start_line": 56
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Map.t key value -> k: key -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Set.mem",
"FStar.Map.__proj__Mkt__item__domain",
"Prims.bool"
] | [] | false | false | false | false | false | let contains #key #value m k =
| mem k m.domain | false |
FStar.Map.fst | FStar.Map.upd | val upd: #key:eqtype -> #value:Type -> t key value -> key -> value -> Tot (t key value) | val upd: #key:eqtype -> #value:Type -> t key value -> key -> value -> Tot (t key value) | let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
} | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 46,
"start_col": 0,
"start_line": 43
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on` | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Map.t key value -> k: key -> v: value -> FStar.Map.t key value | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"Prims.op_Equality",
"Prims.bool",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Set.union",
"FStar.Map.__proj__Mkt__item__domain",
"FStar.Set.singleton"
] | [] | false | false | false | false | false | let upd #key #value m k v =
| {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
} | false |
FStar.Map.fst | FStar.Map.concat | val concat: #key:eqtype -> #value:Type -> t key value -> t key value -> Tot (t key value) | val concat: #key:eqtype -> #value:Type -> t key value -> t key value -> Tot (t key value) | let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
} | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 62,
"start_col": 0,
"start_line": 59
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m1: FStar.Map.t key value -> m2: FStar.Map.t key value -> FStar.Map.t key value | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Set.mem",
"FStar.Map.__proj__Mkt__item__domain",
"FStar.Map.__proj__Mkt__item__mappings",
"Prims.bool",
"FStar.Set.union"
] | [] | false | false | false | false | false | let concat #key #value m1 m2 =
| {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
} | false |
FStar.Map.fst | FStar.Map.map_val | val map_val: #val1:Type -> #val2:Type -> f:(val1 -> val2) -> #key:eqtype -> t key val1 -> Tot (t key val2) | val map_val: #val1:Type -> #val2:Type -> f:(val1 -> val2) -> #key:eqtype -> t key val1 -> Tot (t key val2) | let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
} | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 67,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: val1 -> val2) -> m: FStar.Map.t key val1 -> FStar.Map.t key val2 | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Map.__proj__Mkt__item__domain"
] | [] | false | false | false | false | false | let map_val #_ #_ f #key m =
| { mappings = F.on key (fun x -> f (m.mappings x)); domain = m.domain } | false |
FStar.Map.fst | FStar.Map.map_literal | val map_literal (#k:eqtype) (#v:Type) (f: k -> Tot v)
: t k v | val map_literal (#k:eqtype) (#v:Type) (f: k -> Tot v)
: t k v | let map_literal #k #v f = {
mappings = F.on k f;
domain = complement empty;
} | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 77,
"start_col": 0,
"start_line": 74
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
}
let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
}
let restrict #key #value s m = {
mappings = m.mappings;
domain = intersect s m.domain
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: k -> v) -> FStar.Map.t k v | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Set.complement",
"FStar.Set.empty",
"FStar.Map.t"
] | [] | false | false | false | false | false | let map_literal #k #v f =
| { mappings = F.on k f; domain = complement empty } | false |
FStar.Map.fst | FStar.Map.restrict | val restrict: #key:eqtype -> #value:Type -> S.set key -> t key value -> Tot (t key value) | val restrict: #key:eqtype -> #value:Type -> S.set key -> t key value -> Tot (t key value) | let restrict #key #value s m = {
mappings = m.mappings;
domain = intersect s m.domain
} | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 72,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
}
let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Set.set key -> m: FStar.Map.t key value -> FStar.Map.t key value | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Set.set",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Set.intersect",
"FStar.Map.__proj__Mkt__item__domain"
] | [] | false | false | false | false | false | let restrict #key #value s m =
| { mappings = m.mappings; domain = intersect s m.domain } | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_iter_mod_d | val jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k) | val jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k) | let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 234,
"start_col": 0,
"start_line": 220
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n ->
k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k x %
Mkbezout_t?.d b ==
x % Mkbezout_t?.d b) (decreases k) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_d",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.op_Subtraction",
"Prims.unit",
"Steel.ST.GenArraySwap.Proof.jump_mod_d",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.op_Modulus",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k) =
| if k = 0
then ()
else
(jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)) | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.bezout_pos_le | val bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)] | val bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)] | let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 34,
"end_line": 264,
"start_col": 0,
"start_line": 257
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> l: Prims.nat -> b: Steel.ST.GenArraySwap.Proof.bezout n l
-> FStar.Pervasives.Lemma (ensures Mkbezout_t?.d b <= n /\ Mkbezout_t?.q_n b > 0)
[SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l b)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.lemma_pos_mul_pos_args",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.Nil"
] | [] | true | false | true | false | false | let bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)] =
| lemma_pos_mul_pos_args b.q_n b.d | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.iter_fun | val iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n) | val iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n) | let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 187,
"start_col": 0,
"start_line": 178
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: t -> Prims.GTot t) -> n: Prims.nat -> x: t -> Prims.GTot t | Prims.GTot | [
"sometrivial",
""
] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | false | false | false | false | let rec iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n) =
| if n = 0 then x else iter_fun f (n - 1) (f x) | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_coverage_strong | val jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d)))))) | val jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d)))))) | let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k' | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 66,
"end_line": 349,
"start_col": 0,
"start_line": 337
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> Prims.Ghost Prims.nat | Prims.Ghost | [] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.minimal_exists",
"Prims.op_Equality",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.op_Modulus",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.jump_coverage",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_not"
] | [] | false | false | false | false | false | let jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d)))))) =
| let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k' | false |
FStar.Map.fst | FStar.Map.equal | val equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : prop | val equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : prop | let equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : Type0 =
F.feq m1.mappings m2.mappings /\
S.equal m1.domain m2.domain | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 98,
"start_col": 0,
"start_line": 96
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
}
let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
}
let restrict #key #value s m = {
mappings = m.mappings;
domain = intersect s m.domain
}
let map_literal #k #v f = {
mappings = F.on k f;
domain = complement empty;
}
let lemma_SelUpd1 #key #value m k v = ()
let lemma_SelUpd2 #key #value m k1 k2 v = ()
let lemma_SelConst #key #value v k = ()
let lemma_SelRestrict #key #value m ks k = ()
let lemma_SelConcat1 #key #value m1 m2 k = ()
let lemma_SelConcat2 #key #value m1 m2 k = ()
let lemma_SelMapVal #val1 #val2 f #key m k = ()
let lemma_InDomUpd1 #key #value m k1 k2 v = ()
let lemma_InDomUpd2 #key #value m k1 k2 v = ()
let lemma_InDomConstMap #key #value v k = ()
let lemma_InDomConcat #key #value m1 m2 k = ()
let lemma_InMapVal #val1 #val2 f #key m k = ()
let lemma_InDomRestrict #key #value m ks k = ()
let lemma_ContainsDom #key #value m k = ()
let lemma_UpdDomain #key #value m k v = ()
let lemma_map_literal #key #value f = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m1: FStar.Map.t key value -> m2: FStar.Map.t key value -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"FStar.Map.t",
"Prims.l_and",
"FStar.FunctionalExtensionality.feq",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Set.equal",
"FStar.Map.__proj__Mkt__item__domain",
"Prims.prop"
] | [] | false | false | false | false | true | let equal (#key: eqtype) (#value: Type) (m1 m2: t key value) : Type0 =
| F.feq m1.mappings m2.mappings /\ S.equal m1.domain m2.domain | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.bezout_q_eq | val bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n] | val bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n] | let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 176,
"start_col": 0,
"start_line": 169
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> l: Prims.nat -> bz: Steel.ST.GenArraySwap.Proof.bezout n l
-> FStar.Pervasives.Lemma (ensures Mkbezout_t?.q_n bz == n / Mkbezout_t?.d bz)
[SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l bz); SMTPat (Mkbezout_t?.q_n bz)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"FStar.Math.Lemmas.cancel_mul_div",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.Nil"
] | [] | true | false | true | false | false | let bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n] =
| cancel_mul_div bz.q_n bz.d | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.minimal_exists' | val minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i)) | val minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i)) | let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 34,
"end_line": 318,
"start_col": 0,
"start_line": 301
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Prims.GTot Prims.bool) -> n: Prims.nat -> i: Prims.nat -> Prims.Ghost Prims.nat | Prims.Ghost | [
""
] | [] | [
"Prims.nat",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.minimal_exists'",
"Prims.op_Addition",
"Prims.l_and",
"Prims.eq2",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_LessThan"
] | [
"recursion"
] | false | false | false | false | false | let rec minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i)) =
| if p i then i else minimal_exists' p n (i + 1) | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.array_swap_outer_invariant | val array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop | val array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop | let array_swap_outer_invariant // hoisting necessary because "Let binding is effectful"
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat)
: Tot prop
= 0 < l /\
l < n /\
i <= bz.d /\
n == Seq.length s0 /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) . // this is always true, but I need it here for the pattern
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')
) /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx)
)) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 655,
"start_col": 0,
"start_line": 639
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l)
let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
= Classical.forall_intro (jump_if n l ());
let p
(idx: nat_up_to n)
: Tot prop
= Seq.index s idx == Seq.index s0 (jump n l idx)
in
jump_iter_elim n p l bz | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s0: FStar.Seq.Base.seq t ->
n: Prims.nat ->
l: Prims.nat ->
bz: Steel.ST.GenArraySwap.Proof.bezout n l ->
s: FStar.Seq.Base.seq t ->
i: Prims.nat
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.eq2",
"FStar.Seq.Base.length",
"Prims.l_Forall",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"FStar.Seq.Base.index",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.bool",
"Prims.prop"
] | [] | false | false | false | false | true | let array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop =
| 0 < l /\ l < n /\ i <= bz.d /\ n == Seq.length s0 /\ n == Seq.length s /\
(forall (i': nat_up_to bz.d).
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')) /\
(forall (i': nat_up_to bz.d).
(forall (j: nat_up_to bz.q_n).
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx))) | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.array_swap_post | val array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop | val array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop | let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 66,
"end_line": 605,
"start_col": 0,
"start_line": 594
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s0: FStar.Seq.Base.seq t -> n: Prims.nat -> l: Prims.nat -> s: FStar.Seq.Base.seq t -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.length",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"FStar.Seq.Base.slice",
"Prims.prop"
] | [] | false | false | false | true | true | let array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop =
| n == Seq.length s0 /\ 0 <= l /\ l <= n /\
s `Seq.equal` ((Seq.slice s0 l n) `Seq.append` (Seq.slice s0 0 l)) | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.iter_succ_l | val iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))] | val iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))] | let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 22,
"end_line": 576,
"start_col": 0,
"start_line": 568
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: t -> Prims.GTot t) -> n: Prims.nat -> x: t
-> FStar.Pervasives.Lemma
(ensures
f (Steel.ST.GenArraySwap.Proof.iter_fun f n x) ==
Steel.ST.GenArraySwap.Proof.iter_fun f (n + 1) x)
[SMTPat (f (Steel.ST.GenArraySwap.Proof.iter_fun f n x))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.iter_fun_add",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))] =
| iter_fun_add f 1 n x | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_iter_mod_q_inj_weak | val jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n)) | val jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n)) | let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 29,
"end_line": 475,
"start_col": 0,
"start_line": 456
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.pos ->
l: Prims.pos ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n ->
k1: Prims.nat ->
k2: Prims.nat
-> FStar.Pervasives.Lemma
(requires
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k1 x ==
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k2 x)
(ensures Mkbezout_t?.q_n b > 0 /\ k1 % Mkbezout_t?.q_n b == k2 % Mkbezout_t?.q_n b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.mod_eq_intro",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.int",
"Steel.ST.GenArraySwap.Proof.gauss",
"Prims.op_Addition",
"Prims.op_Minus",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Steel.ST.GenArraySwap.Proof.mod_eq_elim",
"Steel.ST.GenArraySwap.Proof.jump_iter",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n)) =
| jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
FStar.Tactics.Effect.assert_by_tactic ((k1 + - k2) * l == (k1 * l + - (k2 * l)))
(fun _ ->
();
(int_semiring ()));
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.minimal_exists | val minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false))) | val minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false))) | let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0 | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 333,
"start_col": 0,
"start_line": 322
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Prims.GTot Prims.bool) -> n: Prims.nat -> Prims.Ghost Prims.nat | Prims.Ghost | [] | [] | [
"Prims.nat",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.minimal_exists'",
"Prims.eq2",
"Prims.l_and",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | false | false | false | false | false | let minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false))) =
| minimal_exists' p n 0 | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.array_swap_inner_invariant | val array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop | val array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop | let array_swap_inner_invariant
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat) (j: nat) (idx: nat)
: Tot prop
= 0 < l /\
l < n /\
n == Seq.length s0 /\
i < bz.d /\
j < bz.q_n /\
idx == iter_fun #(nat_up_to (n)) (jump (n) (l)) (j) (i) /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) .
(forall (j': nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j' i' in
Seq.index s idx == Seq.index s0 (if i' < i || (i' = i && j' < j) then jump (n) (l) idx else idx)
)) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 672,
"start_col": 0,
"start_line": 657
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l)
let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
= Classical.forall_intro (jump_if n l ());
let p
(idx: nat_up_to n)
: Tot prop
= Seq.index s idx == Seq.index s0 (jump n l idx)
in
jump_iter_elim n p l bz
let array_swap_outer_invariant // hoisting necessary because "Let binding is effectful"
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat)
: Tot prop
= 0 < l /\
l < n /\
i <= bz.d /\
n == Seq.length s0 /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) . // this is always true, but I need it here for the pattern
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')
) /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx)
)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s0: FStar.Seq.Base.seq t ->
n: Prims.nat ->
l: Prims.nat ->
bz: Steel.ST.GenArraySwap.Proof.bezout n l ->
s: FStar.Seq.Base.seq t ->
i: Prims.nat ->
j: Prims.nat ->
idx: Prims.nat
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.length",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Prims.op_BarBar",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.bool",
"Prims.prop"
] | [] | false | false | false | false | true | let array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop =
| 0 < l /\ l < n /\ n == Seq.length s0 /\ i < bz.d /\ j < bz.q_n /\
idx == iter_fun #(nat_up_to (n)) (jump (n) (l)) (j) (i) /\ n == Seq.length s /\
(forall (i': nat_up_to bz.d).
(forall (j': nat_up_to bz.q_n).
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j' i' in
Seq.index s idx ==
Seq.index s0 (if i' < i || (i' = i && j' < j) then jump (n) (l) idx else idx))) | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump | val jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n) | val jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n) | let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 196,
"start_col": 0,
"start_line": 191
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n }) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> l: Prims.nat -> x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> Prims.GTot (Steel.ST.GenArraySwap.Proof.nat_up_to n) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.op_Modulus",
"Prims.op_Addition"
] | [] | false | false | false | false | false | let jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n) =
| (x + l) % n | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_coverage_strong_bound | val jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)] | val jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)] | let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 35,
"end_line": 384,
"start_col": 0,
"start_line": 373
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures
Mkbezout_t?.q_n b > 0 /\
Steel.ST.GenArraySwap.Proof.jump_coverage_strong n l b x < Mkbezout_t?.q_n b)
[SMTPat (Steel.ST.GenArraySwap.Proof.jump_coverage_strong n l b x)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_q",
"Prims.op_Modulus",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.jump_coverage_strong",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.op_LessThan",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)] =
| let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k | false |
Functor.fst | Functor.functor_list | [@@ FStar.Tactics.Typeclasses.tcinstance]
val functor_list:functor list | [@@ FStar.Tactics.Typeclasses.tcinstance]
val functor_list:functor list | instance functor_list : functor list = { fmap = List.Tot.map } | {
"file_name": "examples/typeclasses/Functor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 25,
"start_col": 0,
"start_line": 25
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Functor
open FStar.Tactics.Typeclasses
class functor f = {
fmap : (#a:Type) -> (#b:Type) -> (a -> b) -> f a -> f b ;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Functor.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Functor.functor Prims.list | Prims.Tot | [
"total"
] | [] | [
"Functor.Mkfunctor",
"Prims.list",
"FStar.List.Tot.Base.map"
] | [] | false | false | false | true | false | [@@ FStar.Tactics.Typeclasses.tcinstance]
let functor_list:functor list =
| { fmap = List.Tot.map } | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_iter | val jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k) | val jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k) | let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 255,
"start_col": 0,
"start_line": 238
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> l: Prims.nat -> x: Steel.ST.GenArraySwap.Proof.nat_up_to n -> k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k x ==
(x + k * l) % n) (decreases k) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.op_Equality",
"Prims.int",
"FStar.Math.Lemmas.small_mod",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Prims.bool",
"FStar.Math.Lemmas.lemma_mod_add_distr",
"Steel.ST.GenArraySwap.Proof.jump_iter",
"Prims.op_Modulus",
"Prims.op_Subtraction",
"Prims.l_True",
"Prims.squash",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k) =
| if k = 0
then
(FStar.Tactics.Effect.assert_by_tactic (eq2 #int (x + 0 * l) x)
(fun _ ->
();
(int_semiring ()));
small_mod x n)
else
let k' = k - 1 in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l))
(fun _ ->
();
(int_semiring ()));
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_if | val jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l)) | val jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l)) | let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 33,
"end_line": 542,
"start_col": 0,
"start_line": 532
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.pos ->
l: Prims.nat ->
sq: Prims.squash (l < n) ->
idx: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.jump n l idx ==
(match idx + l >= n with
| true -> idx - (n - l)
| _ -> idx + l)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.squash",
"Prims.b2t",
"Prims.op_LessThan",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.op_Addition",
"Prims.op_Minus",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.l_True",
"Prims.eq2",
"Prims.int",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l)) =
| let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (- 1) n | false |
Functor.fst | Functor.functor_id | [@@ FStar.Tactics.Typeclasses.tcinstance]
val functor_id:functor id | [@@ FStar.Tactics.Typeclasses.tcinstance]
val functor_id:functor id | instance functor_id : functor id = { fmap = fun #_ #_ f a -> f a } | {
"file_name": "examples/typeclasses/Functor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 26,
"start_col": 0,
"start_line": 26
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Functor
open FStar.Tactics.Typeclasses
class functor f = {
fmap : (#a:Type) -> (#b:Type) -> (a -> b) -> f a -> f b ;
}
(* Two concrete instances *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Functor.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Functor.functor (fun x -> x <: Type) | Prims.Tot | [
"total"
] | [] | [
"Functor.Mkfunctor"
] | [] | false | false | false | false | false | [@@ FStar.Tactics.Typeclasses.tcinstance]
let functor_id:functor id =
| { fmap = fun #_ #_ f a -> f a } | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.jump_iter_q | val jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x)) | val jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x)) | let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 554,
"start_col": 0,
"start_line": 544
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l)
(Mkbezout_t?.q_n b)
x ==
x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_q",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.unit",
"FStar.Math.Lemmas.cancel_mul_mod",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x)) =
| cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n | false |
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.mod_eq_intro | val mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n)) | val mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n)) | let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 412,
"start_col": 0,
"start_line": 405
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> x1: Prims.int -> x2: Prims.int -> k: Prims.int
-> FStar.Pervasives.Lemma (requires x1 - x2 == k * n) (ensures x1 % n == x2 % n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.int",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.unit",
"Prims.eq2",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.squash",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n)) =
| lemma_mod_plus x2 k n | false |
Functor.fst | Functor.comp | [@@ FStar.Tactics.Typeclasses.tcinstance]
val comp: #ff: _ -> #gg: _ -> functor ff -> functor gg -> functor (compose ff gg) | [@@ FStar.Tactics.Typeclasses.tcinstance]
val comp: #ff: _ -> #gg: _ -> functor ff -> functor gg -> functor (compose ff gg) | instance comp #ff #gg (_ : functor ff) (_ : functor gg) : functor (compose ff gg) =
{ fmap = (fun #a #b f x -> fmap #ff (fmap #gg f) x) } | {
"file_name": "examples/typeclasses/Functor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 31,
"start_col": 0,
"start_line": 30
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Functor
open FStar.Tactics.Typeclasses
class functor f = {
fmap : (#a:Type) -> (#b:Type) -> (a -> b) -> f a -> f b ;
}
(* Two concrete instances *)
instance functor_list : functor list = { fmap = List.Tot.map }
instance functor_id : functor id = { fmap = fun #_ #_ f a -> f a }
let compose t1 t2 = fun x -> t1 (t2 x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Functor.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Functor.functor ff -> _: Functor.functor gg -> Functor.functor (Functor.compose ff gg) | Prims.Tot | [
"total"
] | [] | [
"Functor.functor",
"Functor.Mkfunctor",
"Functor.fmap",
"Functor.compose"
] | [] | false | false | false | false | false | [@@ FStar.Tactics.Typeclasses.tcinstance]
let comp #ff #gg (_: functor ff) (_: functor gg) : functor (compose ff gg) =
| { fmap = (fun #a #b f x -> fmap #ff (fmap #gg f) x) } | false |
Functor.fst | Functor.compose | val compose : t1: (_: _ -> _) -> t2: (_: _ -> _) -> x: _ -> _ | let compose t1 t2 = fun x -> t1 (t2 x) | {
"file_name": "examples/typeclasses/Functor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 28,
"start_col": 0,
"start_line": 28
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Functor
open FStar.Tactics.Typeclasses
class functor f = {
fmap : (#a:Type) -> (#b:Type) -> (a -> b) -> f a -> f b ;
}
(* Two concrete instances *)
instance functor_list : functor list = { fmap = List.Tot.map }
instance functor_id : functor id = { fmap = fun #_ #_ f a -> f a } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Functor.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: (_: _ -> _) -> t2: (_: _ -> _) -> x: _ -> _ | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let compose t1 t2 =
| fun x -> t1 (t2 x) | false |
|
Functor.fst | Functor.t2 | val t2 : Functor.compose Prims.list Prims.list Prims.int | let t2 = fmap #(compose list list) (fun x -> x + 1) [[1] ; [2 ; 3]] | {
"file_name": "examples/typeclasses/Functor.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 67,
"end_line": 35,
"start_col": 0,
"start_line": 35
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Functor
open FStar.Tactics.Typeclasses
class functor f = {
fmap : (#a:Type) -> (#b:Type) -> (a -> b) -> f a -> f b ;
}
(* Two concrete instances *)
instance functor_list : functor list = { fmap = List.Tot.map }
instance functor_id : functor id = { fmap = fun #_ #_ f a -> f a }
let compose t1 t2 = fun x -> t1 (t2 x)
instance comp #ff #gg (_ : functor ff) (_ : functor gg) : functor (compose ff gg) =
{ fmap = (fun #a #b f x -> fmap #ff (fmap #gg f) x) }
let t1 = fmap #list (fun x -> x + 1) [1 ; 2 ; 3] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Functor.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Functor.compose Prims.list Prims.list Prims.int | Prims.Tot | [
"total"
] | [] | [
"Functor.fmap",
"Functor.compose",
"Prims.list",
"Functor.comp",
"Functor.functor_list",
"Prims.int",
"Prims.op_Addition",
"Prims.Cons",
"Prims.Nil"
] | [] | false | false | false | true | false | let t2 =
| fmap #(compose list list) (fun x -> x + 1) [[1]; [2; 3]] | false |
|
Steel.ST.GenArraySwap.Proof.fst | Steel.ST.GenArraySwap.Proof.iter_fun_add | val iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2) | val iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2) | let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 39,
"end_line": 566,
"start_col": 0,
"start_line": 556
} | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: t -> Prims.GTot t) -> n1: Prims.nat -> n2: Prims.nat -> x: t
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun f n1 (Steel.ST.GenArraySwap.Proof.iter_fun f n2 x) ==
Steel.ST.GenArraySwap.Proof.iter_fun f (n1 + n2) x) (decreases n2) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.iter_fun_add",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2) =
| if n2 = 0 then () else iter_fun_add f n1 (n2 - 1) (f x) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.