file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID5.fst | ID5.weaken | val weaken (#a #w: _) (p: Type0) (f: repr a w)
: Pure (repr a (weaken_wp w p)) (requires p) (ensures (fun _ -> True)) | val weaken (#a #w: _) (p: Type0) (f: repr a w)
: Pure (repr a (weaken_wp w p)) (requires p) (ensures (fun _ -> True)) | let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post () | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 88,
"start_col": 0,
"start_line": 85
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> f: ID5.repr a w -> Prims.Pure (ID5.repr a (ID5.weaken_wp w p)) | Prims.Pure | [] | [] | [
"ID5.wp",
"ID5.repr",
"FStar.Ghost.erased",
"Prims.squash",
"ID5.weaken_wp",
"FStar.Ghost.reveal",
"Prims.l_True"
] | [] | false | false | false | false | false | let weaken #a #w (p: Type0) (f: repr a w)
: Pure (repr a (weaken_wp w p)) (requires p) (ensures (fun _ -> True)) =
| fun post _ -> f post () | false |
ID5.fst | ID5.i_tot | val i_tot (#a: _) (f: (unit -> I a)) : Tot a | val i_tot (#a: _) (f: (unit -> I a)) : Tot a | let i_tot #a (f : unit -> I a) : Tot a =
reify (f ()) (fun _ -> True) () | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 222,
"start_col": 0,
"start_line": 221
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or
// subtyping fails to kick in? "expected int, got nat".
let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y
//else fib (i-1) + fib (i-2)
let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
();
iassume False;
();
iassert False;
()
let rec idiv (a b : nat) : Id int (requires (a >= 0 /\ b > 0))
(ensures (fun r -> r >= 0))
(decreases a)
=
if a < b
then 0
else 1 + idiv (a-b) b
let rec ack (m n : nat) : I nat =
match m, n with
| 0, n -> n+1
| m, 0 -> ack (m-1) 1
| m, n -> ack (m-1) (ack m (n-1))
let add1 (x:int) : Id int (requires (x > 0)) (ensures (fun r -> r == x+1)) = x + 1
let tot_i #a (f : unit -> Tot a) : I a =
f () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> ID5.I a) -> a | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Ghost.hide",
"Prims.l_True"
] | [] | false | false | false | false | false | let i_tot #a (f: (unit -> I a)) : Tot a =
| reify (f ()) (fun _ -> True) () | false |
ID5.fst | ID5.strengthen_wp | val strengthen_wp (#a: Type) (w: wp a) (p: Type0) : wp a | val strengthen_wp (#a: Type) (w: wp a) (p: Type0) : wp a | let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 75,
"start_col": 0,
"start_line": 73
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | w: ID5.wp a -> p: Type0 -> ID5.wp a | Prims.Tot | [
"total"
] | [] | [
"ID5.wp",
"FStar.Monotonic.Pure.as_pure_wp",
"Prims.pure_post",
"Prims.l_and",
"Prims.pure_pre",
"Prims.unit",
"FStar.Monotonic.Pure.elim_pure_wp_monotonicity_forall"
] | [] | false | false | false | true | false | let strengthen_wp (#a: Type) (w: wp a) (p: Type0) : wp a =
| elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post) | false |
ID5.fst | ID5.map | val map (#a #b #pre: _) (f: (x: a -> Id b (requires (pre x)) (ensures (fun _ -> True)))) (l: list a)
: Id (list b) (requires (forall x. memP x l ==> pre x)) (ensures (fun _ -> True)) | val map (#a #b #pre: _) (f: (x: a -> Id b (requires (pre x)) (ensures (fun _ -> True)))) (l: list a)
: Id (list b) (requires (forall x. memP x l ==> pre x)) (ensures (fun _ -> True)) | let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 157,
"start_col": 0,
"start_line": 149
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (x: a -> ID5.Id b) -> l: Prims.list a -> ID5.Id (Prims.list b) | ID5.Id | [] | [] | [
"Prims.l_True",
"Prims.list",
"Prims.Nil",
"Prims.Cons",
"ID5.map",
"Prims.l_Forall",
"Prims.l_imp",
"FStar.List.Tot.Base.memP"
] | [
"recursion"
] | false | true | false | false | false | let rec map #a #b #pre (f: (x: a -> Id b (requires (pre x)) (ensures (fun _ -> True)))) (l: list a)
: Id (list b) (requires (forall x. memP x l ==> pre x)) (ensures (fun _ -> True)) =
| match l with
| [] -> []
| x :: xs -> f x :: map #_ #_ #pre f xs | false |
ID5.fst | ID5.test_f | val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3)) | val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3)) | let test_f () = 3 | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 143,
"start_col": 0,
"start_line": 143
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> ID5.ID Prims.int | ID5.ID | [] | [] | [
"Prims.unit",
"Prims.int"
] | [] | false | true | false | false | false | let test_f () =
| 3 | false |
ID5.fst | ID5.lift_pure_nd | val lift_pure_nd (a: Type) (wp: wp a) (f: (unit -> PURE a wp))
: Pure (repr a wp) (requires True) (ensures (fun _ -> True)) | val lift_pure_nd (a: Type) (wp: wp a) (f: (unit -> PURE a wp))
: Pure (repr a wp) (requires True) (ensures (fun _ -> True)) | let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 122,
"start_col": 0,
"start_line": 119
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> wp: ID5.wp a -> f: (_: Prims.unit -> Prims.PURE a) -> Prims.Pure (ID5.repr a wp) | Prims.Pure | [] | [] | [
"ID5.wp",
"Prims.unit",
"FStar.Ghost.erased",
"Prims.squash",
"FStar.Ghost.reveal",
"FStar.Monotonic.Pure.elim_pure",
"ID5.repr",
"Prims.l_True"
] | [] | false | false | false | false | false | let lift_pure_nd (a: Type) (wp: wp a) (f: (unit -> PURE a wp))
: Pure (repr a wp) (requires True) (ensures (fun _ -> True)) =
| fun p _ -> elim_pure f p | false |
ID5.fst | ID5.cut | val cut (#a #w: _) (p: Type0) (f: repr a w) : repr a (cut_wp w p) | val cut (#a #w: _) (p: Type0) (f: repr a w) : repr a (cut_wp w p) | let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 96,
"start_col": 0,
"start_line": 95
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> f: ID5.repr a w -> ID5.repr a (ID5.cut_wp w p) | Prims.Tot | [
"total"
] | [] | [
"ID5.wp",
"ID5.repr",
"ID5.strengthen",
"ID5.weaken_wp",
"Prims.squash",
"ID5.weaken",
"ID5.cut_wp"
] | [] | false | false | false | false | false | let cut #a #w (p: Type0) (f: repr a w) : repr a (cut_wp w p) =
| strengthen p (fun _ -> weaken p f) | false |
ID5.fst | ID5.pow2 | val pow2 (n: nat) : I int | val pow2 (n: nat) : I int | let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 173,
"start_col": 0,
"start_line": 172
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> ID5.I Prims.int | ID5.I | [] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"ID5.pow2",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | true | false | false | false | let rec pow2 (n: nat) : I int =
| if n = 0 then 1 else pow2 (n - 1) + pow2 (n - 1) | false |
ID5.fst | ID5.count | val count (n: nat) : I int | val count (n: nat) : I int | let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 170,
"start_col": 0,
"start_line": 169
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> ID5.I Prims.int | ID5.I | [] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"ID5.count",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | true | false | false | false | let rec count (n: nat) : I int =
| if n = 0 then 0 else count (n - 1) | false |
Hacl.Impl.Curve25519.Field51.fst | Hacl.Impl.Curve25519.Field51.fsqr2 | val fsqr2: C.(fsqr2_t M51 True) | val fsqr2: C.(fsqr2_t M51 True) | let fsqr2 out f _ =
let f10 = f.(0ul) in
let f11 = f.(1ul) in
let f12 = f.(2ul) in
let f13 = f.(3ul) in
let f14 = f.(4ul) in
let f20 = f.(5ul) in
let f21 = f.(6ul) in
let f22 = f.(7ul) in
let f23 = f.(8ul) in
let f24 = f.(9ul) in
let ((o10,o11,o12,o13,o14),(o20,o21,o22,o23,o24)) =
fsqr25 (f10,f11,f12,f13,f14) (f20,f21,f22,f23,f24) in
out.(0ul) <- o10;
out.(1ul) <- o11;
out.(2ul) <- o12;
out.(3ul) <- o13;
out.(4ul) <- o14;
out.(5ul) <- o20;
out.(6ul) <- o21;
out.(7ul) <- o22;
out.(8ul) <- o23;
out.(9ul) <- o24 | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 303,
"start_col": 0,
"start_line": 278
} | module Hacl.Impl.Curve25519.Field51
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Lib.Buffer
include Hacl.Spec.Curve25519.Field51
include Hacl.Spec.Curve25519.Field51.Definition
module P = Spec.Curve25519
module S = Hacl.Spec.Curve25519.Field51.Definition
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BSeq = Lib.ByteSequence
module Lemmas = Hacl.Spec.Curve25519.Field51.Lemmas
module C = Hacl.Impl.Curve25519.Fields.Core
#reset-options "--z3rlimit 20"
let felem = lbuffer uint64 5ul
let felem2 = lbuffer uint64 10ul
let felem_wide = lbuffer uint128 5ul
noextract
let as_nat = C.f51_as_nat
noextract
val wide_as_nat: h:mem -> e:felem_wide -> GTot nat
let wide_as_nat h e =
let s = as_seq h e in
let s0 = s.[0] in
let s1 = s.[1] in
let s2 = s.[2] in
let s3 = s.[3] in
let s4 = s.[4] in
S.wide_as_nat5 (s0, s1, s2, s3, s4)
noextract
val fevalh: h:mem -> f:felem -> GTot P.elem
let fevalh h f = (as_nat h f) % P.prime
noextract
val feval_wideh: h:mem -> f:felem_wide -> GTot P.elem
let feval_wideh h f = (wide_as_nat h f) % P.prime
noextract
let felem_fits =
C.f51_felem_fits
noextract
val felem_wide_fits: h:mem -> f:felem_wide -> m:S.scale128_5 -> Type0
let felem_wide_fits h f m =
let s = as_seq h f in
let s0 = s.[0] in
let s1 = s.[1] in
let s2 = s.[2] in
let s3 = s.[3] in
let s4 = s.[4] in
S.felem_wide_fits5 (s0, s1, s2, s3, s4) m
noextract
let as_felem =
C.f51_as_felem
noextract
let mul_inv_t =
C.f51_mul_inv_t
inline_for_extraction noextract
val create_felem: unit
-> StackInline felem
(requires fun _ -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create 5 (u64 0)) /\
as_nat h1 f == 0)
let create_felem () = create 5ul (u64 0)
inline_for_extraction noextract
val set_zero:
f:felem -> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 0)
let set_zero f =
f.(0ul) <- u64 0;
f.(1ul) <- u64 0;
f.(2ul) <- u64 0;
f.(3ul) <- u64 0;
f.(4ul) <- u64 0
inline_for_extraction noextract
val set_one:
f:felem -> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 1)
let set_one f =
f.(0ul) <- u64 1;
f.(1ul) <- u64 0;
f.(2ul) <- u64 0;
f.(3ul) <- u64 0;
f.(4ul) <- u64 0
inline_for_extraction noextract
val copy_felem:
f1:felem
-> f2:felem
-> Stack unit
(requires fun h ->
live h f1 /\ live h f2 /\ disjoint f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc f1) h0 h1 /\
as_seq h1 f1 == as_seq h0 f2)
let copy_felem f1 f2 =
f1.(0ul) <- f2.(0ul);
f1.(1ul) <- f2.(1ul);
f1.(2ul) <- f2.(2ul);
f1.(3ul) <- f2.(3ul);
f1.(4ul) <- f2.(4ul);
let h1 = ST.get () in
LSeq.eq_intro (as_seq h1 f1) (as_seq h1 f2)
#set-options "--max_fuel 0 --max_ifuel 0"
val fadd: C.(fadd_t M51 True)
[@ CInline]
let fadd out f1 f2 =
let h0 = ST.get () in
let f10 = f1.(0ul) in
let f20 = f2.(0ul) in
let f11 = f1.(1ul) in
let f21 = f2.(1ul) in
let f12 = f1.(2ul) in
let f22 = f2.(2ul) in
let f13 = f1.(3ul) in
let f23 = f2.(3ul) in
let f14 = f1.(4ul) in
let f24 = f2.(4ul) in
out.(0ul) <- f10 +! f20;
out.(1ul) <- f11 +! f21;
out.(2ul) <- f12 +! f22;
out.(3ul) <- f13 +! f23;
out.(4ul) <- f14 +! f24;
let h1 = ST.get () in
assert (as_nat h1 out == as_nat h0 f1 + as_nat h0 f2);
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat h0 f1) (as_nat h0 f2) P.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat h0 f1 % P.prime) (as_nat h0 f2) P.prime
val fsub: C.(fsub_t M51 True)
[@ CInline]
let fsub out f1 f2 =
let f10 = f1.(0ul) in
let f20 = f2.(0ul) in
let f11 = f1.(1ul) in
let f21 = f2.(1ul) in
let f12 = f1.(2ul) in
let f22 = f2.(2ul) in
let f13 = f1.(3ul) in
let f23 = f2.(3ul) in
let f14 = f1.(4ul) in
let f24 = f2.(4ul) in
out.(0ul) <- f10 +! u64 0x3fffffffffff68 -! f20;
out.(1ul) <- f11 +! u64 0x3ffffffffffff8 -! f21;
out.(2ul) <- f12 +! u64 0x3ffffffffffff8 -! f22;
out.(3ul) <- f13 +! u64 0x3ffffffffffff8 -! f23;
out.(4ul) <- f14 +! u64 0x3ffffffffffff8 -! f24;
lemma_fsub (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)
val fmul: C.(fmul_t M51 True)
[@ CInline]
let fmul out f1 f2 _ =
let f10 = f1.(0ul) in
let f11 = f1.(1ul) in
let f12 = f1.(2ul) in
let f13 = f1.(3ul) in
let f14 = f1.(4ul) in
let f20 = f2.(0ul) in
let f21 = f2.(1ul) in
let f22 = f2.(2ul) in
let f23 = f2.(3ul) in
let f24 = f2.(4ul) in
let (o0,o1,o2,o3,o4) =
fmul5 (f10,f11,f12,f13,f14) (f20,f21,f22,f23,f24) in
out.(0ul) <- o0;
out.(1ul) <- o1;
out.(2ul) <- o2;
out.(3ul) <- o3;
out.(4ul) <- o4
val fmul2: C.(fmul2_t M51 True)
#set-options "--z3rlimit 100"
[@ CInline]
let fmul2 out f1 f2 _ =
let f10 = f1.(0ul) in
let f11 = f1.(1ul) in
let f12 = f1.(2ul) in
let f13 = f1.(3ul) in
let f14 = f1.(4ul) in
let f20 = f2.(0ul) in
let f21 = f2.(1ul) in
let f22 = f2.(2ul) in
let f23 = f2.(3ul) in
let f24 = f2.(4ul) in
let f30 = f1.(5ul) in
let f31 = f1.(6ul) in
let f32 = f1.(7ul) in
let f33 = f1.(8ul) in
let f34 = f1.(9ul) in
let f40 = f2.(5ul) in
let f41 = f2.(6ul) in
let f42 = f2.(7ul) in
let f43 = f2.(8ul) in
let f44 = f2.(9ul) in
let ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) =
fmul25 (f10,f11,f12,f13,f14) (f20,f21,f22,f23,f24)
(f30,f31,f32,f33,f34) (f40,f41,f42,f43,f44) in
out.(0ul) <- o10;
out.(1ul) <- o11;
out.(2ul) <- o12;
out.(3ul) <- o13;
out.(4ul) <- o14;
out.(5ul) <- o20;
out.(6ul) <- o21;
out.(7ul) <- o22;
out.(8ul) <- o23;
out.(9ul) <- o24
val fmul1: C.(fmul1_t M51 True)
[@ CInline]
let fmul1 out f1 f2 =
let f10 = f1.(0ul) in
let f11 = f1.(1ul) in
let f12 = f1.(2ul) in
let f13 = f1.(3ul) in
let f14 = f1.(4ul) in
let (o0,o1,o2,o3,o4) = fmul15 (f10,f11,f12,f13,f14) f2 in
out.(0ul) <- o0;
out.(1ul) <- o1;
out.(2ul) <- o2;
out.(3ul) <- o3;
out.(4ul) <- o4
val fsqr: C.(fsqr_t M51 True)
[@ CInline]
let fsqr out f _ =
let f0 = f.(0ul) in
let f1 = f.(1ul) in
let f2 = f.(2ul) in
let f3 = f.(3ul) in
let f4 = f.(4ul) in
let (o0,o1,o2,o3,o4) = fsqr5 (f0,f1,f2,f3,f4) in
out.(0ul) <- o0;
out.(1ul) <- o1;
out.(2ul) <- o2;
out.(3ul) <- o3;
out.(4ul) <- o4
val fsqr2: C.(fsqr2_t M51 True) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Spec.Curve25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Field51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Curve25519.Fields.Core.fsqr2_t Hacl.Impl.Curve25519.Fields.Core.M51 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.felem2",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Lib.IntTypes.uint64",
"Lib.Buffer.op_Array_Assignment",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.fsqr25",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT"
] | [] | false | false | false | true | false | let fsqr2 out f _ =
| let f10 = f.(0ul) in
let f11 = f.(1ul) in
let f12 = f.(2ul) in
let f13 = f.(3ul) in
let f14 = f.(4ul) in
let f20 = f.(5ul) in
let f21 = f.(6ul) in
let f22 = f.(7ul) in
let f23 = f.(8ul) in
let f24 = f.(9ul) in
let (o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24) =
fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)
in
out.(0ul) <- o10;
out.(1ul) <- o11;
out.(2ul) <- o12;
out.(3ul) <- o13;
out.(4ul) <- o14;
out.(5ul) <- o20;
out.(6ul) <- o21;
out.(7ul) <- o22;
out.(8ul) <- o23;
out.(9ul) <- o24 | false |
ID5.fst | ID5.fibl | val fibl (i: nat) : I nat | val fibl (i: nat) : I nat | let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 178,
"start_col": 0,
"start_line": 175
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.nat -> ID5.I Prims.nat | ID5.I | [] | [] | [
"Prims.nat",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"ID5.fibl",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | true | false | false | false | let rec fibl (i: nat) : I nat =
| if i = 0 || i = 1 then 1 else fibl (i - 1) | false |
ID5.fst | ID5.idiv | val idiv (a b: nat) : Id int (requires (a >= 0 /\ b > 0)) (ensures (fun r -> r >= 0)) (decreases a) | val idiv (a b: nat) : Id int (requires (a >= 0 /\ b > 0)) (ensures (fun r -> r >= 0)) (decreases a) | let rec idiv (a b : nat) : Id int (requires (a >= 0 /\ b > 0))
(ensures (fun r -> r >= 0))
(decreases a)
=
if a < b
then 0
else 1 + idiv (a-b) b | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 208,
"start_col": 0,
"start_line": 202
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or
// subtyping fails to kick in? "expected int, got nat".
let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y
//else fib (i-1) + fib (i-2)
let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
();
iassume False;
();
iassert False;
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.nat -> b: Prims.nat -> ID5.Id Prims.int | ID5.Id | [
""
] | [] | [
"Prims.nat",
"Prims.op_LessThan",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"ID5.idiv",
"Prims.op_Subtraction",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_GreaterThan"
] | [
"recursion"
] | false | true | false | false | false | let rec idiv (a b: nat)
: Id int (requires (a >= 0 /\ b > 0)) (ensures (fun r -> r >= 0)) (decreases a) =
| if a < b then 0 else 1 + idiv (a - b) b | false |
ID5.fst | ID5.add1 | val add1 (x: int) : Id int (requires (x > 0)) (ensures (fun r -> r == x + 1)) | val add1 (x: int) : Id int (requires (x > 0)) (ensures (fun r -> r == x + 1)) | let add1 (x:int) : Id int (requires (x > 0)) (ensures (fun r -> r == x+1)) = x + 1 | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 82,
"end_line": 216,
"start_col": 0,
"start_line": 216
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or
// subtyping fails to kick in? "expected int, got nat".
let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y
//else fib (i-1) + fib (i-2)
let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
();
iassume False;
();
iassert False;
()
let rec idiv (a b : nat) : Id int (requires (a >= 0 /\ b > 0))
(ensures (fun r -> r >= 0))
(decreases a)
=
if a < b
then 0
else 1 + idiv (a-b) b
let rec ack (m n : nat) : I nat =
match m, n with
| 0, n -> n+1
| m, 0 -> ack (m-1) 1
| m, n -> ack (m-1) (ack m (n-1)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> ID5.Id Prims.int | ID5.Id | [] | [] | [
"Prims.int",
"Prims.op_Addition",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.eq2"
] | [] | false | true | false | false | false | let add1 (x: int) : Id int (requires (x > 0)) (ensures (fun r -> r == x + 1)) =
| x + 1 | false |
ID5.fst | ID5.fmap | val fmap (x: nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) | val fmap (x: nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) | let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2 | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 79,
"end_line": 163,
"start_col": 0,
"start_line": 163
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) = | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat -> ID5.Id Prims.nat | ID5.Id | [] | [] | [
"Prims.nat",
"Prims.op_Division",
"ID5.even",
"Prims.b2t",
"Prims.op_LessThanOrEqual"
] | [] | false | true | false | false | false | let fmap (x: nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) =
| x / 2 | false |
ID5.fst | ID5.fib | val fib (i: nat) : I nat | val fib (i: nat) : I nat | let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 192,
"start_col": 0,
"start_line": 187
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.nat -> ID5.I Prims.nat | ID5.I | [] | [] | [
"Prims.nat",
"Prims.op_LessThan",
"Prims.bool",
"Prims.op_Addition",
"ID5.fib",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | true | false | false | false | let rec fib (i: nat) : I nat =
| if i < 2
then 1
else
let x = fib (i - 1) in
let y = fib (i - 2) in
x + y | false |
ID5.fst | ID5.fibr | val fibr (i: nat) : I nat | val fibr (i: nat) : I nat | let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 183,
"start_col": 0,
"start_line": 180
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.nat -> ID5.I Prims.nat | ID5.I | [] | [] | [
"Prims.nat",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"ID5.fibr",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | true | false | false | false | let rec fibr (i: nat) : I nat =
| if i = 0 || i = 1 then 1 else fibr (i - 2) | false |
Hacl.SHA2.Vec128.fst | Hacl.SHA2.Vec128.sha256_update_last4 | val sha256_update_last4 : Hacl.Impl.SHA2.Generic.update_last_vec_t' Spec.Hash.Definitions.SHA2_256 Hacl.Spec.SHA2.Vec.M128 | let sha256_update_last4 = update_last #SHA2_256 #M128 sha256_update4 | {
"file_name": "code/sha2-mb/Hacl.SHA2.Vec128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 87,
"end_line": 62,
"start_col": 19,
"start_line": 62
} | module Hacl.SHA2.Vec128
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.NTuple
open Lib.Buffer
open Lib.MultiBuffer
open Spec.Hash.Definitions
open Hacl.Spec.SHA2.Vec
open Hacl.Impl.SHA2.Generic
module ST = FStar.HyperStack.ST
module Spec = Spec.Agile.Hash
module SpecVec = Hacl.Spec.SHA2.Vec
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@CInline] private let sha224_init4 = init #SHA2_224 #M128
[@CInline] private let sha224_update4 = update #SHA2_224 #M128
[@CInline] private let sha224_update_nblocks4 = update_nblocks #SHA2_224 #M128 sha224_update4
[@CInline] private let sha224_update_last4 = update_last #SHA2_224 #M128 sha224_update4
[@CInline] private let sha224_finish4 = finish #SHA2_224 #M128
val sha224_4 (dst0 dst1 dst2 dst3: lbuffer uint8 28ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_224 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_224 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_224 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_224 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_224 (as_seq h0 input3))
let sha224_4 dst0 dst1 dst2 dst3 input_len input0 input1 input2 input3 =
let ib = ntup4 (input0,(input1,(input2,input3))) in
let rb = ntup4 (dst0,(dst1,(dst2,dst3))) in
let h0 = ST.get() in
assert (live_multi h0 ib);
assert (live_multi h0 rb);
assert (internally_disjoint rb);
loc_multi4 rb;
hash #SHA2_224 #M128 sha224_init4 sha224_update_nblocks4 sha224_update_last4 sha224_finish4 rb input_len ib;
let h1 = ST.get() in
Hacl.Spec.SHA2.Equiv.hash_agile_lemma #SHA2_224 #M128 (v input_len) (as_seq_multi h0 ib);
assert ((as_seq_multi h1 rb).(|0|) == as_seq h1 dst0);
assert ((as_seq_multi h1 rb).(|1|) == as_seq h1 dst1);
assert ((as_seq_multi h1 rb).(|2|) == as_seq h1 dst2);
assert ((as_seq_multi h1 rb).(|3|) == as_seq h1 dst3)
[@CInline] private let sha256_init4 = init #SHA2_256 #M128
[@CInline] private let sha256_update4 = update #SHA2_256 #M128 | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.NTuple.fsti.checked",
"Lib.MultiBuffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.SHA2.Vec.fst.checked",
"Hacl.Spec.SHA2.Equiv.fst.checked",
"Hacl.Impl.SHA2.Generic.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.SHA2.Vec128.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": "SpecVec"
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA2.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.MultiBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NTuple",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.SHA2.Generic.update_last_vec_t' Spec.Hash.Definitions.SHA2_256 Hacl.Spec.SHA2.Vec.M128 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.SHA2.Generic.update_last",
"Spec.Hash.Definitions.SHA2_256",
"Hacl.Spec.SHA2.Vec.M128",
"Hacl.SHA2.Vec128.sha256_update4"
] | [] | false | false | false | true | false | let sha256_update_last4 =
| update_last #SHA2_256 #M128 sha256_update4 | false |
|
ID5.fst | ID5.test_assert | val test_assert: Prims.unit -> ID unit (as_pure_wp (fun p -> p ())) | val test_assert: Prims.unit -> ID unit (as_pure_wp (fun p -> p ())) | let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
();
iassume False;
();
iassert False;
() | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 200,
"start_col": 0,
"start_line": 195
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or
// subtyping fails to kick in? "expected int, got nat".
let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y
//else fib (i-1) + fib (i-2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> ID5.ID Prims.unit | ID5.ID | [] | [] | [
"Prims.unit",
"ID5.iassert",
"Prims.l_False",
"ID5.iassume",
"FStar.Monotonic.Pure.as_pure_wp",
"Prims.pure_post",
"Prims.pure_pre"
] | [] | false | true | false | false | false | let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
| ();
iassume False;
();
iassert False;
() | false |
ID5.fst | ID5.ack | val ack (m n: nat) : I nat | val ack (m n: nat) : I nat | let rec ack (m n : nat) : I nat =
match m, n with
| 0, n -> n+1
| m, 0 -> ack (m-1) 1
| m, n -> ack (m-1) (ack m (n-1)) | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 214,
"start_col": 0,
"start_line": 210
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or
// subtyping fails to kick in? "expected int, got nat".
let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y
//else fib (i-1) + fib (i-2)
let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
();
iassume False;
();
iassert False;
()
let rec idiv (a b : nat) : Id int (requires (a >= 0 /\ b > 0))
(ensures (fun r -> r >= 0))
(decreases a)
=
if a < b
then 0
else 1 + idiv (a-b) b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.nat -> n: Prims.nat -> ID5.I Prims.nat | ID5.I | [] | [] | [
"Prims.nat",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"Prims.op_Addition",
"ID5.ack",
"Prims.op_Subtraction",
"Prims.l_or",
"Prims.precedes",
"Prims.l_and",
"Prims.op_Equals_Equals_Equals"
] | [
"recursion"
] | false | true | false | false | false | let rec ack (m n: nat) : I nat =
| match m, n with
| 0, n -> n + 1
| m, 0 -> ack (m - 1) 1
| m, n -> ack (m - 1) (ack m (n - 1)) | false |
ID5.fst | ID5.callmap | val callmap: Prims.unit -> Id (list nat) True (fun _ -> True) | val callmap: Prims.unit -> Id (list nat) True (fun _ -> True) | let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 167,
"start_col": 0,
"start_line": 165
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> ID5.Id (Prims.list Prims.nat) | ID5.Id | [] | [] | [
"Prims.unit",
"ID5.map",
"Prims.nat",
"ID5.even",
"ID5.fmap",
"Prims.list",
"Prims.Cons",
"Prims.Nil",
"Prims.l_True"
] | [] | false | true | false | false | false | let callmap () : Id (list nat) True (fun _ -> True) =
| let lmap:list nat = [2; 4; 6; 8] in
map #_ #_ #even fmap lmap | false |
ID5.fst | ID5.sum | val sum (l: list int) : I int | val sum (l: list int) : I int | let rec sum (l : list int) : I int
= match l with
| [] -> 0
| x::xs -> sum xs | {
"file_name": "examples/layeredeffects/ID5.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 227,
"start_col": 0,
"start_line": 224
} | module ID5
open FStar.Ghost
// The base type of WPs
val wp0 (a : Type u#a) : Type u#(max 1 a)
let wp0 a = (a -> Type0) -> Type0
val wp (a : Type u#a) : Type u#(max 1 a)
let wp a = pure_wp a
let repr (a : Type u#aa) (w : wp a) : Type u#(max 1 aa) =
// Hmmm, the explicit post bumps the universe level
p:erased (a -> Type0) -> squash (w p) -> v:a{reveal p v}
open FStar.Monotonic.Pure
unfold
let return_wp #a (x:a) : wp a =
as_pure_wp (fun p -> p x)
let return (a : Type) (x : a) : repr a (return_wp x) =
// Fun fact: using () instead of _ below makes us
// lose the refinement and then this proof fails.
// Keep that in mind all ye who enter here.
fun p _ -> x
unfold
let bind_wp #a #b
(wp_v : wp a)
(wp_f : (x:a -> wp b))
: wp b
= elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun p -> wp_v (fun x -> wp_f x p))
let bind (a b : Type) (wp_v : wp a) (wp_f: a -> wp b)
(v : repr a wp_v)
(f : (x:a -> repr b (wp_f x)))
: repr b (bind_wp wp_v wp_f)
= fun p _ -> let x = v (fun x -> wp_f x p) () in
f x p ()
irreducible let refine : unit = ()
let subcomp (a:Type u#uu) (w1 w2:wp a)
(f : repr a w1)
: Pure (repr a w2)
(requires forall p. w2 p ==> w1 p)
(ensures fun _ -> True)
= f
// useful?
//let subcomp (a b:Type u#uu) (w1:wp a) (w2: wp b)
// (f : repr a w1)
//: Pure (repr b w2)
// (requires a `subtype_of` b /\ (forall (p:b->Type0). w2 p ==> w1 (fun x -> p x)))
// (ensures fun _ -> True)
//= fun p pf -> f (hide (fun x -> reveal p x)) ()
unfold
let ite_wp #a (wp1 wp2 : wp a) (b : bool) : wp a =
elim_pure_wp_monotonicity_forall ();
(as_pure_wp (fun (p:a -> Type) -> (b ==> wp1 p) /\ ((~b) ==> wp2 p)))
let if_then_else (a : Type) (wp1 wp2 : wp a) (f : repr a wp1) (g : repr a wp2) (p : bool) : Type =
repr a (ite_wp wp1 wp2 p)
let default_if_then_else (a:Type) (wp:wp a) (f:repr a wp) (g:repr a wp) (p:bool)
: Type
= repr a wp
unfold
let strengthen_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ w post)
let strengthen #a #w (p:Type0) (f : squash p -> repr a w) : repr a (strengthen_wp w p) =
fun post _ -> f () post ()
unfold
let weaken_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p ==> w post)
let weaken #a #w (p:Type0) (f : repr a w) : Pure (repr a (weaken_wp w p))
(requires p)
(ensures (fun _ -> True))
= fun post _ -> f post ()
unfold
let cut_wp (#a:Type) (w:wp a) (p:Type0) : wp a =
elim_pure_wp_monotonicity_forall ();
as_pure_wp (fun post -> p /\ (p ==> w post))
let cut #a #w (p:Type0) (f : repr a w) : repr a (cut_wp w p) =
strengthen p (fun _ -> weaken p f)
// requires to prove that
// p ==> f <: (if_then_else p f g)
// ~p ==> g <: (if_then_else p f g)
// if the effect definition fails, add lemmas for the
// above with smtpats
total
reifiable
reflectable
effect {
ID (a:Type) (_:wp a)
with {repr; return; bind; subcomp; if_then_else}
}
effect Id (a:Type) (pre:Type0) (post:a->Type0) =
ID a (as_pure_wp (fun p -> pre /\ (forall x. post x ==> p x)))
effect I (a:Type) = Id a True (fun _ -> True)
open FStar.Tactics.V2
let lift_pure_nd (a:Type) (wp:wp a) (f:unit -> PURE a wp) :
Pure (repr a wp) (requires True)
(ensures (fun _ -> True))
= fun p _ -> elim_pure f p
sub_effect PURE ~> ID = lift_pure_nd
//tests to make sure we are actually checking subcomp even now
let apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 2) = f ()
[@@expect_failure]
let incorrect_apply (f:unit -> Id int True (fun x -> x > 3)) : Id int True (fun x -> x > 5) = f ()
[@@expect_failure]
let another_one (n:int) (f:(x:int -> Id int (x > 0) (fun _ -> True))) : Id int True (fun _ -> True) = f n
let iassert (q:Type0) : ID unit (as_pure_wp (fun p -> q /\ (q ==> p ()))) = ()
assume
val iassume (q:Type0) : ID unit (as_pure_wp (fun p -> q ==> p ()))
(* Checking that it's kind of usable *)
val test_f : unit -> ID int (as_pure_wp (fun p -> p 5 /\ p 3))
let test_f () = 3
let l () : int = reify (test_f ()) (fun _ -> True) ()
open FStar.List.Tot
let rec map #a #b #pre
(f : (x:a -> Id b (requires (pre x)) (ensures (fun _ -> True))))
(l : list a)
: Id (list b)
(requires (forall x. memP x l ==> pre x))
(ensures (fun _ -> True))
= match l with
| [] -> []
| x::xs -> f x :: map #_ #_ #pre f xs
let even x = x % 2 == 0
//let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r > x)) =
// I cannot have a stronger post, subeffecting doesn't kick in in callmap?
let fmap (x:nat) : Id nat (requires (even x)) (ensures (fun r -> r <= x)) = x/2
let callmap () : Id (list nat) True (fun _ -> True) =
let lmap : list nat = [2;4;6;8] in
map #_ #_ #even fmap lmap
let rec count (n:nat) : I int
= if n = 0 then 0 else count (n-1)
let rec pow2 (n:nat) : I int
= if n = 0 then 1 else pow2 (n-1) + pow2 (n-1)
let rec fibl (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibl (i-1)
let rec fibr (i:nat) : I nat =
if i = 0 || i = 1
then 1
else fibr (i-2)
// TODO: I cannot use direct syntax and nat for the return type, or
// subtyping fails to kick in? "expected int, got nat".
let rec fib (i:nat) : I nat =
if i < 2
then 1
else let x = fib (i-1) in
let y = fib (i-2) in
x+y
//else fib (i-1) + fib (i-2)
let test_assert () : ID unit (as_pure_wp (fun p -> p ())) =
();
iassume False;
();
iassert False;
()
let rec idiv (a b : nat) : Id int (requires (a >= 0 /\ b > 0))
(ensures (fun r -> r >= 0))
(decreases a)
=
if a < b
then 0
else 1 + idiv (a-b) b
let rec ack (m n : nat) : I nat =
match m, n with
| 0, n -> n+1
| m, 0 -> ack (m-1) 1
| m, n -> ack (m-1) (ack m (n-1))
let add1 (x:int) : Id int (requires (x > 0)) (ensures (fun r -> r == x+1)) = x + 1
let tot_i #a (f : unit -> Tot a) : I a =
f ()
let i_tot #a (f : unit -> I a) : Tot a =
reify (f ()) (fun _ -> True) () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ID5.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.list Prims.int -> ID5.I Prims.int | ID5.I | [] | [] | [
"Prims.list",
"Prims.int",
"ID5.sum"
] | [
"recursion"
] | false | true | false | false | false | let rec sum (l: list int) : I int =
| match l with
| [] -> 0
| x :: xs -> sum xs | false |
Hacl.Impl.SecretBox.fst | Hacl.Impl.SecretBox.secretbox_open_detached | val secretbox_open_detached:
mlen:size_t
-> m:lbuffer uint8 mlen
-> k:lbuffer uint8 32ul
-> n:lbuffer uint8 24ul
-> c:lbuffer uint8 mlen
-> tag:lbuffer uint8 16ul ->
Stack size_t
(requires fun h ->
live h c /\ live h m /\ live h k /\ live h n /\ live h tag /\
disjoint tag c /\ disjoint tag m /\ disjoint m n /\ disjoint c n /\ eq_or_disjoint m c)
(ensures fun h0 r h1 -> modifies (loc m) h0 h1 /\
(let msg = Spec.secretbox_open_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 tag) (as_seq h0 c) in
match r with
| 0ul -> Some? msg /\ as_seq h1 m == Some?.v msg
| _ -> None? msg)) | val secretbox_open_detached:
mlen:size_t
-> m:lbuffer uint8 mlen
-> k:lbuffer uint8 32ul
-> n:lbuffer uint8 24ul
-> c:lbuffer uint8 mlen
-> tag:lbuffer uint8 16ul ->
Stack size_t
(requires fun h ->
live h c /\ live h m /\ live h k /\ live h n /\ live h tag /\
disjoint tag c /\ disjoint tag m /\ disjoint m n /\ disjoint c n /\ eq_or_disjoint m c)
(ensures fun h0 r h1 -> modifies (loc m) h0 h1 /\
(let msg = Spec.secretbox_open_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 tag) (as_seq h0 c) in
match r with
| 0ul -> Some? msg /\ as_seq h1 m == Some?.v msg
| _ -> None? msg)) | let secretbox_open_detached mlen m k n c tag =
push_frame();
let xkeys = create 96ul (u8 0) in
secretbox_init xkeys k n;
let mkey = sub xkeys 32ul 32ul in
let tag' = create 16ul (u8 0) in
Hacl.Streaming.Poly1305_32.mac tag' c mlen mkey;
let res =
if lbytes_eq tag tag' then (
secretbox_open_detached_plain mlen m xkeys n c;
0ul)
else
0xfffffffful in
pop_frame ();
res | {
"file_name": "code/nacl-box/Hacl.Impl.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 225,
"start_col": 0,
"start_line": 209
} | module Hacl.Impl.SecretBox
open FStar.HyperStack.All
open FStar.HyperStack
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Salsa20
open Hacl.Poly1305_32
module ST = FStar.HyperStack.ST
module Spec = Spec.SecretBox
module LSeq = Lib.Sequence
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
val secretbox_init:
xkeys:lbuffer uint8 96ul
-> k:lbuffer uint8 32ul
-> n:lbuffer uint8 24ul ->
Stack unit
(requires fun h ->
live h xkeys /\ live h k /\ live h n /\
disjoint k xkeys /\ disjoint n xkeys)
(ensures fun h0 _ h1 ->
modifies (loc xkeys) h0 h1 /\
(let xkeys = as_seq h1 xkeys in
let subkey : Spec.key = LSeq.sub xkeys 0 32 in
let aekey : Spec.aekey = LSeq.sub xkeys 32 64 in
(subkey, aekey) == Spec.secretbox_init (as_seq h0 k) (as_seq h0 n)))
let secretbox_init xkeys k n =
let h0 = ST.get() in
let subkey = sub xkeys 0ul 32ul in
let aekey = sub xkeys 32ul 64ul in
let n0 = sub n 0ul 16ul in
let n1 = sub n 16ul 8ul in
hsalsa20 subkey k n0;
salsa20_key_block0 aekey subkey n1
inline_for_extraction noextract
let get_len0 (len:size_t) : Tot (r:size_t{v r <= 32 /\ v r == Spec.get_len0 (v len)}) =
if len <=. 32ul then len else 32ul
#set-options "--z3rlimit 100"
inline_for_extraction noextract
val secretbox_detached_cipher:
mlen:size_t
-> c:lbuffer uint8 mlen
-> k:lbuffer uint8 32ul
-> xkeys:lbuffer uint8 96ul
-> n:lbuffer uint8 24ul
-> m:lbuffer uint8 mlen ->
Stack unit
(requires fun h ->
live h c /\ live h m /\ live h xkeys /\ live h n /\ live h k /\
eq_or_disjoint m c /\ disjoint xkeys c /\ disjoint xkeys m /\
disjoint n m /\ disjoint n c /\
(let subkey : Spec.key = LSeq.sub (as_seq h xkeys) 0 32 in
let aekey : Spec.aekey = LSeq.sub (as_seq h xkeys) 32 64 in
(subkey, aekey) == Spec.secretbox_init (as_seq h k) (as_seq h n)))
(ensures fun h0 _ h1 -> modifies (loc c) h0 h1 /\
(let (tag, cipher) = Spec.secretbox_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 m) in
as_seq h1 c == cipher))
let secretbox_detached_cipher mlen c k xkeys n m =
let h0 = ST.get () in
push_frame ();
let n1 = sub n 16ul 8ul in
let subkey = sub xkeys 0ul 32ul in
let mkey = sub xkeys 32ul 32ul in
let ekey0 = sub xkeys 64ul 32ul in
let mlen0 = get_len0 mlen in
let mlen1 = mlen -! mlen0 in
let m0 = sub m 0ul mlen0 in
let m1 = sub m mlen0 mlen1 in
let block0 = create 32ul (u8 0) in
update_sub block0 0ul mlen0 m0;
map2T 32ul block0 ( ^. ) block0 ekey0;
let c0 = sub c 0ul mlen0 in
let c1 = sub c mlen0 mlen1 in
let h1 = ST.get () in
copy c0 (sub block0 0ul mlen0);
let h2 = ST.get () in
//assert (as_seq h2 c0 == LSeq.sub (as_seq h1 block0) 0 (v mlen0));
salsa20_encrypt mlen1 c1 m1 subkey n1 1ul;
let h3 = ST.get () in
//assert (as_seq h3 c1 == Spec.Salsa20.salsa20_encrypt_bytes (as_seq h2 subkey) (as_seq h2 n1) 1 (as_seq h2 m1));
FStar.Seq.Properties.lemma_split (as_seq h3 c) (v mlen0);
//FStar.Seq.Properties.lemma_split (Seq.append (as_seq h2 c0) (as_seq h3 c1)) (v mlen0);
assert (as_seq h3 c == Seq.append (as_seq h2 c0) (as_seq h3 c1));
assert (
let (tag, cipher) = Spec.secretbox_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 m) in
as_seq h3 c == cipher);
pop_frame ()
val secretbox_detached:
mlen:size_t
-> c:lbuffer uint8 mlen
-> tag:lbuffer uint8 16ul
-> k:lbuffer uint8 32ul
-> n:lbuffer uint8 24ul
-> m:lbuffer uint8 mlen ->
Stack unit
(requires fun h ->
live h c /\ live h m /\ live h k /\ live h n /\ live h tag /\
disjoint tag c /\ disjoint tag m /\ eq_or_disjoint m c /\
disjoint n m /\ disjoint n c)
(ensures fun h0 _ h1 -> modifies (loc c |+| loc tag) h0 h1 /\
(as_seq h1 tag, as_seq h1 c) == Spec.secretbox_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 m))
let secretbox_detached mlen c tag k n m =
let h0 = ST.get () in
push_frame();
let xkeys = create 96ul (u8 0) in
secretbox_init xkeys k n;
let mkey = sub xkeys 32ul 32ul in
secretbox_detached_cipher mlen c k xkeys n m;
Hacl.Streaming.Poly1305_32.mac tag c mlen mkey;
let h1 = ST.get () in
assert (
let (tag1, cipher) = Spec.secretbox_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 m) in
(as_seq h1 tag, as_seq h1 c) == (tag1, cipher));
pop_frame()
inline_for_extraction noextract
val secretbox_open_detached_plain:
mlen:size_t
-> m:lbuffer uint8 mlen
-> xkeys:lbuffer uint8 96ul
-> n:lbuffer uint8 24ul
-> c:lbuffer uint8 mlen ->
Stack unit
(requires fun h ->
live h c /\ live h m /\ live h xkeys /\ live h n /\
disjoint m n /\ disjoint c n /\ eq_or_disjoint m c /\
disjoint xkeys m /\ disjoint xkeys c)
(ensures fun h0 r h1 -> modifies (loc m) h0 h1 /\
(let subkey = LSeq.sub (as_seq h0 xkeys) 0 32 in
let ekey0 = LSeq.sub (as_seq h0 xkeys) 64 32 in
let n1 = LSeq.sub (as_seq h0 n) 16 8 in
let clen0 = Spec.get_len0 (v mlen) in
let clen1 = v mlen - clen0 in
let c0 = LSeq.sub (as_seq h0 c) 0 clen0 in
let c1 = LSeq.sub (as_seq h0 c) clen0 clen1 in
let block0 = LSeq.create 32 (u8 0) in
let block0 = LSeq.update_sub block0 0 clen0 c0 in
let block0 = LSeq.map2 (^.) block0 ekey0 in
let m0 = LSeq.sub block0 0 clen0 in
let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in
let msg = Seq.append m0 m1 in
as_seq h1 m == msg))
let secretbox_open_detached_plain mlen m xkeys n c =
push_frame ();
let subkey = sub xkeys 0ul 32ul in
let ekey0 = sub xkeys 64ul 32ul in
let n1 = sub n 16ul 8ul in
let mlen0 = get_len0 mlen in
let mlen1 = mlen -! mlen0 in
let c0 = sub c 0ul mlen0 in
let c1 = sub c mlen0 mlen1 in
let block0 = create 32ul (u8 0) in
update_sub block0 0ul mlen0 c0;
map2T 32ul block0 ( ^. ) block0 ekey0;
let m0 = sub m 0ul mlen0 in
let m1 = sub m mlen0 mlen1 in
copy m0 (sub block0 0ul mlen0);
salsa20_decrypt mlen1 m1 c1 subkey n1 1ul;
let h1 = ST.get () in
FStar.Seq.Properties.lemma_split (as_seq h1 m) (v mlen0);
pop_frame ()
val secretbox_open_detached:
mlen:size_t
-> m:lbuffer uint8 mlen
-> k:lbuffer uint8 32ul
-> n:lbuffer uint8 24ul
-> c:lbuffer uint8 mlen
-> tag:lbuffer uint8 16ul ->
Stack size_t
(requires fun h ->
live h c /\ live h m /\ live h k /\ live h n /\ live h tag /\
disjoint tag c /\ disjoint tag m /\ disjoint m n /\ disjoint c n /\ eq_or_disjoint m c)
(ensures fun h0 r h1 -> modifies (loc m) h0 h1 /\
(let msg = Spec.secretbox_open_detached (as_seq h0 k) (as_seq h0 n) (as_seq h0 tag) (as_seq h0 c) in
match r with
| 0ul -> Some? msg /\ as_seq h1 m == Some?.v msg
| _ -> None? msg)) | {
"checked_file": "/",
"dependencies": [
"Spec.SecretBox.fst.checked",
"Spec.Salsa20.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.Poly1305_32.fsti.checked",
"Hacl.Salsa20.fst.checked",
"Hacl.Poly1305_32.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.SecretBox.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Spec.SecretBox",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305_32",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Salsa20",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
mlen: Lib.IntTypes.size_t ->
m: Lib.Buffer.lbuffer Lib.IntTypes.uint8 mlen ->
k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 24ul ->
c: Lib.Buffer.lbuffer Lib.IntTypes.uint8 mlen ->
tag: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul
-> FStar.HyperStack.ST.Stack Lib.IntTypes.size_t | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.SecretBox.secretbox_open_detached_plain",
"Prims.bool",
"Lib.ByteBuffer.lbytes_eq",
"Hacl.Streaming.Poly1305_32.mac",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"Lib.Buffer.sub",
"Hacl.Impl.SecretBox.secretbox_init",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let secretbox_open_detached mlen m k n c tag =
| push_frame ();
let xkeys = create 96ul (u8 0) in
secretbox_init xkeys k n;
let mkey = sub xkeys 32ul 32ul in
let tag' = create 16ul (u8 0) in
Hacl.Streaming.Poly1305_32.mac tag' c mlen mkey;
let res =
if lbytes_eq tag tag'
then
(secretbox_open_detached_plain mlen m xkeys n c;
0ul)
else 0xfffffffful
in
pop_frame ();
res | false |
FStar.Integers.fst | FStar.Integers.norm | val norm : x: a -> a | let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 24,
"start_col": 0,
"start_line": 24
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> a | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.delta_attr",
"Prims.string",
"Prims.Nil"
] | [] | false | false | false | true | false | let norm (#a: Type) (x: a) =
| norm [iota; delta_attr [`%mark_for_norm]] x | false |
|
FStar.Integers.fst | FStar.Integers.within_bounds | val within_bounds : sw: FStar.Integers.signed_width -> x: Prims.int -> Type0 | let within_bounds sw x = norm (within_bounds' sw x) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 86,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sw: FStar.Integers.signed_width -> x: Prims.int -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"Prims.int",
"FStar.Integers.norm",
"FStar.Integers.within_bounds'"
] | [] | false | false | false | true | true | let within_bounds sw x =
| norm (within_bounds' sw x) | false |
|
FStar.Integers.fst | FStar.Integers.nat_of_width | val nat_of_width : _: FStar.Integers.width -> FStar.Pervasives.Native.option Prims.int | let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 41,
"start_col": 0,
"start_line": 35
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: FStar.Integers.width -> FStar.Pervasives.Native.option Prims.int | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.width",
"FStar.Pervasives.Native.Some",
"Prims.int",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option"
] | [] | false | false | false | true | false | let nat_of_width =
| function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None | false |
|
FStar.Integers.fst | FStar.Integers.cast_ok | val cast_ok : to: FStar.Integers.signed_width -> x: FStar.Integers.int_t from -> Type0 | let cast_ok #from to (x:int_t from) = within_bounds to (v x) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 143,
"start_col": 0,
"start_line": 143
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | to: FStar.Integers.signed_width -> x: FStar.Integers.int_t from -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"FStar.Integers.int_t",
"FStar.Integers.within_bounds",
"FStar.Integers.v"
] | [] | false | false | false | false | true | let cast_ok #from to (x: int_t from) =
| within_bounds to (v x) | false |
|
FStar.Integers.fst | FStar.Integers.nat_of_fixed_width | val nat_of_fixed_width : w: FStar.Integers.fixed_width -> Prims.int | let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 48,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | w: FStar.Integers.fixed_width -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.fixed_width",
"FStar.Integers.nat_of_width",
"Prims.int"
] | [] | false | false | false | true | false | let nat_of_fixed_width (w: fixed_width) =
| match nat_of_width w with | Some v -> v | false |
|
FStar.Integers.fst | FStar.Integers.fixed_width | val fixed_width : Type0 | let fixed_width = w:width{w <> Winfinite} | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 43,
"start_col": 0,
"start_line": 43
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.width",
"Prims.b2t",
"Prims.op_disEquality",
"FStar.Integers.Winfinite"
] | [] | false | false | false | true | true | let fixed_width =
| w: width{w <> Winfinite} | false |
|
FStar.Integers.fst | FStar.Integers.width_of_sw | val width_of_sw : _: FStar.Integers.signed_width -> FStar.Integers.width | let width_of_sw = function
| Signed w -> w
| Unsigned w -> w | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 57,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: FStar.Integers.signed_width -> FStar.Integers.width | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"FStar.Integers.width",
"FStar.Integers.fixed_width"
] | [] | false | false | false | true | false | let width_of_sw =
| function
| Signed w -> w
| Unsigned w -> w | false |
|
FStar.Integers.fst | FStar.Integers.within_bounds' | val within_bounds' : sw: FStar.Integers.signed_width -> x: Prims.int -> Type0 | let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 83,
"start_col": 0,
"start_line": 79
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sw: FStar.Integers.signed_width -> x: Prims.int -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"FStar.Integers.nat_of_width",
"FStar.Integers.width_of_sw",
"FStar.Integers.width",
"Prims.l_True",
"FStar.Int.size",
"FStar.Integers.fixed_width",
"FStar.UInt.size"
] | [] | false | false | false | true | true | let within_bounds' sw (x: int) =
| match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n | false |
|
FStar.Integers.fst | FStar.Integers.v | val v (#sw: _) (x: int_t sw) : Tot (y: int_t (Signed Winfinite) {within_bounds sw y}) | val v (#sw: _) (x: int_t sw) : Tot (y: int_t (Signed Winfinite) {within_bounds sw y}) | let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 108,
"start_col": 0,
"start_line": 91
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.int_t sw
-> y:
FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite)
{FStar.Integers.within_bounds sw y} | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"FStar.Integers.int_t",
"FStar.Integers.fixed_width",
"FStar.UInt8.v",
"FStar.UInt16.v",
"FStar.UInt32.v",
"FStar.UInt64.v",
"FStar.UInt128.v",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.within_bounds",
"FStar.Integers.width",
"FStar.Int8.v",
"FStar.Int16.v",
"FStar.Int32.v",
"FStar.Int64.v",
"FStar.Int128.v"
] | [] | false | false | false | false | false | let v #sw (x: int_t sw) : Tot (y: int_t (Signed Winfinite) {within_bounds sw y}) =
| match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x) | false |
Hacl.SHA2.Vec128.fst | Hacl.SHA2.Vec128.sha224_4 | val sha224_4 (dst0 dst1 dst2 dst3: lbuffer uint8 28ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_224 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_224 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_224 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_224 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_224 (as_seq h0 input3)) | val sha224_4 (dst0 dst1 dst2 dst3: lbuffer uint8 28ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_224 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_224 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_224 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_224 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_224 (as_seq h0 input3)) | let sha224_4 dst0 dst1 dst2 dst3 input_len input0 input1 input2 input3 =
let ib = ntup4 (input0,(input1,(input2,input3))) in
let rb = ntup4 (dst0,(dst1,(dst2,dst3))) in
let h0 = ST.get() in
assert (live_multi h0 ib);
assert (live_multi h0 rb);
assert (internally_disjoint rb);
loc_multi4 rb;
hash #SHA2_224 #M128 sha224_init4 sha224_update_nblocks4 sha224_update_last4 sha224_finish4 rb input_len ib;
let h1 = ST.get() in
Hacl.Spec.SHA2.Equiv.hash_agile_lemma #SHA2_224 #M128 (v input_len) (as_seq_multi h0 ib);
assert ((as_seq_multi h1 rb).(|0|) == as_seq h1 dst0);
assert ((as_seq_multi h1 rb).(|1|) == as_seq h1 dst1);
assert ((as_seq_multi h1 rb).(|2|) == as_seq h1 dst2);
assert ((as_seq_multi h1 rb).(|3|) == as_seq h1 dst3) | {
"file_name": "code/sha2-mb/Hacl.SHA2.Vec128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 56,
"start_col": 0,
"start_line": 42
} | module Hacl.SHA2.Vec128
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.NTuple
open Lib.Buffer
open Lib.MultiBuffer
open Spec.Hash.Definitions
open Hacl.Spec.SHA2.Vec
open Hacl.Impl.SHA2.Generic
module ST = FStar.HyperStack.ST
module Spec = Spec.Agile.Hash
module SpecVec = Hacl.Spec.SHA2.Vec
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@CInline] private let sha224_init4 = init #SHA2_224 #M128
[@CInline] private let sha224_update4 = update #SHA2_224 #M128
[@CInline] private let sha224_update_nblocks4 = update_nblocks #SHA2_224 #M128 sha224_update4
[@CInline] private let sha224_update_last4 = update_last #SHA2_224 #M128 sha224_update4
[@CInline] private let sha224_finish4 = finish #SHA2_224 #M128
val sha224_4 (dst0 dst1 dst2 dst3: lbuffer uint8 28ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_224 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_224 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_224 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_224 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_224 (as_seq h0 input3)) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.NTuple.fsti.checked",
"Lib.MultiBuffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.SHA2.Vec.fst.checked",
"Hacl.Spec.SHA2.Equiv.fst.checked",
"Hacl.Impl.SHA2.Generic.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.SHA2.Vec128.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": "SpecVec"
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA2.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.MultiBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NTuple",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
dst0: Lib.Buffer.lbuffer Lib.IntTypes.uint8 28ul ->
dst1: Lib.Buffer.lbuffer Lib.IntTypes.uint8 28ul ->
dst2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 28ul ->
dst3: Lib.Buffer.lbuffer Lib.IntTypes.uint8 28ul ->
input_len: Lib.IntTypes.size_t ->
input0: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len ->
input1: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len ->
input2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len ->
input3: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Hash.Definitions.hash_len",
"Spec.Hash.Definitions.SHA2_224",
"Lib.MultiBuffer.op_Lens_Access",
"FStar.Seq.Properties.lseq",
"Hacl.Spec.SHA2.Vec.lanes",
"Hacl.Spec.SHA2.Vec.M128",
"Lib.MultiBuffer.as_seq_multi",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Prims.unit",
"Hacl.Spec.SHA2.Equiv.hash_agile_lemma",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.SHA2.Generic.hash",
"Hacl.SHA2.Vec128.sha224_init4",
"Hacl.SHA2.Vec128.sha224_update_nblocks4",
"Hacl.SHA2.Vec128.sha224_update_last4",
"Hacl.SHA2.Vec128.sha224_finish4",
"Lib.MultiBuffer.loc_multi4",
"Lib.MultiBuffer.internally_disjoint",
"Lib.MultiBuffer.live_multi",
"Lib.NTuple.ntuple",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.NTuple.ntup4",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2"
] | [] | false | true | false | false | false | let sha224_4 dst0 dst1 dst2 dst3 input_len input0 input1 input2 input3 =
| let ib = ntup4 (input0, (input1, (input2, input3))) in
let rb = ntup4 (dst0, (dst1, (dst2, dst3))) in
let h0 = ST.get () in
assert (live_multi h0 ib);
assert (live_multi h0 rb);
assert (internally_disjoint rb);
loc_multi4 rb;
hash #SHA2_224
#M128
sha224_init4
sha224_update_nblocks4
sha224_update_last4
sha224_finish4
rb
input_len
ib;
let h1 = ST.get () in
Hacl.Spec.SHA2.Equiv.hash_agile_lemma #SHA2_224 #M128 (v input_len) (as_seq_multi h0 ib);
assert ((as_seq_multi h1 rb).(| 0 |) == as_seq h1 dst0);
assert ((as_seq_multi h1 rb).(| 1 |) == as_seq h1 dst1);
assert ((as_seq_multi h1 rb).(| 2 |) == as_seq h1 dst2);
assert ((as_seq_multi h1 rb).(| 3 |) == as_seq h1 dst3) | false |
FStar.Integers.fst | FStar.Integers.cast | val cast (#sw #sw': _) (from: int_t sw {within_bounds sw' (v from)})
: Tot (to: int_t sw' {norm (v from == v to)}) | val cast (#sw #sw': _) (from: int_t sw {within_bounds sw' (v from)})
: Tot (to: int_t sw' {norm (v from == v to)}) | let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 138,
"start_col": 0,
"start_line": 135
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | from: FStar.Integers.int_t sw {FStar.Integers.within_bounds sw' (FStar.Integers.v from)}
-> to:
FStar.Integers.int_t sw' {FStar.Integers.norm (FStar.Integers.v from == FStar.Integers.v to)} | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"FStar.Integers.int_t",
"FStar.Integers.within_bounds",
"FStar.Integers.v",
"FStar.Integers.u",
"FStar.Integers.norm",
"Prims.eq2",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"Prims.l_or"
] | [] | false | false | false | false | false | let cast #sw #sw' (from: int_t sw {within_bounds sw' (v from)})
: Tot (to: int_t sw' {norm (v from == v to)}) =
| u (v from) | false |
FStar.Integers.fst | FStar.Integers.modulo | val modulo : sw: FStar.Integers.signed_width -> x: Prims.int -> y: Prims.pos{Signed? sw ==> y % 2 = 0}
-> Prims.int | let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 184,
"start_col": 0,
"start_line": 181
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sw: FStar.Integers.signed_width -> x: Prims.int -> y: Prims.pos{Signed? sw ==> y % 2 = 0}
-> Prims.int | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"Prims.int",
"Prims.pos",
"Prims.l_imp",
"Prims.b2t",
"FStar.Integers.uu___is_Signed",
"Prims.op_Equality",
"Prims.op_Modulus",
"FStar.Integers.fixed_width",
"FStar.Int.op_At_Percent"
] | [] | false | false | false | false | false | let modulo sw (x: int) (y: pos{Signed? sw ==> y % 2 = 0}) =
| match sw with
| Unsigned _ -> x % y
| _ -> let open FStar.Int in x @% y | false |
|
FStar.Integers.fst | FStar.Integers.op_Subtraction_Question | val ( -? ) (#sw: _{Unsigned? sw}) (x y: int_t sw) : Tot (int_t sw) | val ( -? ) (#sw: _{Unsigned? sw}) (x y: int_t sw) : Tot (int_t sw) | let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 235,
"start_col": 0,
"start_line": 224
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.int_t sw -> y: FStar.Integers.int_t sw -> FStar.Integers.int_t sw | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"Prims.b2t",
"FStar.Integers.uu___is_Unsigned",
"FStar.Integers.int_t",
"FStar.Integers.fixed_width",
"FStar.UInt8.op_Subtraction_Question_Hat",
"FStar.UInt16.op_Subtraction_Question_Hat",
"FStar.UInt32.op_Subtraction_Question_Hat",
"FStar.UInt64.op_Subtraction_Question_Hat",
"FStar.UInt128.op_Subtraction_Question_Hat"
] | [] | false | false | false | false | false | let ( -? ) (#sw: _{Unsigned? sw}) (x y: int_t sw) : Tot (int_t sw) =
| let Unsigned w = sw in
match w with
| W8 -> let open FStar.UInt8 in x -?^ y
| W16 -> let open FStar.UInt16 in x -?^ y
| W32 -> let open FStar.UInt32 in x -?^ y
| W64 -> let open FStar.UInt64 in x -?^ y
| W128 -> let open FStar.UInt128 in x -?^ y | false |
FStar.Integers.fst | FStar.Integers.u | val u (#sw: _) (x: int_t (Signed Winfinite) {within_bounds sw x})
: Tot (y: int_t sw {norm (v x == v y)}) | val u (#sw: _) (x: int_t (Signed Winfinite) {within_bounds sw x})
: Tot (y: int_t sw {norm (v x == v y)}) | let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 131,
"start_col": 0,
"start_line": 113
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x:
FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite)
{FStar.Integers.within_bounds sw x}
-> y: FStar.Integers.int_t sw {FStar.Integers.norm (FStar.Integers.v x == FStar.Integers.v y)} | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.within_bounds",
"FStar.Integers.fixed_width",
"FStar.UInt8.uint_to_t",
"FStar.UInt16.uint_to_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt64.uint_to_t",
"FStar.UInt128.uint_to_t",
"FStar.Integers.norm",
"Prims.eq2",
"Prims.l_or",
"FStar.Integers.v",
"FStar.Integers.width",
"FStar.Int8.int_to_t",
"FStar.Int16.int_to_t",
"FStar.Int32.int_to_t",
"FStar.Int64.int_to_t",
"FStar.Int128.int_to_t"
] | [] | false | false | false | false | false | let u #sw (x: int_t (Signed Winfinite) {within_bounds sw x}) : Tot (y: int_t sw {norm (v x == v y)}) =
| match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x) | false |
FStar.Integers.fst | FStar.Integers.uint_8 | val uint_8 : Type0 | let uint_8 = int_t (Unsigned W8) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 521,
"start_col": 0,
"start_line": 521
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Unsigned",
"FStar.Integers.W8"
] | [] | false | false | false | true | true | let uint_8 =
| int_t (Unsigned W8) | false |
|
FStar.Integers.fst | FStar.Integers.op_Subtraction_Percent | val ( -% ) (#sw: _{Unsigned? sw}) (x y: int_t sw) : Tot (int_t sw) | val ( -% ) (#sw: _{Unsigned? sw}) (x y: int_t sw) : Tot (int_t sw) | let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 251,
"start_col": 0,
"start_line": 240
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.int_t sw -> y: FStar.Integers.int_t sw -> FStar.Integers.int_t sw | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"Prims.b2t",
"FStar.Integers.uu___is_Unsigned",
"FStar.Integers.int_t",
"FStar.Integers.fixed_width",
"FStar.UInt8.op_Subtraction_Percent_Hat",
"FStar.UInt16.op_Subtraction_Percent_Hat",
"FStar.UInt32.op_Subtraction_Percent_Hat",
"FStar.UInt64.op_Subtraction_Percent_Hat",
"FStar.UInt128.op_Subtraction_Percent_Hat"
] | [] | false | false | false | false | false | let ( -% ) (#sw: _{Unsigned? sw}) (x y: int_t sw) : Tot (int_t sw) =
| let Unsigned w = sw in
match w with
| W8 -> let open FStar.UInt8 in x -%^ y
| W16 -> let open FStar.UInt16 in x -%^ y
| W32 -> let open FStar.UInt32 in x -%^ y
| W64 -> let open FStar.UInt64 in x -%^ y
| W128 -> let open FStar.UInt128 in x -%^ y | false |
FStar.Integers.fst | FStar.Integers.uint_64 | val uint_64 : Type0 | let uint_64 = int_t (Unsigned W64) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 533,
"start_col": 0,
"start_line": 533
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Unsigned",
"FStar.Integers.W64"
] | [] | false | false | false | true | true | let uint_64 =
| int_t (Unsigned W64) | false |
|
FStar.Integers.fst | FStar.Integers.uint_32 | val uint_32 : Type0 | let uint_32 = int_t (Unsigned W32) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 529,
"start_col": 0,
"start_line": 529
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Unsigned",
"FStar.Integers.W32"
] | [] | false | false | false | true | true | let uint_32 =
| int_t (Unsigned W32) | false |
|
FStar.Integers.fst | FStar.Integers.uint_16 | val uint_16 : Type0 | let uint_16 = int_t (Unsigned W16) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 525,
"start_col": 0,
"start_line": 525
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Unsigned",
"FStar.Integers.W16"
] | [] | false | false | false | true | true | let uint_16 =
| int_t (Unsigned W16) | false |
|
FStar.Integers.fst | FStar.Integers.int_8 | val int_8 : Type0 | let int_8 = int_t (Signed W8) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 541,
"start_col": 0,
"start_line": 541
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.W8"
] | [] | false | false | false | true | true | let int_8 =
| int_t (Signed W8) | false |
|
FStar.Integers.fst | FStar.Integers.int | val int : Type0 | let int = int_t (Signed Winfinite) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 537,
"start_col": 0,
"start_line": 537
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite"
] | [] | false | false | false | true | true | let int =
| int_t (Signed Winfinite) | false |
|
FStar.Integers.fst | FStar.Integers.int_16 | val int_16 : Type0 | let int_16 = int_t (Signed W16) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 545,
"start_col": 0,
"start_line": 545
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.W16"
] | [] | false | false | false | true | true | let int_16 =
| int_t (Signed W16) | false |
|
FStar.Integers.fst | FStar.Integers.int_32 | val int_32 : Type0 | let int_32 = int_t (Signed W32) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 549,
"start_col": 0,
"start_line": 549
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.W32"
] | [] | false | false | false | true | true | let int_32 =
| int_t (Signed W32) | false |
|
FStar.Integers.fst | FStar.Integers.int_64 | val int_64 : Type0 | let int_64 = int_t (Signed W64) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 553,
"start_col": 0,
"start_line": 553
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.W64"
] | [] | false | false | false | true | true | let int_64 =
| int_t (Signed W64) | false |
|
FStar.Integers.fst | FStar.Integers.nat | val nat : Type0 | let nat = i:int{ i >= 0 } | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 571,
"start_col": 0,
"start_line": 571
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int",
"Prims.b2t",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite"
] | [] | false | false | false | true | true | let nat =
| i: int{i >= 0} | false |
|
FStar.Integers.fst | FStar.Integers.int_128 | val int_128 : Type0 | let int_128 = int_t (Signed W128) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 557,
"start_col": 0,
"start_line": 557
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.W128"
] | [] | false | false | false | true | true | let int_128 =
| int_t (Signed W128) | false |
|
FStar.Integers.fst | FStar.Integers.ok | val ok : op:
(
_: FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) ->
_: FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite)
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite)) ->
x: FStar.Integers.int_t sw ->
y: FStar.Integers.int_t sw
-> Type0 | let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y)) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 567,
"start_col": 0,
"start_line": 561
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
op:
(
_: FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) ->
_: FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite)
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite)) ->
x: FStar.Integers.int_t sw ->
y: FStar.Integers.int_t sw
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"FStar.Integers.int_t",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.within_bounds",
"FStar.Integers.v"
] | [] | false | false | false | false | true | let ok
#sw
(op: (int_t (Signed Winfinite) -> int_t (Signed Winfinite) -> int_t (Signed Winfinite)))
(x: int_t sw)
(y: int_t sw)
=
| within_bounds sw (op (v x) (v y)) | false |
|
FStar.Integers.fst | FStar.Integers.pos | val pos : Type0 | let pos = i:nat{ 0 < i } | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 575,
"start_col": 0,
"start_line": 575
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.nat",
"Prims.b2t",
"FStar.Integers.op_Less",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite"
] | [] | false | false | false | true | true | let pos =
| i: nat{0 < i} | false |
|
FStar.Integers.fst | FStar.Integers.f_nat | val f_nat : x: FStar.Integers.nat -> y: FStar.Integers.nat
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | let f_nat (x:nat) (y:nat) = x + y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 581,
"start_col": 0,
"start_line": 581
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
//////////////////////////////////////////////////////////////////////////////// | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.nat -> y: FStar.Integers.nat
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.nat",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | true | false | let f_nat (x y: nat) =
| x + y | false |
|
FStar.Integers.fst | FStar.Integers.f_int | val f_int : x: FStar.Integers.int -> y: FStar.Integers.int
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | let f_int (x:int) (y:int) = x + y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 580,
"start_col": 0,
"start_line": 580
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.int -> y: FStar.Integers.int
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | true | false | let f_int (x y: int) =
| x + y | false |
|
FStar.Integers.fst | FStar.Integers.f_int_16 | val f_int_16 : x: FStar.Integers.int_16 -> y: FStar.Integers.int_16{FStar.Integers.ok FStar.Integers.op_Plus x y}
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.W16) | let f_int_16 (x:int_16) (y:int_16{ok (+) x y}) = x + y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 584,
"start_col": 0,
"start_line": 584
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y
let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.int_16 -> y: FStar.Integers.int_16{FStar.Integers.ok FStar.Integers.op_Plus x y}
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.W16) | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.int_16",
"FStar.Integers.ok",
"FStar.Integers.Signed",
"FStar.Integers.W16",
"FStar.Integers.op_Plus",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | false | false | let f_int_16 (x: int_16) (y: int_16{ok ( + ) x y}) =
| x + y | false |
|
FStar.Integers.fst | FStar.Integers.op_Slash | val ( / )
(#sw: signed_width{sw <> Unsigned W128})
(x: int_t sw)
(y:
int_t sw
{ 0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw ((v x) `FStar.Int.op_Slash` (v y))) })
: Tot (int_t sw) | val ( / )
(#sw: signed_width{sw <> Unsigned W128})
(x: int_t sw)
(y:
int_t sw
{ 0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw ((v x) `FStar.Int.op_Slash` (v y))) })
: Tot (int_t sw) | let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y) | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 406,
"start_col": 0,
"start_line": 389
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.Integers.int_t sw ->
y:
FStar.Integers.int_t sw
{ 0 <> FStar.Integers.v y /\
(match sw with
| FStar.Integers.Unsigned _ ->
FStar.Integers.within_bounds sw (FStar.Integers.v x / FStar.Integers.v y)
| FStar.Integers.Signed _ ->
FStar.Integers.within_bounds sw (FStar.Integers.v x / FStar.Integers.v y)) }
-> FStar.Integers.int_t sw | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.signed_width",
"Prims.b2t",
"Prims.op_disEquality",
"FStar.Integers.Unsigned",
"FStar.Integers.W128",
"FStar.Integers.int_t",
"Prims.l_and",
"Prims.int",
"FStar.Integers.v",
"FStar.Integers.fixed_width",
"FStar.Integers.within_bounds",
"Prims.op_Division",
"FStar.Integers.width",
"FStar.Int.op_Slash",
"Prims.logical",
"FStar.UInt8.op_Slash_Hat",
"FStar.UInt16.op_Slash_Hat",
"FStar.UInt32.op_Slash_Hat",
"FStar.UInt64.op_Slash_Hat",
"FStar.Int8.op_Slash_Hat",
"FStar.Int16.op_Slash_Hat",
"FStar.Int32.op_Slash_Hat",
"FStar.Int64.op_Slash_Hat",
"FStar.Int128.op_Slash_Hat"
] | [] | false | false | false | false | false | let ( / )
(#sw: signed_width{sw <> Unsigned W128})
(x: int_t sw)
(y:
int_t sw
{ 0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw ((v x) `FStar.Int.op_Slash` (v y))) })
: Tot (int_t sw) =
| match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> let open FStar.UInt8 in x /^ y
| Unsigned W16 -> let open FStar.UInt16 in x /^ y
| Unsigned W32 -> let open FStar.UInt32 in x /^ y
| Unsigned W64 -> let open FStar.UInt64 in x /^ y
| Signed W8 -> let open FStar.Int8 in x /^ y
| Signed W16 -> let open FStar.Int16 in x /^ y
| Signed W32 -> let open FStar.Int32 in x /^ y
| Signed W64 -> let open FStar.Int64 in x /^ y
| Signed W128 -> let open FStar.Int128 in x /^ y | false |
FStar.Integers.fst | FStar.Integers.f_nat_int_pos | val f_nat_int_pos : x: FStar.Integers.nat -> y: FStar.Integers.int -> z: FStar.Integers.pos
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 582,
"start_col": 0,
"start_line": 582
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.nat -> y: FStar.Integers.int -> z: FStar.Integers.pos
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.nat",
"FStar.Integers.int",
"FStar.Integers.pos",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | true | false | let f_nat_int_pos (x: nat) (y: int) (z: pos) =
| x + y + z | false |
|
FStar.Integers.fst | FStar.Integers.f_uint_8 | val f_uint_8 : x: FStar.Integers.uint_8 -> y: FStar.Integers.uint_8{FStar.Integers.ok FStar.Integers.op_Plus x y}
-> FStar.Integers.int_t (FStar.Integers.Unsigned FStar.Integers.W8) | let f_uint_8 (x:uint_8) (y:uint_8{ok (+) x y}) = x + y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 583,
"start_col": 0,
"start_line": 583
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.uint_8 -> y: FStar.Integers.uint_8{FStar.Integers.ok FStar.Integers.op_Plus x y}
-> FStar.Integers.int_t (FStar.Integers.Unsigned FStar.Integers.W8) | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.uint_8",
"FStar.Integers.ok",
"FStar.Integers.Unsigned",
"FStar.Integers.W8",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | false | false | let f_uint_8 (x: uint_8) (y: uint_8{ok ( + ) x y}) =
| x + y | false |
|
FStar.Integers.fst | FStar.Integers.i | val i : x: Prims.nat -> y: Prims.nat
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | let i (x:Prims.nat) (y:Prims.nat) = x + y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 587,
"start_col": 0,
"start_line": 587
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y
let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z
let f_uint_8 (x:uint_8) (y:uint_8{ok (+) x y}) = x + y
let f_int_16 (x:int_16) (y:int_16{ok (+) x y}) = x + y
let g (x:uint_32) (y:uint_32{ok ( * ) y y /\ ok (+) x (y * y)}) = x + y * y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat -> y: Prims.nat
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | true | false | let i (x y: Prims.nat) =
| x + y | false |
|
FStar.Integers.fst | FStar.Integers.j | val j : x: Prims.int -> y: Prims.nat
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | let j (x:Prims.int) (y:Prims.nat) = x - y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 588,
"start_col": 0,
"start_line": 588
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y
let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z
let f_uint_8 (x:uint_8) (y:uint_8{ok (+) x y}) = x + y
let f_int_16 (x:int_16) (y:int_16{ok (+) x y}) = x + y
let g (x:uint_32) (y:uint_32{ok ( * ) y y /\ ok (+) x (y * y)}) = x + y * y
let h (x:Prims.nat) (y:Prims.nat): nat = u x + u y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.nat
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims.nat",
"FStar.Integers.op_Subtraction",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | true | false | let j (x: Prims.int) (y: Prims.nat) =
| x - y | false |
|
Spec.Hash.Incremental.fst | Spec.Hash.Incremental._sync_decl | val _sync_decl : Type0 | val _sync_decl : Type0 | let _sync_decl = unit | {
"file_name": "specs/lemmas/Spec.Hash.Incremental.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 21,
"end_line": 17,
"start_col": 0,
"start_line": 17
} | module Spec.Hash.Incremental
module S = FStar.Seq
module Blake2 = Spec.Blake2
open Spec.Agile.Hash
open Spec.Hash.Definitions
friend Spec.Agile.Hash
open FStar.Mul
module Loops = Lib.LoopCombinators
#set-options "--fuel 0 --ifuel 0 --z3rlimit 50" | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Incremental.fsti.checked",
"Spec.MD.Incremental.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.Blake2.Incremental.fsti.checked",
"Spec.Blake2.fst.checked",
"Spec.Agile.Hash.fst.checked",
"Spec.Agile.Hash.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Hash.Incremental.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Blake2"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.UpdateMulti",
"short_module": "UpdateMulti"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Blake2"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Spec.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.unit"
] | [] | false | false | false | true | true | let _sync_decl =
| unit | false |
FStar.Integers.fst | FStar.Integers.g | val g : x: FStar.Integers.uint_32 ->
y:
FStar.Integers.uint_32
{ FStar.Integers.ok FStar.Integers.op_Star y y /\
FStar.Integers.ok FStar.Integers.op_Plus x (y * y) }
-> FStar.Integers.int_t (FStar.Integers.Unsigned FStar.Integers.W32) | let g (x:uint_32) (y:uint_32{ok ( * ) y y /\ ok (+) x (y * y)}) = x + y * y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 75,
"end_line": 585,
"start_col": 0,
"start_line": 585
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y
let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z
let f_uint_8 (x:uint_8) (y:uint_8{ok (+) x y}) = x + y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.Integers.uint_32 ->
y:
FStar.Integers.uint_32
{ FStar.Integers.ok FStar.Integers.op_Star y y /\
FStar.Integers.ok FStar.Integers.op_Plus x (y * y) }
-> FStar.Integers.int_t (FStar.Integers.Unsigned FStar.Integers.W32) | Prims.Tot | [
"total"
] | [] | [
"FStar.Integers.uint_32",
"Prims.l_and",
"FStar.Integers.ok",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.op_Star",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.op_Plus",
"FStar.Integers.int_t"
] | [] | false | false | false | false | false | let g (x: uint_32) (y: uint_32{ok ( * ) y y /\ ok ( + ) x (y * y)}) =
| x + y * y | false |
|
FStar.Integers.fst | FStar.Integers.k | val k : x: Prims.int -> y: Prims.int
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | let k (x:Prims.int) (y:Prims.int) = x * y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 41,
"end_line": 589,
"start_col": 0,
"start_line": 589
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y
let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z
let f_uint_8 (x:uint_8) (y:uint_8{ok (+) x y}) = x + y
let f_int_16 (x:int_16) (y:int_16{ok (+) x y}) = x + y
let g (x:uint_32) (y:uint_32{ok ( * ) y y /\ ok (+) x (y * y)}) = x + y * y
let h (x:Prims.nat) (y:Prims.nat): nat = u x + u y
let i (x:Prims.nat) (y:Prims.nat) = x + y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.int
-> FStar.Integers.int_t (FStar.Integers.Signed FStar.Integers.Winfinite) | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.Integers.op_Star",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.int_t"
] | [] | false | false | false | true | false | let k (x y: Prims.int) =
| x * y | false |
|
Hacl.SHA2.Vec128.fst | Hacl.SHA2.Vec128.sha256_4 | val sha256_4 (dst0 dst1 dst2 dst3: lbuffer uint8 32ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_256 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_256 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_256 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_256 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_256 (as_seq h0 input3)) | val sha256_4 (dst0 dst1 dst2 dst3: lbuffer uint8 32ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_256 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_256 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_256 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_256 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_256 (as_seq h0 input3)) | let sha256_4 dst0 dst1 dst2 dst3 input_len input0 input1 input2 input3 =
let ib = ntup4 (input0,(input1,(input2,input3))) in
let rb = ntup4 (dst0,(dst1,(dst2,dst3))) in
let h0 = ST.get() in
assert (live_multi h0 ib);
assert (live_multi h0 rb);
assert (internally_disjoint rb);
loc_multi4 rb;
hash #SHA2_256 #M128 sha256_init4 sha256_update_nblocks4 sha256_update_last4 sha256_finish4 rb input_len ib;
let h1 = ST.get() in
Hacl.Spec.SHA2.Equiv.hash_agile_lemma #SHA2_256 #M128 (v input_len) (as_seq_multi h0 ib);
assert ((as_seq_multi h1 rb).(|0|) == as_seq h1 dst0);
assert ((as_seq_multi h1 rb).(|1|) == as_seq h1 dst1);
assert ((as_seq_multi h1 rb).(|2|) == as_seq h1 dst2);
assert ((as_seq_multi h1 rb).(|3|) == as_seq h1 dst3) | {
"file_name": "code/sha2-mb/Hacl.SHA2.Vec128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 91,
"start_col": 0,
"start_line": 77
} | module Hacl.SHA2.Vec128
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.NTuple
open Lib.Buffer
open Lib.MultiBuffer
open Spec.Hash.Definitions
open Hacl.Spec.SHA2.Vec
open Hacl.Impl.SHA2.Generic
module ST = FStar.HyperStack.ST
module Spec = Spec.Agile.Hash
module SpecVec = Hacl.Spec.SHA2.Vec
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
[@CInline] private let sha224_init4 = init #SHA2_224 #M128
[@CInline] private let sha224_update4 = update #SHA2_224 #M128
[@CInline] private let sha224_update_nblocks4 = update_nblocks #SHA2_224 #M128 sha224_update4
[@CInline] private let sha224_update_last4 = update_last #SHA2_224 #M128 sha224_update4
[@CInline] private let sha224_finish4 = finish #SHA2_224 #M128
val sha224_4 (dst0 dst1 dst2 dst3: lbuffer uint8 28ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_224 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_224 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_224 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_224 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_224 (as_seq h0 input3))
let sha224_4 dst0 dst1 dst2 dst3 input_len input0 input1 input2 input3 =
let ib = ntup4 (input0,(input1,(input2,input3))) in
let rb = ntup4 (dst0,(dst1,(dst2,dst3))) in
let h0 = ST.get() in
assert (live_multi h0 ib);
assert (live_multi h0 rb);
assert (internally_disjoint rb);
loc_multi4 rb;
hash #SHA2_224 #M128 sha224_init4 sha224_update_nblocks4 sha224_update_last4 sha224_finish4 rb input_len ib;
let h1 = ST.get() in
Hacl.Spec.SHA2.Equiv.hash_agile_lemma #SHA2_224 #M128 (v input_len) (as_seq_multi h0 ib);
assert ((as_seq_multi h1 rb).(|0|) == as_seq h1 dst0);
assert ((as_seq_multi h1 rb).(|1|) == as_seq h1 dst1);
assert ((as_seq_multi h1 rb).(|2|) == as_seq h1 dst2);
assert ((as_seq_multi h1 rb).(|3|) == as_seq h1 dst3)
[@CInline] private let sha256_init4 = init #SHA2_256 #M128
[@CInline] private let sha256_update4 = update #SHA2_256 #M128
[@CInline] private let sha256_update_nblocks4 = update_nblocks #SHA2_256 #M128 sha256_update4
[@CInline] private let sha256_update_last4 = update_last #SHA2_256 #M128 sha256_update4
[@CInline] private let sha256_finish4 = finish #SHA2_256 #M128
val sha256_4 (dst0 dst1 dst2 dst3: lbuffer uint8 32ul) (input_len:size_t) (input0 input1 input2 input3: lbuffer uint8 input_len) :
Stack unit
(requires fun h0 -> v input_len `less_than_max_input_length` SHA2_256 /\
live4 h0 input0 input1 input2 input3 /\
live4 h0 dst0 dst1 dst2 dst3 /\
internally_disjoint4 dst0 dst1 dst2 dst3)
(ensures fun h0 _ h1 -> modifies (loc dst0 |+| loc dst1 |+| loc dst2 |+| loc dst3) h0 h1 /\
as_seq h1 dst0 == Spec.hash SHA2_256 (as_seq h0 input0) /\
as_seq h1 dst1 == Spec.hash SHA2_256 (as_seq h0 input1) /\
as_seq h1 dst2 == Spec.hash SHA2_256 (as_seq h0 input2) /\
as_seq h1 dst3 == Spec.hash SHA2_256 (as_seq h0 input3)) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.NTuple.fsti.checked",
"Lib.MultiBuffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.SHA2.Vec.fst.checked",
"Hacl.Spec.SHA2.Equiv.fst.checked",
"Hacl.Impl.SHA2.Generic.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.SHA2.Vec128.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": "SpecVec"
},
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Spec"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.SHA2.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.SHA2.Vec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.MultiBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NTuple",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.SHA2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
dst0: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
dst1: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
dst2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
dst3: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
input_len: Lib.IntTypes.size_t ->
input0: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len ->
input1: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len ->
input2: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len ->
input3: Lib.Buffer.lbuffer Lib.IntTypes.uint8 input_len
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Hash.Definitions.hash_len",
"Spec.Hash.Definitions.SHA2_256",
"Lib.MultiBuffer.op_Lens_Access",
"FStar.Seq.Properties.lseq",
"Hacl.Spec.SHA2.Vec.lanes",
"Hacl.Spec.SHA2.Vec.M128",
"Lib.MultiBuffer.as_seq_multi",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Prims.unit",
"Hacl.Spec.SHA2.Equiv.hash_agile_lemma",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.SHA2.Generic.hash",
"Hacl.SHA2.Vec128.sha256_init4",
"Hacl.SHA2.Vec128.sha256_update_nblocks4",
"Hacl.SHA2.Vec128.sha256_update_last4",
"Hacl.SHA2.Vec128.sha256_finish4",
"Lib.MultiBuffer.loc_multi4",
"Lib.MultiBuffer.internally_disjoint",
"Lib.MultiBuffer.live_multi",
"Lib.NTuple.ntuple",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.NTuple.ntup4",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2"
] | [] | false | true | false | false | false | let sha256_4 dst0 dst1 dst2 dst3 input_len input0 input1 input2 input3 =
| let ib = ntup4 (input0, (input1, (input2, input3))) in
let rb = ntup4 (dst0, (dst1, (dst2, dst3))) in
let h0 = ST.get () in
assert (live_multi h0 ib);
assert (live_multi h0 rb);
assert (internally_disjoint rb);
loc_multi4 rb;
hash #SHA2_256
#M128
sha256_init4
sha256_update_nblocks4
sha256_update_last4
sha256_finish4
rb
input_len
ib;
let h1 = ST.get () in
Hacl.Spec.SHA2.Equiv.hash_agile_lemma #SHA2_256 #M128 (v input_len) (as_seq_multi h0 ib);
assert ((as_seq_multi h1 rb).(| 0 |) == as_seq h1 dst0);
assert ((as_seq_multi h1 rb).(| 1 |) == as_seq h1 dst1);
assert ((as_seq_multi h1 rb).(| 2 |) == as_seq h1 dst2);
assert ((as_seq_multi h1 rb).(| 3 |) == as_seq h1 dst3) | false |
FStar.Integers.fst | FStar.Integers.h | val h (x y: Prims.nat) : nat | val h (x y: Prims.nat) : nat | let h (x:Prims.nat) (y:Prims.nat): nat = u x + u y | {
"file_name": "ulib/FStar.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 586,
"start_col": 0,
"start_line": 586
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Integers
#set-options "--initial_ifuel 2 --max_ifuel 2 --initial_fuel 0 --max_fuel 0"
irreducible
let mark_for_norm = ()
unfold
let norm (#a:Type) (x:a) = norm [iota; delta_attr [`%mark_for_norm]] x
type width =
| W8
| W16
| W32
| W64
| W128
| Winfinite
[@@mark_for_norm]
let nat_of_width = function
| W8 -> Some 8
| W16 -> Some 16
| W32 -> Some 32
| W64 -> Some 64
| W128 -> Some 128
| Winfinite -> None
let fixed_width = w:width{w <> Winfinite}
[@@mark_for_norm]
let nat_of_fixed_width (w:fixed_width) =
match nat_of_width w with
| Some v -> v
type signed_width =
| Signed of width
| Unsigned of fixed_width //We don't support (Unsigned WInfinite); use nat instead
[@@mark_for_norm]
let width_of_sw = function
| Signed w -> w
| Unsigned w -> w
[@@mark_for_norm]
noextract
inline_for_extraction
let int_t sw : Tot Type0 =
match sw with
| Unsigned W8 -> FStar.UInt8.t
| Unsigned W16 -> FStar.UInt16.t
| Unsigned W32 -> FStar.UInt32.t
| Unsigned W64 -> FStar.UInt64.t
| Unsigned W128 -> FStar.UInt128.t
| Signed Winfinite -> int
| Signed W8 -> FStar.Int8.t
| Signed W16 -> FStar.Int16.t
| Signed W32 -> FStar.Int32.t
| Signed W64 -> FStar.Int64.t
| Signed W128 -> FStar.Int128.t
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let within_bounds' sw (x:int) =
match sw, nat_of_width (width_of_sw sw) with
| Signed _, None -> True
| Signed _, Some n -> FStar.Int.size x n
| Unsigned _, Some n -> FStar.UInt.size x n
unfold
let within_bounds sw x = norm (within_bounds' sw x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let v #sw (x:int_t sw)
: Tot (y:int_t (Signed Winfinite){within_bounds sw y})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.v x
| W16 -> FStar.UInt16.v x
| W32 -> FStar.UInt32.v x
| W64 -> FStar.UInt64.v x
| W128 -> FStar.UInt128.v x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.v x
| W16 -> FStar.Int16.v x
| W32 -> FStar.Int32.v x
| W64 -> FStar.Int64.v x
| W128 -> FStar.Int128.v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let u #sw
(x:int_t (Signed Winfinite){within_bounds sw x})
: Tot (y:int_t sw{norm (v x == v y)})
= match sw with
| Unsigned w ->
(match w with
| W8 -> FStar.UInt8.uint_to_t x
| W16 -> FStar.UInt16.uint_to_t x
| W32 -> FStar.UInt32.uint_to_t x
| W64 -> FStar.UInt64.uint_to_t x
| W128 -> FStar.UInt128.uint_to_t x)
| Signed w ->
(match w with
| Winfinite -> x
| W8 -> FStar.Int8.int_to_t x
| W16 -> FStar.Int16.int_to_t x
| W32 -> FStar.Int32.int_to_t x
| W64 -> FStar.Int64.int_to_t x
| W128 -> FStar.Int128.int_to_t x)
irreducible
noextract
let cast #sw #sw'
(from:int_t sw{within_bounds sw' (v from)})
: Tot (to:int_t sw'{norm (v from == v to)})
= u (v from)
[@@mark_for_norm]
unfold
noextract
let cast_ok #from to (x:int_t from) = within_bounds to (v x)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( + ) #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x + v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x + y
| Unsigned W8 -> FStar.UInt8.(x +^ y)
| Unsigned W16 -> FStar.UInt16.(x +^ y)
| Unsigned W32 -> FStar.UInt32.(x +^ y)
| Unsigned W64 -> FStar.UInt64.(x +^ y)
| Unsigned W128 -> FStar.UInt128.(x +^ y)
| Signed W8 -> FStar.Int8.(x +^ y)
| Signed W16 -> FStar.Int16.(x +^ y)
| Signed W32 -> FStar.Int32.(x +^ y)
| Signed W64 -> FStar.Int64.(x +^ y)
| Signed W128 -> FStar.Int128.(x +^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +? ) (#w:fixed_width)
(x:int_t (Unsigned w))
(y:int_t (Unsigned w))
: Tot (int_t (Unsigned w))
= match w with
| W8 -> FStar.UInt8.(x +?^ y)
| W16 -> FStar.UInt16.(x +?^ y)
| W32 -> FStar.UInt32.(x +?^ y)
| W64 -> FStar.UInt64.(x +?^ y)
| W128 -> FStar.UInt128.(x +?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
noextract
let modulo sw (x:int) (y:pos{Signed? sw ==> y%2=0}) =
match sw with
| Unsigned _ -> x % y
| _ -> FStar.Int.(x @% y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( +% ) (#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x +%^ y)
| W16 -> FStar.UInt16.(x +%^ y)
| W32 -> FStar.UInt32.(x +%^ y)
| W64 -> FStar.UInt64.(x +%^ y)
| W128 -> FStar.UInt128.(x +%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction #sw
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x - v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x - y
| Unsigned W8 -> FStar.UInt8.(x -^ y)
| Unsigned W16 -> FStar.UInt16.(x -^ y)
| Unsigned W32 -> FStar.UInt32.(x -^ y)
| Unsigned W64 -> FStar.UInt64.(x -^ y)
| Unsigned W128 -> FStar.UInt128.(x -^ y)
| Signed W8 -> FStar.Int8.(x -^ y)
| Signed W16 -> FStar.Int16.(x -^ y)
| Signed W32 -> FStar.Int32.(x -^ y)
| Signed W64 -> FStar.Int64.(x -^ y)
| Signed W128 -> FStar.Int128.(x -^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Question
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -?^ y)
| W16 -> FStar.UInt16.(x -?^ y)
| W32 -> FStar.UInt32.(x -?^ y)
| W64 -> FStar.UInt64.(x -?^ y)
| W128 -> FStar.UInt128.(x -?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Subtraction_Percent
(#sw:_{Unsigned? sw})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x -%^ y)
| W16 -> FStar.UInt16.(x -%^ y)
| W32 -> FStar.UInt32.(x -%^ y)
| W64 -> FStar.UInt64.(x -%^ y)
| W128 -> FStar.UInt128.(x -%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let op_Minus
(#sw:_{Signed? sw})
(x:int_t sw{within_bounds sw (0 - v x)})
: Tot (int_t sw)
= let Signed w = sw in
match w with
| Winfinite -> 0 - x
| W8 -> FStar.Int8.(0y -^ x)
| W16 -> FStar.Int16.(0s -^ x)
| W32 -> FStar.Int32.(0l -^ x)
| W64 -> FStar.Int64.(0L -^ x)
| W128 -> FStar.Int128.(int_to_t 0 -^ x)
open FStar.Mul
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( * ) (#sw:signed_width{width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw{within_bounds sw (v x * v y)})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x * y
| Unsigned W8 -> FStar.UInt8.(x *^ y)
| Unsigned W16 -> FStar.UInt16.(x *^ y)
| Unsigned W32 -> FStar.UInt32.(x *^ y)
| Unsigned W64 -> FStar.UInt64.(x *^ y)
| Signed W8 -> FStar.Int8.(x *^ y)
| Signed W16 -> FStar.Int16.(x *^ y)
| Signed W32 -> FStar.Int32.(x *^ y)
| Signed W64 -> FStar.Int64.(x *^ y)
| Signed W128 -> FStar.Int128.(x *^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *? ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *?^ y)
| W16 -> FStar.UInt16.(x *?^ y)
| W32 -> FStar.UInt32.(x *?^ y)
| W64 -> FStar.UInt64.(x *?^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( *% ) (#sw:_{Unsigned? sw /\ width_of_sw sw <> W128})
(x:int_t sw)
(y:int_t sw)
: Tot (int_t sw)
= let Unsigned w = sw in
match w with
| W8 -> FStar.UInt8.(x *%^ y)
| W16 -> FStar.UInt16.(x *%^ y)
| W32 -> FStar.UInt32.(x *%^ y)
| W64 -> FStar.UInt64.(x *%^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( > ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x > y
| Unsigned W8 -> FStar.UInt8.(x >^ y)
| Unsigned W16 -> FStar.UInt16.(x >^ y)
| Unsigned W32 -> FStar.UInt32.(x >^ y)
| Unsigned W64 -> FStar.UInt64.(x >^ y)
| Unsigned W128 -> FStar.UInt128.(x >^ y)
| Signed W8 -> FStar.Int8.(x >^ y)
| Signed W16 -> FStar.Int16.(x >^ y)
| Signed W32 -> FStar.Int32.(x >^ y)
| Signed W64 -> FStar.Int64.(x >^ y)
| Signed W128 -> FStar.Int128.(x >^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x >= y
| Unsigned W8 -> FStar.UInt8.(x >=^ y)
| Unsigned W16 -> FStar.UInt16.(x >=^ y)
| Unsigned W32 -> FStar.UInt32.(x >=^ y)
| Unsigned W64 -> FStar.UInt64.(x >=^ y)
| Unsigned W128 -> FStar.UInt128.(x >=^ y)
| Signed W8 -> FStar.Int8.(x >=^ y)
| Signed W16 -> FStar.Int16.(x >=^ y)
| Signed W32 -> FStar.Int32.(x >=^ y)
| Signed W64 -> FStar.Int64.(x >=^ y)
| Signed W128 -> FStar.Int128.(x >=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( < ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x < y
| Unsigned W8 -> FStar.UInt8.(x <^ y)
| Unsigned W16 -> FStar.UInt16.(x <^ y)
| Unsigned W32 -> FStar.UInt32.(x <^ y)
| Unsigned W64 -> FStar.UInt64.(x <^ y)
| Unsigned W128 -> FStar.UInt128.(x <^ y)
| Signed W8 -> FStar.Int8.(x <^ y)
| Signed W16 -> FStar.Int16.(x <^ y)
| Signed W32 -> FStar.Int32.(x <^ y)
| Signed W64 -> FStar.Int64.(x <^ y)
| Signed W128 -> FStar.Int128.(x <^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <= ) #sw (x:int_t sw) (y:int_t sw) : bool =
match sw with
| Signed Winfinite -> x <= y
| Unsigned W8 -> FStar.UInt8.(x <=^ y)
| Unsigned W16 -> FStar.UInt16.(x <=^ y)
| Unsigned W32 -> FStar.UInt32.(x <=^ y)
| Unsigned W64 -> FStar.UInt64.(x <=^ y)
| Unsigned W128 -> FStar.UInt128.(x <=^ y)
| Signed W8 -> FStar.Int8.(x <=^ y)
| Signed W16 -> FStar.Int16.(x <=^ y)
| Signed W32 -> FStar.Int32.(x <=^ y)
| Signed W64 -> FStar.Int64.(x <=^ y)
| Signed W128 -> FStar.Int128.(x <=^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( / ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (v x / v y)
| Signed _ -> within_bounds sw (v x `FStar.Int.op_Slash` v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x / y
| Unsigned W8 -> FStar.UInt8.(x /^ y)
| Unsigned W16 -> FStar.UInt16.(x /^ y)
| Unsigned W32 -> FStar.UInt32.(x /^ y)
| Unsigned W64 -> FStar.UInt64.(x /^ y)
| Signed W8 -> FStar.Int8.(x /^ y)
| Signed W16 -> FStar.Int16.(x /^ y)
| Signed W32 -> FStar.Int32.(x /^ y)
| Signed W64 -> FStar.Int64.(x /^ y)
| Signed W128 -> FStar.Int128.(x /^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( % ) (#sw:signed_width{sw <> Unsigned W128})
(x:int_t sw)
(y:int_t sw{0 <> (v y <: Prims.int) /\
(match sw with
| Unsigned _ -> within_bounds sw (FStar.UInt.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))
| Signed Winfinite -> True
| Signed _ -> within_bounds sw (FStar.Int.mod #(nat_of_fixed_width (width_of_sw sw)) (v x) (v y))) /\
within_bounds sw (FStar.Int.op_Slash (v x) (v y))})
: Tot (int_t sw)
= match sw with
| Signed Winfinite -> x % y
| Unsigned W8 -> FStar.UInt8.(x %^ y)
| Unsigned W16 -> FStar.UInt16.(x %^ y)
| Unsigned W32 -> FStar.UInt32.(x %^ y)
| Unsigned W64 -> FStar.UInt64.(x %^ y)
| Signed W8 -> FStar.Int8.(x %^ y)
| Signed W16 -> FStar.Int16.(x %^ y)
| Signed W32 -> FStar.Int32.(x %^ y)
| Signed W64 -> FStar.Int64.(x %^ y)
| Signed W128 -> FStar.Int128.(x %^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( ^^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x ^^ y)
| Unsigned W16 -> FStar.UInt16.(x ^^ y)
| Unsigned W32 -> FStar.UInt32.(x ^^ y)
| Unsigned W64 -> FStar.UInt64.(x ^^ y)
| Unsigned W128 -> FStar.UInt128.(x ^^ y)
| Signed W8 -> FStar.Int8.(x ^^ y)
| Signed W16 -> FStar.Int16.(x ^^ y)
| Signed W32 -> FStar.Int32.(x ^^ y)
| Signed W64 -> FStar.Int64.(x ^^ y)
| Signed W128 -> FStar.Int128.(x ^^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( &^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x &^ y)
| Unsigned W16 -> FStar.UInt16.(x &^ y)
| Unsigned W32 -> FStar.UInt32.(x &^ y)
| Unsigned W64 -> FStar.UInt64.(x &^ y)
| Unsigned W128 -> FStar.UInt128.(x &^ y)
| Signed W8 -> FStar.Int8.(x &^ y)
| Signed W16 -> FStar.Int16.(x &^ y)
| Signed W32 -> FStar.Int32.(x &^ y)
| Signed W64 -> FStar.Int64.(x &^ y)
| Signed W128 -> FStar.Int128.(x &^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( |^ ) #sw (x:int_t sw) (y:int_t sw{width_of_sw sw <> Winfinite})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x |^ y)
| Unsigned W16 -> FStar.UInt16.(x |^ y)
| Unsigned W32 -> FStar.UInt32.(x |^ y)
| Unsigned W64 -> FStar.UInt64.(x |^ y)
| Unsigned W128 -> FStar.UInt128.(x |^ y)
| Signed W8 -> FStar.Int8.(x |^ y)
| Signed W16 -> FStar.Int16.(x |^ y)
| Signed W32 -> FStar.Int32.(x |^ y)
| Signed W64 -> FStar.Int64.(x |^ y)
| Signed W128 -> FStar.Int128.(x |^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( <<^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw) /\ (Signed? sw ==> within_bounds sw (v x * pow2 (v y)))})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x <<^ y)
| Unsigned W16 -> FStar.UInt16.(x <<^ y)
| Unsigned W32 -> FStar.UInt32.(x <<^ y)
| Unsigned W64 -> FStar.UInt64.(x <<^ y)
| Unsigned W128 -> FStar.UInt128.(x <<^ y)
| Signed W8 -> FStar.Int8.(x <<^ y)
| Signed W16 -> FStar.Int16.(x <<^ y)
| Signed W32 -> FStar.Int32.(x <<^ y)
| Signed W64 -> FStar.Int64.(x <<^ y)
| Signed W128 -> FStar.Int128.(x <<^ y)
[@@mark_for_norm; strict_on_arguments [0]]
unfold
noextract
let ( >>^ ) #sw (x:int_t sw{0 <= v x})
(y:int_t (Unsigned W32){width_of_sw sw <> Winfinite /\ v y < nat_of_fixed_width (width_of_sw sw)})
: Tot (int_t sw)
= match sw with
| Unsigned W8 -> FStar.UInt8.(x >>^ y)
| Unsigned W16 -> FStar.UInt16.(x >>^ y)
| Unsigned W32 -> FStar.UInt32.(x >>^ y)
| Unsigned W64 -> FStar.UInt64.(x >>^ y)
| Unsigned W128 -> FStar.UInt128.(x >>^ y)
| Signed W8 -> FStar.Int8.(x >>^ y)
| Signed W16 -> FStar.Int16.(x >>^ y)
| Signed W32 -> FStar.Int32.(x >>^ y)
| Signed W64 -> FStar.Int64.(x >>^ y)
| Signed W128 -> FStar.Int128.(x >>^ y)
[@@mark_for_norm]
unfold
let uint_8 = int_t (Unsigned W8)
[@@mark_for_norm]
unfold
let uint_16 = int_t (Unsigned W16)
[@@mark_for_norm]
unfold
let uint_32 = int_t (Unsigned W32)
[@@mark_for_norm]
unfold
let uint_64 = int_t (Unsigned W64)
[@@mark_for_norm]
unfold
let int = int_t (Signed Winfinite)
[@@mark_for_norm]
unfold
let int_8 = int_t (Signed W8)
[@@mark_for_norm]
unfold
let int_16 = int_t (Signed W16)
[@@mark_for_norm]
unfold
let int_32 = int_t (Signed W32)
[@@mark_for_norm]
unfold
let int_64 = int_t (Signed W64)
[@@mark_for_norm]
unfold
let int_128 = int_t (Signed W128)
[@@mark_for_norm]
unfold
let ok #sw
(op:(int_t (Signed Winfinite)
-> int_t (Signed Winfinite)
-> int_t (Signed Winfinite)))
(x:int_t sw)
(y:int_t sw)
= within_bounds sw (op (v x) (v y))
[@@mark_for_norm]
unfold
let nat = i:int{ i >= 0 }
[@@mark_for_norm]
unfold
let pos = i:nat{ 0 < i }
////////////////////////////////////////////////////////////////////////////////
//Test
////////////////////////////////////////////////////////////////////////////////
let f_int (x:int) (y:int) = x + y
let f_nat (x:nat) (y:nat) = x + y
let f_nat_int_pos (x:nat) (y:int) (z:pos) = x + y + z
let f_uint_8 (x:uint_8) (y:uint_8{ok (+) x y}) = x + y
let f_int_16 (x:int_16) (y:int_16{ok (+) x y}) = x + y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat -> y: Prims.nat -> FStar.Integers.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.u",
"FStar.Integers.nat"
] | [] | false | false | false | true | false | let h (x y: Prims.nat) : nat =
| u x + u y | false |
Spec.Hash.Incremental.fst | Spec.Hash.Incremental.hash_is_hash_incremental' | val hash_is_hash_incremental' (a: hash_alg) (input: bytes { S.length input `less_than_max_input_length` a })
(l: output_length a):
Lemma (S.equal (hash' a input l) (hash_incremental a input l)) | val hash_is_hash_incremental' (a: hash_alg) (input: bytes { S.length input `less_than_max_input_length` a })
(l: output_length a):
Lemma (S.equal (hash' a input l) (hash_incremental a input l)) | let hash_is_hash_incremental' (a: hash_alg) (input: bytes { S.length input `less_than_max_input_length` a }) l =
if is_blake a then
Spec.Blake2.Incremental.blake2_is_hash_incremental a input
else if is_keccak a then
Spec.SHA3.Incremental.sha3_is_incremental a input l
else
Spec.MD.Incremental.md_is_hash_incremental a input (init a) | {
"file_name": "specs/lemmas/Spec.Hash.Incremental.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 27,
"start_col": 0,
"start_line": 21
} | module Spec.Hash.Incremental
module S = FStar.Seq
module Blake2 = Spec.Blake2
open Spec.Agile.Hash
open Spec.Hash.Definitions
friend Spec.Agile.Hash
open FStar.Mul
module Loops = Lib.LoopCombinators
#set-options "--fuel 0 --ifuel 0 --z3rlimit 50"
/// A declaration whose sole purpose is to force synchronize the .fst and the .fsti
let _sync_decl = unit | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.Incremental.fsti.checked",
"Spec.MD.Incremental.fsti.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.Blake2.Incremental.fsti.checked",
"Spec.Blake2.fst.checked",
"Spec.Agile.Hash.fst.checked",
"Spec.Agile.Hash.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Hash.Incremental.fst"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Incremental.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Blake2"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.UpdateMulti",
"short_module": "UpdateMulti"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Blake2"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Spec.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg ->
input:
Spec.Hash.Definitions.bytes
{Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length input) a} ->
l: Spec.Hash.Definitions.output_length a
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (Spec.Agile.Hash.hash' a input l)
(Spec.Hash.Incremental.Definitions.hash_incremental a input l)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Spec.Hash.Definitions.bytes",
"Prims.b2t",
"Spec.Hash.Definitions.less_than_max_input_length",
"FStar.Seq.Base.length",
"Lib.IntTypes.uint8",
"Spec.Hash.Definitions.output_length",
"Spec.Hash.Definitions.is_blake",
"Spec.Blake2.Incremental.blake2_is_hash_incremental",
"Prims.bool",
"Spec.Hash.Definitions.is_keccak",
"Spec.SHA3.Incremental.sha3_is_incremental",
"Spec.MD.Incremental.md_is_hash_incremental",
"Spec.Agile.Hash.init",
"Prims.unit"
] | [] | false | false | true | false | false | let hash_is_hash_incremental'
(a: hash_alg)
(input: bytes{(S.length input) `less_than_max_input_length` a})
l
=
| if is_blake a
then Spec.Blake2.Incremental.blake2_is_hash_incremental a input
else
if is_keccak a
then Spec.SHA3.Incremental.sha3_is_incremental a input l
else Spec.MD.Incremental.md_is_hash_incremental a input (init a) | false |
Hacl.Impl.Curve25519.Field51.fst | Hacl.Impl.Curve25519.Field51.fmul2 | val fmul2: C.(fmul2_t M51 True) | val fmul2: C.(fmul2_t M51 True) | let fmul2 out f1 f2 _ =
let f10 = f1.(0ul) in
let f11 = f1.(1ul) in
let f12 = f1.(2ul) in
let f13 = f1.(3ul) in
let f14 = f1.(4ul) in
let f20 = f2.(0ul) in
let f21 = f2.(1ul) in
let f22 = f2.(2ul) in
let f23 = f2.(3ul) in
let f24 = f2.(4ul) in
let f30 = f1.(5ul) in
let f31 = f1.(6ul) in
let f32 = f1.(7ul) in
let f33 = f1.(8ul) in
let f34 = f1.(9ul) in
let f40 = f2.(5ul) in
let f41 = f2.(6ul) in
let f42 = f2.(7ul) in
let f43 = f2.(8ul) in
let f44 = f2.(9ul) in
let ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) =
fmul25 (f10,f11,f12,f13,f14) (f20,f21,f22,f23,f24)
(f30,f31,f32,f33,f34) (f40,f41,f42,f43,f44) in
out.(0ul) <- o10;
out.(1ul) <- o11;
out.(2ul) <- o12;
out.(3ul) <- o13;
out.(4ul) <- o14;
out.(5ul) <- o20;
out.(6ul) <- o21;
out.(7ul) <- o22;
out.(8ul) <- o23;
out.(9ul) <- o24 | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 244,
"start_col": 0,
"start_line": 205
} | module Hacl.Impl.Curve25519.Field51
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open Lib.Buffer
include Hacl.Spec.Curve25519.Field51
include Hacl.Spec.Curve25519.Field51.Definition
module P = Spec.Curve25519
module S = Hacl.Spec.Curve25519.Field51.Definition
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module BSeq = Lib.ByteSequence
module Lemmas = Hacl.Spec.Curve25519.Field51.Lemmas
module C = Hacl.Impl.Curve25519.Fields.Core
#reset-options "--z3rlimit 20"
let felem = lbuffer uint64 5ul
let felem2 = lbuffer uint64 10ul
let felem_wide = lbuffer uint128 5ul
noextract
let as_nat = C.f51_as_nat
noextract
val wide_as_nat: h:mem -> e:felem_wide -> GTot nat
let wide_as_nat h e =
let s = as_seq h e in
let s0 = s.[0] in
let s1 = s.[1] in
let s2 = s.[2] in
let s3 = s.[3] in
let s4 = s.[4] in
S.wide_as_nat5 (s0, s1, s2, s3, s4)
noextract
val fevalh: h:mem -> f:felem -> GTot P.elem
let fevalh h f = (as_nat h f) % P.prime
noextract
val feval_wideh: h:mem -> f:felem_wide -> GTot P.elem
let feval_wideh h f = (wide_as_nat h f) % P.prime
noextract
let felem_fits =
C.f51_felem_fits
noextract
val felem_wide_fits: h:mem -> f:felem_wide -> m:S.scale128_5 -> Type0
let felem_wide_fits h f m =
let s = as_seq h f in
let s0 = s.[0] in
let s1 = s.[1] in
let s2 = s.[2] in
let s3 = s.[3] in
let s4 = s.[4] in
S.felem_wide_fits5 (s0, s1, s2, s3, s4) m
noextract
let as_felem =
C.f51_as_felem
noextract
let mul_inv_t =
C.f51_mul_inv_t
inline_for_extraction noextract
val create_felem: unit
-> StackInline felem
(requires fun _ -> True)
(ensures fun h0 f h1 ->
stack_allocated f h0 h1 (LSeq.create 5 (u64 0)) /\
as_nat h1 f == 0)
let create_felem () = create 5ul (u64 0)
inline_for_extraction noextract
val set_zero:
f:felem -> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 0)
let set_zero f =
f.(0ul) <- u64 0;
f.(1ul) <- u64 0;
f.(2ul) <- u64 0;
f.(3ul) <- u64 0;
f.(4ul) <- u64 0
inline_for_extraction noextract
val set_one:
f:felem -> Stack unit
(requires fun h -> live h f)
(ensures fun h0 _ h1 ->
modifies (loc f) h0 h1 /\
as_nat h1 f == 1)
let set_one f =
f.(0ul) <- u64 1;
f.(1ul) <- u64 0;
f.(2ul) <- u64 0;
f.(3ul) <- u64 0;
f.(4ul) <- u64 0
inline_for_extraction noextract
val copy_felem:
f1:felem
-> f2:felem
-> Stack unit
(requires fun h ->
live h f1 /\ live h f2 /\ disjoint f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc f1) h0 h1 /\
as_seq h1 f1 == as_seq h0 f2)
let copy_felem f1 f2 =
f1.(0ul) <- f2.(0ul);
f1.(1ul) <- f2.(1ul);
f1.(2ul) <- f2.(2ul);
f1.(3ul) <- f2.(3ul);
f1.(4ul) <- f2.(4ul);
let h1 = ST.get () in
LSeq.eq_intro (as_seq h1 f1) (as_seq h1 f2)
#set-options "--max_fuel 0 --max_ifuel 0"
val fadd: C.(fadd_t M51 True)
[@ CInline]
let fadd out f1 f2 =
let h0 = ST.get () in
let f10 = f1.(0ul) in
let f20 = f2.(0ul) in
let f11 = f1.(1ul) in
let f21 = f2.(1ul) in
let f12 = f1.(2ul) in
let f22 = f2.(2ul) in
let f13 = f1.(3ul) in
let f23 = f2.(3ul) in
let f14 = f1.(4ul) in
let f24 = f2.(4ul) in
out.(0ul) <- f10 +! f20;
out.(1ul) <- f11 +! f21;
out.(2ul) <- f12 +! f22;
out.(3ul) <- f13 +! f23;
out.(4ul) <- f14 +! f24;
let h1 = ST.get () in
assert (as_nat h1 out == as_nat h0 f1 + as_nat h0 f2);
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat h0 f1) (as_nat h0 f2) P.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat h0 f1 % P.prime) (as_nat h0 f2) P.prime
val fsub: C.(fsub_t M51 True)
[@ CInline]
let fsub out f1 f2 =
let f10 = f1.(0ul) in
let f20 = f2.(0ul) in
let f11 = f1.(1ul) in
let f21 = f2.(1ul) in
let f12 = f1.(2ul) in
let f22 = f2.(2ul) in
let f13 = f1.(3ul) in
let f23 = f2.(3ul) in
let f14 = f1.(4ul) in
let f24 = f2.(4ul) in
out.(0ul) <- f10 +! u64 0x3fffffffffff68 -! f20;
out.(1ul) <- f11 +! u64 0x3ffffffffffff8 -! f21;
out.(2ul) <- f12 +! u64 0x3ffffffffffff8 -! f22;
out.(3ul) <- f13 +! u64 0x3ffffffffffff8 -! f23;
out.(4ul) <- f14 +! u64 0x3ffffffffffff8 -! f24;
lemma_fsub (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)
val fmul: C.(fmul_t M51 True)
[@ CInline]
let fmul out f1 f2 _ =
let f10 = f1.(0ul) in
let f11 = f1.(1ul) in
let f12 = f1.(2ul) in
let f13 = f1.(3ul) in
let f14 = f1.(4ul) in
let f20 = f2.(0ul) in
let f21 = f2.(1ul) in
let f22 = f2.(2ul) in
let f23 = f2.(3ul) in
let f24 = f2.(4ul) in
let (o0,o1,o2,o3,o4) =
fmul5 (f10,f11,f12,f13,f14) (f20,f21,f22,f23,f24) in
out.(0ul) <- o0;
out.(1ul) <- o1;
out.(2ul) <- o2;
out.(3ul) <- o3;
out.(4ul) <- o4
val fmul2: C.(fmul2_t M51 True)
#set-options "--z3rlimit 100" | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Spec.Curve25519.Field51.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Field51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Curve25519.Fields.Core.fmul2_t Hacl.Impl.Curve25519.Fields.Core.M51 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.felem2",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Lib.IntTypes.uint64",
"Lib.Buffer.op_Array_Assignment",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.fmul25",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT"
] | [] | false | false | false | true | false | let fmul2 out f1 f2 _ =
| let f10 = f1.(0ul) in
let f11 = f1.(1ul) in
let f12 = f1.(2ul) in
let f13 = f1.(3ul) in
let f14 = f1.(4ul) in
let f20 = f2.(0ul) in
let f21 = f2.(1ul) in
let f22 = f2.(2ul) in
let f23 = f2.(3ul) in
let f24 = f2.(4ul) in
let f30 = f1.(5ul) in
let f31 = f1.(6ul) in
let f32 = f1.(7ul) in
let f33 = f1.(8ul) in
let f34 = f1.(9ul) in
let f40 = f2.(5ul) in
let f41 = f2.(6ul) in
let f42 = f2.(7ul) in
let f43 = f2.(8ul) in
let f44 = f2.(9ul) in
let (o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24) =
fmul25 (f10, f11, f12, f13, f14)
(f20, f21, f22, f23, f24)
(f30, f31, f32, f33, f34)
(f40, f41, f42, f43, f44)
in
out.(0ul) <- o10;
out.(1ul) <- o11;
out.(2ul) <- o12;
out.(3ul) <- o13;
out.(4ul) <- o14;
out.(5ul) <- o20;
out.(6ul) <- o21;
out.(7ul) <- o22;
out.(8ul) <- o23;
out.(9ul) <- o24 | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_type_elim_BitSum' | val bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) | val bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) | let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 94,
"start_col": 0,
"start_line": 83
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
x: LowParse.Spec.BitSum.bitsum'_type (LowParse.Spec.BitSum.BitSum' key key_size e payload)
-> LowParse.Spec.BitSum.bitsum'_type_bitsum' cl bitsum'_size key key_size e payload | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.BitSum'",
"LowParse.Spec.BitSum.bitsum'_type_bitsum'"
] | [] | false | false | false | false | false | let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload) =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_recip | val synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b)) | val synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b)) | let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 26,
"end_line": 497,
"start_col": 0,
"start_line": 488
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: LowParse.Spec.BitSum.bitsum'_type b
-> LowParse.Spec.Combinators.parse_filter_refine (LowParse.Spec.BitSum.filter_bitsum' b) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.synth_bitsum'_recip'",
"Prims.unit",
"LowParse.Spec.BitSum.synth_bitsum'_recip'_prop",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'"
] | [] | false | false | false | false | false | let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b)) =
| synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_recip_inverse | val synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) | val synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) | let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 552,
"start_col": 0,
"start_line": 541
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitSum.synth_bitsum' b)
(LowParse.Spec.BitSum.synth_bitsum'_recip b)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Combinators.synth_inverse_intro'",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Spec.BitSum.synth_bitsum'_recip",
"LowParse.Spec.BitSum.synth_bitsum'_recip_inverse'",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"LowParse.Spec.Combinators.synth_inverse",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b)) =
| synth_inverse_intro' (synth_bitsum' b)
(synth_bitsum'_recip b)
(fun x -> synth_bitsum'_recip_inverse' b x) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_type_intro_BitSum' | val bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload)) | val bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload)) | let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 109,
"start_col": 0,
"start_line": 98
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
x: LowParse.Spec.BitSum.bitsum'_type_bitsum' cl bitsum'_size key key_size e payload
-> LowParse.Spec.BitSum.bitsum'_type (LowParse.Spec.BitSum.BitSum' key key_size e payload) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_type_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.BitSum'"
] | [] | false | false | false | false | false | let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload)) =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_type_intro_BitField | val bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest)) | val bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest)) | let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 135,
"start_col": 0,
"start_line": 126
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} ->
rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) ->
x: LowParse.Spec.BitSum.bitsum'_type_bitfield bitsum'_size sz rest
-> LowParse.Spec.BitSum.bitsum'_type (LowParse.Spec.BitSum.BitField sz rest) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_type_bitfield",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.BitField"
] | [] | false | false | false | false | false | let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest)) =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_key_type | val bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype (decreases (bitsum'_size)) | val bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype (decreases (bitsum'_size)) | let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key)) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 54,
"end_line": 150,
"start_col": 0,
"start_line": 138
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> Prims.Tot Prims.eqtype | Prims.Tot | [
"total",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"Prims.dtuple2"
] | [
"recursion"
] | false | false | false | false | false | let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload -> (key: enum_key e & bitsum'_key_type (payload key)) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_key_type_elim_BitSum' | val bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k')) | val bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k')) | let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 165,
"start_col": 0,
"start_line": 154
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
x: LowParse.Spec.BitSum.bitsum'_key_type (LowParse.Spec.BitSum.BitSum' key key_size e payload)
-> Prims.dtuple2 (LowParse.Spec.Enum.enum_key e)
(fun k' -> LowParse.Spec.BitSum.bitsum'_key_type (payload k')) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'",
"Prims.dtuple2"
] | [] | false | false | false | false | false | let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k')) =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.coerce | val coerce (t2 #t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) | val coerce (t2 #t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) | let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 11,
"end_line": 192,
"start_col": 0,
"start_line": 185
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t2: Type -> x: t1 -> Prims.Pure t2 | Prims.Pure | [] | [] | [
"Prims.eq2",
"Prims.l_True"
] | [] | false | false | false | false | false | let coerce (t2 #t1: Type) (x: t1) : Pure t2 (requires (t1 == t2)) (ensures (fun _ -> True)) =
| (x <: t2) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_key_type_intro_BitField | val bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest)) | val bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest)) | let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 48,
"end_line": 205,
"start_col": 0,
"start_line": 196
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} ->
rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) ->
x: LowParse.Spec.BitSum.bitsum'_key_type rest
-> LowParse.Spec.BitSum.bitsum'_key_type (LowParse.Spec.BitSum.BitField sz rest) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.coerce",
"LowParse.Spec.BitSum.BitField"
] | [] | false | false | false | false | false | let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest)) =
| coerce (bitsum'_key_type (BitField sz rest)) x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum' | val synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b) (decreases (bitsum'_size)) | val synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b) (decreases (bitsum'_size)) | let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 71,
"end_line": 259,
"start_col": 0,
"start_line": 241
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size ->
x: LowParse.Spec.Combinators.parse_filter_refine (LowParse.Spec.BitSum.filter_bitsum' b)
-> Prims.Tot (LowParse.Spec.BitSum.bitsum'_type b) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_type_intro_BitField",
"FStar.Pervasives.Native.Mktuple2",
"LowParse.BitFields.bitfield",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'_type_intro_BitSum'",
"Prims.dtuple2",
"Prims.Mkdtuple2",
"LowParse.Spec.Enum.enum_key_of_repr"
] | [
"recursion"
] | false | false | false | false | false | let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b) (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl
bitsum'_size
sz
rest
(cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f:bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k:enum_key e = enum_key_of_repr e f in
let z:bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p:(k': enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.filter_bitsum' | val filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool (decreases (bitsum'_size)) | val filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool (decreases (bitsum'_size)) | let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 11,
"end_line": 239,
"start_col": 0,
"start_line": 220
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: t -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.Enum.list_mem",
"LowParse.Spec.Enum.list_map",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.snd",
"LowParse.Spec.Enum.enum_key_of_repr",
"Prims.bool",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield"
] | [
"recursion"
] | false | false | false | false | false | let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f:bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else false | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum' | val bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload)) | val bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload)) | let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 180,
"start_col": 0,
"start_line": 169
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
key: Prims.eqtype ->
key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} ->
e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) ->
payload:
(_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size)
) ->
x:
Prims.dtuple2 (LowParse.Spec.Enum.enum_key e)
(fun k' -> LowParse.Spec.BitSum.bitsum'_key_type (payload k'))
-> LowParse.Spec.BitSum.bitsum'_key_type (LowParse.Spec.BitSum.BitSum' key key_size e payload) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"Prims.dtuple2",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitSum'"
] | [] | false | false | false | false | false | let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot})
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload)) =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_key_type_elim_BitField | val bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest) | val bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest) | let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 34,
"end_line": 218,
"start_col": 0,
"start_line": 209
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} ->
rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) ->
x: LowParse.Spec.BitSum.bitsum'_key_type (LowParse.Spec.BitSum.BitField sz rest)
-> LowParse.Spec.BitSum.bitsum'_key_type rest | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.BitField",
"LowParse.Spec.BitSum.coerce"
] | [] | false | false | false | false | false | let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest) =
| coerce (bitsum'_key_type rest) x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_type_elim_BitField | val bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest) | val bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest) | let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 122,
"start_col": 0,
"start_line": 113
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
cl: LowParse.BitFields.uint_t tot t ->
bitsum'_size: Prims.nat ->
sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} ->
rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) ->
x: LowParse.Spec.BitSum.bitsum'_type (LowParse.Spec.BitSum.BitField sz rest)
-> LowParse.Spec.BitSum.bitsum'_type_bitfield bitsum'_size sz rest | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BitSum.bitsum'",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.BitField",
"LowParse.Spec.BitSum.bitsum'_type_bitfield"
] | [] | false | false | false | false | false | let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot})
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest) =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_recip' | val synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t (decreases (bitsum'_size)) | val synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t (decreases (bitsum'_size)) | let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2 | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 392,
"start_col": 0,
"start_line": 374
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: LowParse.Spec.BitSum.bitsum'_type b
-> Prims.Tot t | Prims.Tot | [
"total",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.BitFields.bitfield",
"LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield",
"LowParse.Spec.BitSum.synth_bitsum'_recip'",
"LowParse.Spec.BitSum.bitsum'_type_bitfield",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitField",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"FStar.UInt.uint_t",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.BitFields.set_bitfield",
"LowParse.Spec.Enum.enum_repr_of_key",
"LowParse.Spec.BitSum.bitsum'_type_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'"
] | [
"recursion"
] | false | false | false | false | false | let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k , tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2 | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.parse_bitsum' | val parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b)) | val parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b)) | let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 67,
"end_line": 372,
"start_col": 0,
"start_line": 363
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl tot -> p: LowParse.Spec.Base.parser k t
-> LowParse.Spec.Base.parser (LowParse.Spec.Combinators.parse_filter_kind k)
(LowParse.Spec.BitSum.bitsum'_type b) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.BitSum.synth_bitsum'",
"Prims.unit",
"LowParse.Spec.BitSum.synth_bitsum'_injective"
] | [] | false | false | false | false | false | let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b)) =
| synth_bitsum'_injective b;
(p `parse_filter` (filter_bitsum' b)) `parse_synth` (synth_bitsum' b) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.id | val id (#t: Type) (x: t) : Tot t | val id (#t: Type) (x: t) : Tot t | let id
(#t: Type)
(x: t)
: Tot t
= x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 621,
"start_col": 0,
"start_line": 617
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: t -> t | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let id (#t: Type) (x: t) : Tot t =
| x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.get_bitfield_synth_bitsum'_recip'_other | val get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat{bitsum'_size <= lo /\ lo <= hi /\ hi <= tot})
: Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size)) | val get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat{bitsum'_size <= lo /\ lo <= hi /\ hi <= tot})
: Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size)) | let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 64,
"end_line": 418,
"start_col": 0,
"start_line": 396
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size ->
x: LowParse.Spec.BitSum.bitsum'_type b ->
lo: Prims.nat ->
hi: Prims.nat{bitsum'_size <= lo /\ lo <= hi /\ hi <= tot}
-> FStar.Pervasives.Lemma
(ensures
Mkuint_t?.v cl
(Mkuint_t?.get_bitfield cl (LowParse.Spec.BitSum.synth_bitsum'_recip' b x) lo hi) ==
0) (decreases bitsum'_size) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"LowParse.BitFields.get_bitfield_zero",
"Prims.op_GreaterThan",
"Prims.op_Subtraction",
"LowParse.BitFields.bitfield",
"LowParse.Spec.BitSum.get_bitfield_synth_bitsum'_recip'_other",
"Prims.unit",
"LowParse.BitFields.get_bitfield_set_bitfield_other",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.Spec.BitSum.synth_bitsum'_recip'",
"LowParse.Spec.BitSum.bitsum'_type_bitfield",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitField",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.Enum.enum_repr_of_key",
"LowParse.Spec.BitSum.bitsum'_type_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'",
"Prims.l_True",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat{bitsum'_size <= lo /\ lo <= hi /\ hi <= tot})
: Lemma (ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size)) =
| match b with
| BitStop h -> BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl))
(bitsum'_size - sz)
bitsum'_size
(cl.v hd)
lo
hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k , tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl))
(bitsum'_size - key_size)
bitsum'_size
(cl.v (enum_repr_of_key e k))
lo
hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_ext | val synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)
) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) | val synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)
) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) | let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 19,
"end_line": 359,
"start_col": 0,
"start_line": 319
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size ->
x: LowParse.Spec.Combinators.parse_filter_refine (LowParse.Spec.BitSum.filter_bitsum' b) ->
y: LowParse.Spec.Combinators.parse_filter_refine (LowParse.Spec.BitSum.filter_bitsum' b)
-> FStar.Pervasives.Lemma
(requires
LowParse.BitFields.get_bitfield (Mkuint_t?.v cl x) 0 bitsum'_size ==
LowParse.BitFields.get_bitfield (Mkuint_t?.v cl y) 0 bitsum'_size)
(ensures LowParse.Spec.BitSum.synth_bitsum' b x == LowParse.Spec.BitSum.synth_bitsum' b y)
(decreases bitsum'_size) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.synth_bitsum'_ext",
"Prims.unit",
"LowParse.BitFields.get_bitfield_get_bitfield",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"Prims._assert",
"LowParse.BitFields.bitfield",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.BitFields.ubitfield",
"LowParse.BitFields.get_bitfield",
"LowParse.Spec.BitSum.BitSum'",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type_intro_BitSum'",
"Prims.Mkdtuple2",
"LowParse.Spec.Enum.enum_key_of_repr",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)
) (ensures (synth_bitsum' b x == synth_bitsum' b y)) (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> ()
| BitField sz rest ->
let f:bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g:bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f:bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g:bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x ==
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y ==
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) ==
BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) ==
BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_injective | val synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot)
: Lemma (synth_injective (synth_bitsum' b)) | val synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot)
: Lemma (synth_injective (synth_bitsum' b)) | let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 313,
"start_col": 0,
"start_line": 300
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl tot
-> FStar.Pervasives.Lemma
(ensures LowParse.Spec.Combinators.synth_injective (LowParse.Spec.BitSum.synth_bitsum' b)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Combinators.synth_injective_intro'",
"Prims.l_and",
"Prims.eq2",
"Prims.bool",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.synth_bitsum'",
"Prims._assert",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"Prims.unit",
"LowParse.BitFields.get_bitfield_full",
"LowParse.Spec.BitSum.synth_bitsum'_injective'",
"Prims.l_True",
"Prims.squash",
"LowParse.Spec.Combinators.synth_injective",
"LowParse.Spec.Combinators.parse_filter_refine",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let synth_bitsum'_injective (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot)
: Lemma (synth_injective (synth_bitsum' b)) =
| synth_injective_intro' (synth_bitsum' b)
(fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.filter_bitsum'_ext | val filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)
) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) | val filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)
) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) | let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else () | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 15,
"end_line": 457,
"start_col": 0,
"start_line": 424
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: t -> y: t
-> FStar.Pervasives.Lemma
(requires
LowParse.BitFields.get_bitfield (Mkuint_t?.v cl x) 0 bitsum'_size ==
LowParse.BitFields.get_bitfield (Mkuint_t?.v cl y) 0 bitsum'_size)
(ensures LowParse.Spec.BitSum.filter_bitsum' b x == LowParse.Spec.BitSum.filter_bitsum' b y)
(decreases bitsum'_size) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.filter_bitsum'_ext",
"Prims.unit",
"LowParse.BitFields.get_bitfield_get_bitfield",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.Enum.list_mem",
"LowParse.Spec.Enum.list_map",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.snd",
"LowParse.Spec.Enum.enum_key_of_repr",
"Prims.bool",
"Prims._assert",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"FStar.UInt.uint_t",
"LowParse.BitFields.get_bitfield",
"LowParse.BitFields.ubitfield",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size)
) (ensures (filter_bitsum' b x == filter_bitsum' b y)) (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f:bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g:bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) ==
BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.serialize_bitsum'_eq | val serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) | val serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) | let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 5,
"end_line": 591,
"start_col": 0,
"start_line": 572
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
s: LowParse.Spec.Base.serializer p ->
x: LowParse.Spec.BitSum.bitsum'_type b
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.Base.serialize (LowParse.Spec.BitSum.serialize_bitsum' b s) x ==
LowParse.Spec.Base.serialize s (LowParse.Spec.BitSum.synth_bitsum'_recip b x)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.Combinators.serialize_synth_eq",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Spec.Combinators.serialize_filter",
"LowParse.Spec.BitSum.synth_bitsum'_recip",
"Prims.unit",
"LowParse.Spec.BitSum.synth_bitsum'_recip_inverse",
"LowParse.Spec.BitSum.synth_bitsum'_injective",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"LowParse.Bytes.bytes",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.BitSum.parse_bitsum'",
"LowParse.Spec.BitSum.serialize_bitsum'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma (serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x)) =
| synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq (p `parse_filter` (filter_bitsum' b))
(synth_bitsum' b)
(s `serialize_filter` (filter_bitsum' b))
(synth_bitsum'_recip b)
()
x | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.serialize_bitsum' | val serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p)) | val serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p)) | let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
() | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 570,
"start_col": 0,
"start_line": 554
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl tot -> s: LowParse.Spec.Base.serializer p
-> LowParse.Spec.Base.serializer (LowParse.Spec.BitSum.parse_bitsum' b p) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.Combinators.serialize_synth",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Spec.Combinators.serialize_filter",
"LowParse.Spec.BitSum.synth_bitsum'_recip",
"Prims.unit",
"LowParse.Spec.BitSum.synth_bitsum'_recip_inverse",
"LowParse.Spec.BitSum.synth_bitsum'_injective",
"LowParse.Spec.BitSum.parse_bitsum'"
] | [] | false | false | false | false | false | let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p)) =
| synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth (p `parse_filter` (filter_bitsum' b))
(synth_bitsum' b)
(s `serialize_filter` (filter_bitsum' b))
(synth_bitsum'_recip b)
() | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.destr_bitsum'_bitstop | val destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) | val destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) | let destr_bitsum'_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ()))
= fun u u_if f x ->
f () | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 1302,
"start_col": 0,
"start_line": 1296
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction
noextract
let id
(#t: Type)
(x: t)
: Tot t
= x
inline_for_extraction
noextract
noeq
type synth_case_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
: Type
= | SynthCase:
(f: (
(k' : bitsum'_type b) ->
type_of_tag (bitsum'_key_of_t b k') ->
Tot (refine_with_tag (tag_of_data) k')
)) ->
(f_inj: (
(k' : bitsum'_type b) ->
(pl1: type_of_tag (bitsum'_key_of_t b k')) ->
(pl2: type_of_tag (bitsum'_key_of_t b k')) ->
Lemma
(requires (f k' pl1 == f k' pl2))
(ensures (pl1 == pl2))
)) ->
(g: (
(k' : bitsum'_type b) ->
refine_with_tag (tag_of_data) k' ->
Tot (type_of_tag (bitsum'_key_of_t b k'))
)) ->
(f_g_eq: (
(k: bitsum'_type b) ->
(x: refine_with_tag (tag_of_data) k) ->
Lemma
(f k (g k x) == x)
))
-> synth_case_t b data tag_of_data type_of_tag
let synth_case_g_f_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#b: bitsum' cl tot)
(#data: Type)
(#tag_of_data: (data -> Tot (bitsum'_type b)))
(#type_of_tag: (bitsum'_key_type b -> Tot Type))
(s: synth_case_t b data tag_of_data type_of_tag)
(k: bitsum'_type b)
(x: type_of_tag (bitsum'_key_of_t b k))
: Lemma
(s.g k (s.f k x) == x)
= s.f_g_eq k (s.f k x);
s.f_inj k (s.g k (s.f k x)) x
#push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
let rec weaken_parse_bitsum_cases_kind'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(f: (x: bitsum'_key_type b) -> Tot parser_kind)
: Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x)))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> (| f (), (fun y -> ()) |)
| BitField sz rest ->
let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in
(| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |)
| BitSum' key key_size e payload ->
let keys : list key = List.Tot.map fst e in
let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma
(requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x))
(ensures (k `is_weaker_than` f y)))) =
if List.Tot.mem x keys
then
let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
assert (y1 == x);
g y2
) |)
else (| default_parser_kind, (fun y -> ()) |)
in
let k = glb_list_of #key (fun x -> dfst (phi x)) keys in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
dsnd (phi y1) y
) |)
let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) })
= let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k
let synth_bitsum_case_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_injective (synth_case.f x))
[SMTPat (synth_injective (synth_case.f x))]
= synth_injective_intro' (synth_case.f x) (fun y z ->
synth_case.f_inj x y z
)
let parse_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bitsum'_type b)
: Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
= let tg : bitsum'_key_type b = bitsum'_key_of_t b x in
let (| k_, p |) = f tg in
weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x)
inline_for_extraction
let parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot parser_kind
= and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f)
let parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data)
= parse_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
module Seq = FStar.Seq
#push-options "--z3rlimit 16"
let parse_bitsum_eq
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bytes)
: Lemma
(parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with
| None -> None
| Some (tg, consumed1) ->
let k = bitsum'_key_of_t b tg in
begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with
| None -> None
| Some (y, consumed2) ->
Some ((synth_case.f tg y <: data), consumed1 + consumed2)
end
))
= parse_tagged_union_eq
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
x;
match parse (parse_bitsum' b p) x with
| None -> ()
| Some (tg, consumed1) ->
let k = bitsum'_key_of_t b tg in
synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg;
parse_synth_eq
(dsnd (f k))
(synth_case.f tg)
(Seq.slice x consumed1 (Seq.length x))
#pop-options
let parse_bitsum_eq'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bytes)
: Lemma
(parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with
| None -> None
| Some (tg', consumed1) ->
if filter_bitsum' b tg'
then
let tg = synth_bitsum' b tg' in
let k = bitsum'_key_of_t b tg in
begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with
| None -> None
| Some (y, consumed2) ->
Some ((synth_case.f tg y <: data), consumed1 + consumed2)
end
else
None
))
= parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x;
synth_bitsum'_injective b;
parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x;
parse_filter_eq p (filter_bitsum' b) x
let synth_bitsum_case_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_inverse (synth_case.f x) (synth_case.g x))
[SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY?
= synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y ->
synth_case.f_g_eq x y
)
let serialize_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: bitsum'_type b)
: Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x))
= let tg = bitsum'_key_of_t b x in
let (| _, p |) = f tg in
synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger?
synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger?
serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f)
(serialize_synth
p
(synth_case.f x)
(g tg)
(synth_case.g x)
())
let serialize_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
: Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f))
= serialize_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
#(parse_bitsum' b p)
(serialize_bitsum' b s)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
#(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
(serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
let serialize_bitsum_alt
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: GTot bytes
=
let tg = tag_of_data x in
let k = bitsum'_key_of_t b tg in
let payload = synth_case.g tg x in
serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
let serialize_bitsum_eq
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: Lemma
(serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
= serialize_tagged_union_eq
#(parse_filter_kind kt)
#(bitsum'_type b)
#(parse_bitsum' b p)
(serialize_bitsum' b s)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
#(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
(serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
x;
let tg = tag_of_data x in
let k = bitsum'_key_of_t b tg in
serialize_bitsum'_eq b s tg;
let (| _, p |) = f k in
serialize_synth_eq
#_
#(type_of_tag k)
p
(synth_case.f tg)
(g k)
(synth_case.g tg)
()
x
let serialize_bitsum_eq'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: Lemma
(serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x)
= serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x
let serialize_bitsum_alt_2
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(tg: bitsum'_type b)
(payload: type_of_tag (bitsum'_key_of_t b tg))
: GTot bytes
= let k = bitsum'_key_of_t b tg in
serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
let serialize_bitsum_eq_2
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(tg: bitsum'_type b)
(payload: type_of_tag (bitsum'_key_of_t b tg))
: Lemma
(serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload)
= serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload);
synth_case_g_f_eq synth_case tg payload
(* Implementation of filter_bitsum' *)
inline_for_extraction
noextract
let filter_bitsum'_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= (x: t) ->
Tot (y: bool { y == filter_bitsum' b x })
inline_for_extraction
let filter_bitsum'_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ()))
= fun _ -> true
inline_for_extraction
let filter_bitsum'_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: filter_bitsum'_t rest)
: Tot (filter_bitsum'_t (BitField sz rest))
= fun x -> phi x
inline_for_extraction
let filter_bitsum'_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) })))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k)))
: Tot (filter_bitsum'_t (BitSum' key key_size e payload))
= fun x ->
let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if not (is_valid_repr r)
then
false
else
destr_payload (key_of r) x
inline_for_extraction
noextract
let filter_bitsum'_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot Type
= (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x })
inline_for_extraction
let filter_bitsum'_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e)
: Tot (filter_bitsum'_t (BitSum' key key_size e payload))
= fun x ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi x xr
inline_for_extraction
let filter_bitsum'_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e [])
= (fun x xr -> false)
inline_for_extraction
let filter_bitsum'_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: filter_bitsum'_t (payload k))
(destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun x xr ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload x
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail (x <: t) xr
let bitsum_wellfoundedness
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b:bitsum' cl bitsum'_size { BitSum'? b })
: Lemma (let BitSum' key key_size e payload = b in
(forall (k:enum_key e). payload k << b))
= ()
[@filter_bitsum'_t_attr]
noextract
let rec mk_filter_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (filter_bitsum'_t b)
(decreases %[b; 1; ()])
= match b with
| BitStop _ -> filter_bitsum'_bitstop cl
| BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest)
| BitSum' key key_size e payload ->
filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e)
and mk_filter_bitsum'_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; 0; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_filter_bitsum'_t' (payload k))
(mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
(* Universal destructor *)
inline_for_extraction
let if_combinator_weak
(t: Type)
: Tot Type
= (cond: bool) ->
(sv_true: (cond_true cond -> Tot t)) ->
(sv_false: (cond_false cond -> Tot t)) ->
Tot (y: t)
inline_for_extraction
noextract
let destr_bitsum'_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(a + 1))
= (u: (bitsum'_type b -> Tot (Type u#a))) ->
(u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) ->
(f: ((k: bitsum'_type b) -> Tot (u k))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (u (synth_bitsum' b x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 3,
"max_fuel": 8,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | cl: LowParse.BitFields.uint_t tot t
-> LowParse.Spec.BitSum.destr_bitsum'_t (LowParse.Spec.BitSum.BitStop ()) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.BitStop",
"FStar.Ghost.erased",
"LowParse.Spec.BitSum.if_combinator_weak",
"FStar.Ghost.reveal",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.synth_bitsum'",
"LowParse.Spec.BitSum.destr_bitsum'_t"
] | [] | false | false | false | false | false | let destr_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (destr_bitsum'_t #tot #t #cl #0 (BitStop ())) =
| fun u u_if f x -> f () | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_recip_inverse' | val synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) | val synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) | let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 47,
"end_line": 537,
"start_col": 0,
"start_line": 501
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: LowParse.Spec.BitSum.bitsum'_type b
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.BitSum.synth_bitsum' b (LowParse.Spec.BitSum.synth_bitsum'_recip b x) == x)
(decreases bitsum'_size) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.BitFields.bitfield",
"LowParse.Spec.BitSum.synth_bitsum'_recip_inverse'",
"Prims.unit",
"LowParse.Spec.BitSum.synth_bitsum'_ext",
"LowParse.Spec.BitSum.filter_bitsum'_ext",
"LowParse.BitFields.get_bitfield_set_bitfield_other",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"Prims._assert",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.BitFields.get_bitfield_set_bitfield_same",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.synth_bitsum'_recip",
"LowParse.Spec.BitSum.bitsum'_type_bitfield",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitField",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.Enum.enum_repr_of_key",
"LowParse.Spec.Enum.enum_key_of_repr_of_key",
"LowParse.Spec.BitSum.bitsum'_type_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'",
"Prims.l_True",
"LowParse.Spec.BitSum.synth_bitsum'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma (ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x)) (decreases bitsum'_size) =
| match b with
| BitStop _ -> ()
| BitField sz rest ->
let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) ==
cl.uint_to_t (cl.v hd));
BF.get_bitfield_set_bitfield_other (cl.v y1)
(bitsum'_size - sz)
(bitsum'_size)
(cl.v hd)
0
(bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k , tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
BF.get_bitfield_set_bitfield_same (cl.v y1)
(bitsum'_size - key_size)
(bitsum'_size)
(cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) ==
cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
BF.get_bitfield_set_bitfield_other (cl.v y1)
(bitsum'_size - key_size)
bitsum'_size
(cl.v (enum_repr_of_key e k))
0
(bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1;
synth_bitsum'_recip_inverse' (payload k) tl | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_recip'_prop | val synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size)) | val synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size)) | let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 44,
"end_line": 485,
"start_col": 0,
"start_line": 461
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: LowParse.Spec.BitSum.bitsum'_type b
-> FStar.Pervasives.Lemma
(ensures
LowParse.Spec.BitSum.filter_bitsum' b (LowParse.Spec.BitSum.synth_bitsum'_recip' b x) ==
true) (decreases bitsum'_size) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.BitFields.bitfield",
"LowParse.Spec.BitSum.synth_bitsum'_recip'_prop",
"Prims.unit",
"LowParse.Spec.BitSum.filter_bitsum'_ext",
"LowParse.Spec.BitSum.synth_bitsum'_recip'",
"LowParse.BitFields.get_bitfield_set_bitfield_other",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.Spec.BitSum.bitsum'_type_bitfield",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitField",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.Enum.enum_key_of_repr_of_key",
"Prims._assert",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"LowParse.Spec.Enum.enum_repr_of_key",
"LowParse.BitFields.get_bitfield_set_bitfield_same",
"LowParse.Spec.BitSum.bitsum'_type_bitsum'",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'",
"Prims.l_True",
"Prims.bool",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma (ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size)) =
| match b with
| BitStop _ -> ()
| BitField sz rest ->
let hd, tl = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl))
(bitsum'_size - sz)
(bitsum'_size)
(cl.v hd)
0
(bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k , tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl))
(bitsum'_size - key_size)
(bitsum'_size)
(cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl))
(bitsum'_size - key_size)
(bitsum'_size)
(cl.v (enum_repr_of_key e k))
0
(bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x)
(bitsum'_size - key_size)
(bitsum'_size))) ==
cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.synth_bitsum'_injective' | val synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma (requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size)) | val synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma (requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size)) | let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 125,
"end_line": 296,
"start_col": 0,
"start_line": 265
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size ->
x: LowParse.Spec.Combinators.parse_filter_refine (LowParse.Spec.BitSum.filter_bitsum' b) ->
y: LowParse.Spec.Combinators.parse_filter_refine (LowParse.Spec.BitSum.filter_bitsum' b)
-> FStar.Pervasives.Lemma
(requires LowParse.Spec.BitSum.synth_bitsum' b x == LowParse.Spec.BitSum.synth_bitsum' b y)
(ensures
Mkuint_t?.get_bitfield cl x 0 bitsum'_size == Mkuint_t?.get_bitfield cl y 0 bitsum'_size)
(decreases bitsum'_size) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims._assert",
"LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield",
"Prims.unit",
"LowParse.BitFields.get_bitfield_empty",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.BitFields.get_bitfield_partition",
"Prims.Cons",
"Prims.Nil",
"FStar.UInt.uint_t",
"LowParse.Spec.BitSum.synth_bitsum'_injective'",
"LowParse.Spec.Enum.enum",
"LowParse.BitFields.bitfield",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.Enum.enum_repr_of_key_of_repr",
"LowParse.Spec.Enum.enum_key_of_repr",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.synth_bitsum'",
"Prims.l_or",
"LowParse.BitFields.get_bitfield",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma (requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size)) =
| match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) ==
cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) ==
cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) ==
cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) ==
cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f:bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g:bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) ==
cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size))) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.destr_bitsum'_t | val destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from)
: Tot (Type u#(a + 1)) | val destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from)
: Tot (Type u#(a + 1)) | let destr_bitsum'_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#from: nat)
(b: bitsum' cl from)
: Tot (Type u#(a + 1))
= (u: (bitsum'_type b -> Tot (Type u#a))) ->
(u_if: ((k: Ghost.erased (bitsum'_type b)) -> Tot (if_combinator_weak (u (Ghost.reveal k))))) ->
(f: ((k: bitsum'_type b) -> Tot (u k))) ->
(x: parse_filter_refine (filter_bitsum' b)) ->
Tot (u (synth_bitsum' b x)) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 29,
"end_line": 1293,
"start_col": 0,
"start_line": 1282
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction
noextract
let id
(#t: Type)
(x: t)
: Tot t
= x
inline_for_extraction
noextract
noeq
type synth_case_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
: Type
= | SynthCase:
(f: (
(k' : bitsum'_type b) ->
type_of_tag (bitsum'_key_of_t b k') ->
Tot (refine_with_tag (tag_of_data) k')
)) ->
(f_inj: (
(k' : bitsum'_type b) ->
(pl1: type_of_tag (bitsum'_key_of_t b k')) ->
(pl2: type_of_tag (bitsum'_key_of_t b k')) ->
Lemma
(requires (f k' pl1 == f k' pl2))
(ensures (pl1 == pl2))
)) ->
(g: (
(k' : bitsum'_type b) ->
refine_with_tag (tag_of_data) k' ->
Tot (type_of_tag (bitsum'_key_of_t b k'))
)) ->
(f_g_eq: (
(k: bitsum'_type b) ->
(x: refine_with_tag (tag_of_data) k) ->
Lemma
(f k (g k x) == x)
))
-> synth_case_t b data tag_of_data type_of_tag
let synth_case_g_f_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#b: bitsum' cl tot)
(#data: Type)
(#tag_of_data: (data -> Tot (bitsum'_type b)))
(#type_of_tag: (bitsum'_key_type b -> Tot Type))
(s: synth_case_t b data tag_of_data type_of_tag)
(k: bitsum'_type b)
(x: type_of_tag (bitsum'_key_of_t b k))
: Lemma
(s.g k (s.f k x) == x)
= s.f_g_eq k (s.f k x);
s.f_inj k (s.g k (s.f k x)) x
#push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
let rec weaken_parse_bitsum_cases_kind'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(f: (x: bitsum'_key_type b) -> Tot parser_kind)
: Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x)))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> (| f (), (fun y -> ()) |)
| BitField sz rest ->
let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in
(| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |)
| BitSum' key key_size e payload ->
let keys : list key = List.Tot.map fst e in
let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma
(requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x))
(ensures (k `is_weaker_than` f y)))) =
if List.Tot.mem x keys
then
let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
assert (y1 == x);
g y2
) |)
else (| default_parser_kind, (fun y -> ()) |)
in
let k = glb_list_of #key (fun x -> dfst (phi x)) keys in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
dsnd (phi y1) y
) |)
let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) })
= let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k
let synth_bitsum_case_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_injective (synth_case.f x))
[SMTPat (synth_injective (synth_case.f x))]
= synth_injective_intro' (synth_case.f x) (fun y z ->
synth_case.f_inj x y z
)
let parse_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bitsum'_type b)
: Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
= let tg : bitsum'_key_type b = bitsum'_key_of_t b x in
let (| k_, p |) = f tg in
weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x)
inline_for_extraction
let parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot parser_kind
= and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f)
let parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data)
= parse_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
module Seq = FStar.Seq
#push-options "--z3rlimit 16"
let parse_bitsum_eq
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bytes)
: Lemma
(parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with
| None -> None
| Some (tg, consumed1) ->
let k = bitsum'_key_of_t b tg in
begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with
| None -> None
| Some (y, consumed2) ->
Some ((synth_case.f tg y <: data), consumed1 + consumed2)
end
))
= parse_tagged_union_eq
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
x;
match parse (parse_bitsum' b p) x with
| None -> ()
| Some (tg, consumed1) ->
let k = bitsum'_key_of_t b tg in
synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg;
parse_synth_eq
(dsnd (f k))
(synth_case.f tg)
(Seq.slice x consumed1 (Seq.length x))
#pop-options
let parse_bitsum_eq'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bytes)
: Lemma
(parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with
| None -> None
| Some (tg', consumed1) ->
if filter_bitsum' b tg'
then
let tg = synth_bitsum' b tg' in
let k = bitsum'_key_of_t b tg in
begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with
| None -> None
| Some (y, consumed2) ->
Some ((synth_case.f tg y <: data), consumed1 + consumed2)
end
else
None
))
= parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x;
synth_bitsum'_injective b;
parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x;
parse_filter_eq p (filter_bitsum' b) x
let synth_bitsum_case_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_inverse (synth_case.f x) (synth_case.g x))
[SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY?
= synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y ->
synth_case.f_g_eq x y
)
let serialize_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: bitsum'_type b)
: Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x))
= let tg = bitsum'_key_of_t b x in
let (| _, p |) = f tg in
synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger?
synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger?
serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f)
(serialize_synth
p
(synth_case.f x)
(g tg)
(synth_case.g x)
())
let serialize_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
: Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f))
= serialize_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
#(parse_bitsum' b p)
(serialize_bitsum' b s)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
#(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
(serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
let serialize_bitsum_alt
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: GTot bytes
=
let tg = tag_of_data x in
let k = bitsum'_key_of_t b tg in
let payload = synth_case.g tg x in
serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
let serialize_bitsum_eq
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: Lemma
(serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
= serialize_tagged_union_eq
#(parse_filter_kind kt)
#(bitsum'_type b)
#(parse_bitsum' b p)
(serialize_bitsum' b s)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
#(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
(serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
x;
let tg = tag_of_data x in
let k = bitsum'_key_of_t b tg in
serialize_bitsum'_eq b s tg;
let (| _, p |) = f k in
serialize_synth_eq
#_
#(type_of_tag k)
p
(synth_case.f tg)
(g k)
(synth_case.g tg)
()
x
let serialize_bitsum_eq'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: Lemma
(serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x)
= serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x
let serialize_bitsum_alt_2
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(tg: bitsum'_type b)
(payload: type_of_tag (bitsum'_key_of_t b tg))
: GTot bytes
= let k = bitsum'_key_of_t b tg in
serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
let serialize_bitsum_eq_2
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(tg: bitsum'_type b)
(payload: type_of_tag (bitsum'_key_of_t b tg))
: Lemma
(serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload)
= serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload);
synth_case_g_f_eq synth_case tg payload
(* Implementation of filter_bitsum' *)
inline_for_extraction
noextract
let filter_bitsum'_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= (x: t) ->
Tot (y: bool { y == filter_bitsum' b x })
inline_for_extraction
let filter_bitsum'_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ()))
= fun _ -> true
inline_for_extraction
let filter_bitsum'_bitfield
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(phi: filter_bitsum'_t rest)
: Tot (filter_bitsum'_t (BitField sz rest))
= fun x -> phi x
inline_for_extraction
let filter_bitsum'_bitsum_gen
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(is_valid_repr: ((x: bitfield cl key_size) -> Tot (y: bool { y == list_mem x (list_map snd e) })))
(key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x })))
(destr_payload: ((k: enum_key e) -> filter_bitsum'_t (payload k)))
: Tot (filter_bitsum'_t (BitSum' key key_size e payload))
= fun x ->
let r : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if not (is_valid_repr r)
then
false
else
destr_payload (key_of r) x
inline_for_extraction
noextract
let filter_bitsum'_bitsum'_t
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot Type
= (x: t { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) ->
(xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) ->
Tot (y: bool { y == filter_bitsum' (BitSum' key key_size e payload) x })
inline_for_extraction
let filter_bitsum'_bitsum'_intro
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(phi: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload [] e)
: Tot (filter_bitsum'_t (BitSum' key key_size e payload))
= fun x ->
let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in
phi x xr
inline_for_extraction
let filter_bitsum'_bitsum'_nil
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(h: squash (e == e `L.append` []))
: Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload e [])
= (fun x xr -> false)
inline_for_extraction
let filter_bitsum'_bitsum'_cons
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(k: key)
(r: bitfield cl key_size)
(l2: list (key & bitfield cl key_size) {
e == l1 `L.append` ((k, r) :: l2) /\
list_mem k (list_map fst e) /\
enum_repr_of_key e k == r /\
e == (l1 `L.append` [(k, r)]) `L.append` l2
})
(destr_payload: filter_bitsum'_t (payload k))
(destr_tail: filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2)
: Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
= fun x xr ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) l2
in
[@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in
[@inline_let] let cond = (xr <: t) = yr in
[@inline_let] let _ =
assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r)
in
if cond
then
destr_payload x
else
[@inline_let] let _ =
L.append_assoc l1 [(k, r)] l2;
L.map_append snd l1 [(k, r)];
L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size)
in
destr_tail (x <: t) xr
let bitsum_wellfoundedness
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b:bitsum' cl bitsum'_size { BitSum'? b })
: Lemma (let BitSum' key key_size e payload = b in
(forall (k:enum_key e). payload k << b))
= ()
[@filter_bitsum'_t_attr]
noextract
let rec mk_filter_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot (filter_bitsum'_t b)
(decreases %[b; 1; ()])
= match b with
| BitStop _ -> filter_bitsum'_bitstop cl
| BitField sz rest -> filter_bitsum'_bitfield cl bitsum'_size sz rest (mk_filter_bitsum'_t' rest)
| BitSum' key key_size e payload ->
filter_bitsum'_bitsum'_intro cl bitsum'_size key key_size e payload (mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload [] e)
and mk_filter_bitsum'_bitsum'_t'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(l1: list (key & bitfield cl key_size))
(l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } )
: Tot (filter_bitsum'_bitsum'_t cl bitsum'_size key key_size e payload l1 l2)
(decreases %[BitSum' key key_size e payload; 0; l2])
= bitsum_wellfoundedness (BitSum' key key_size e payload);
match l2 with
| [] ->
[@inline_let] let _ =
L.append_l_nil l1
in
filter_bitsum'_bitsum'_nil cl bitsum'_size key key_size e payload ()
| (k, r) :: q ->
[@inline_let] let _ =
enum_repr_of_key_append_cons e l1 (k, r) q;
L.append_assoc l1 [(k, r)] q
in
filter_bitsum'_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q
(mk_filter_bitsum'_t' (payload k))
(mk_filter_bitsum'_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q)
(* Universal destructor *)
inline_for_extraction
let if_combinator_weak
(t: Type)
: Tot Type
= (cond: bool) ->
(sv_true: (cond_true cond -> Tot t)) ->
(sv_false: (cond_false cond -> Tot t)) ->
Tot (y: t)
inline_for_extraction | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 3,
"max_fuel": 8,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl from -> Type | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"FStar.Ghost.erased",
"LowParse.Spec.BitSum.if_combinator_weak",
"FStar.Ghost.reveal",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.synth_bitsum'"
] | [] | false | false | false | false | true | let destr_bitsum'_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from)
: Tot (Type u#(a + 1)) =
|
u: (bitsum'_type b -> Tot (Type u#a)) ->
u_if: (k: Ghost.erased (bitsum'_type b) -> Tot (if_combinator_weak (u (Ghost.reveal k)))) ->
f: (k: bitsum'_type b -> Tot (u k)) ->
x: parse_filter_refine (filter_bitsum' b)
-> Tot (u (synth_bitsum' b x)) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.bitsum'_key_of_t | val bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b) (decreases (bitsum'_size)) | val bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b) (decreases (bitsum'_size)) | let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 7,
"end_line": 613,
"start_col": 0,
"start_line": 593
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> x: LowParse.Spec.BitSum.bitsum'_type b
-> Prims.Tot (LowParse.Spec.BitSum.bitsum'_key_type b) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.nat",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitField",
"LowParse.BitFields.bitfield",
"LowParse.Spec.BitSum.bitsum'_key_type_intro_BitField",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.Enum.enum",
"LowParse.Spec.Enum.enum_key",
"LowParse.Spec.BitSum.bitsum'_type_elim_BitSum'",
"LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum'",
"Prims.Mkdtuple2"
] | [
"recursion"
] | false | false | false | false | false | let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b) (decreases (bitsum'_size)) =
| match b with
| BitStop _ -> ()
| BitField sz rest ->
(match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| _, tl -> bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl))
| BitSum' key key_size e payload ->
match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k , pl |) ->
bitsum'_key_type_intro_BitSum' cl
bitsum'_size
key
key_size
e
payload
(| k, bitsum'_key_of_t (payload k) pl |) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.parse_bitsum_kind | val parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot parser_kind | val parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot parser_kind | let parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot parser_kind
= and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 87,
"end_line": 770,
"start_col": 0,
"start_line": 761
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction
noextract
let id
(#t: Type)
(x: t)
: Tot t
= x
inline_for_extraction
noextract
noeq
type synth_case_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
: Type
= | SynthCase:
(f: (
(k' : bitsum'_type b) ->
type_of_tag (bitsum'_key_of_t b k') ->
Tot (refine_with_tag (tag_of_data) k')
)) ->
(f_inj: (
(k' : bitsum'_type b) ->
(pl1: type_of_tag (bitsum'_key_of_t b k')) ->
(pl2: type_of_tag (bitsum'_key_of_t b k')) ->
Lemma
(requires (f k' pl1 == f k' pl2))
(ensures (pl1 == pl2))
)) ->
(g: (
(k' : bitsum'_type b) ->
refine_with_tag (tag_of_data) k' ->
Tot (type_of_tag (bitsum'_key_of_t b k'))
)) ->
(f_g_eq: (
(k: bitsum'_type b) ->
(x: refine_with_tag (tag_of_data) k) ->
Lemma
(f k (g k x) == x)
))
-> synth_case_t b data tag_of_data type_of_tag
let synth_case_g_f_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#b: bitsum' cl tot)
(#data: Type)
(#tag_of_data: (data -> Tot (bitsum'_type b)))
(#type_of_tag: (bitsum'_key_type b -> Tot Type))
(s: synth_case_t b data tag_of_data type_of_tag)
(k: bitsum'_type b)
(x: type_of_tag (bitsum'_key_of_t b k))
: Lemma
(s.g k (s.f k x) == x)
= s.f_g_eq k (s.f k x);
s.f_inj k (s.g k (s.f k x)) x
#push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
let rec weaken_parse_bitsum_cases_kind'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(f: (x: bitsum'_key_type b) -> Tot parser_kind)
: Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x)))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> (| f (), (fun y -> ()) |)
| BitField sz rest ->
let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in
(| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |)
| BitSum' key key_size e payload ->
let keys : list key = List.Tot.map fst e in
let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma
(requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x))
(ensures (k `is_weaker_than` f y)))) =
if List.Tot.mem x keys
then
let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
assert (y1 == x);
g y2
) |)
else (| default_parser_kind, (fun y -> ()) |)
in
let k = glb_list_of #key (fun x -> dfst (phi x)) keys in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
dsnd (phi y1) y
) |)
let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) })
= let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k
let synth_bitsum_case_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_injective (synth_case.f x))
[SMTPat (synth_injective (synth_case.f x))]
= synth_injective_intro' (synth_case.f x) (fun y z ->
synth_case.f_inj x y z
)
let parse_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bitsum'_type b)
: Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
= let tg : bitsum'_key_type b = bitsum'_key_of_t b x in
let (| k_, p |) = f tg in
weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 3,
"max_fuel": 8,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
kt: LowParse.Spec.Base.parser_kind ->
b: LowParse.Spec.BitSum.bitsum' cl tot ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
f:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> Prims.dtuple2 LowParse.Spec.Base.parser_kind
(fun k -> LowParse.Spec.Base.parser k (type_of_tag x)))
-> LowParse.Spec.Base.parser_kind | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_type",
"Prims.dtuple2",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Combinators.and_then_kind",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind"
] | [] | false | false | false | false | false | let parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot parser_kind =
| and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind | val weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot (k: parser_kind{forall (x: bitsum'_key_type b). k `is_weaker_than` (dfst (f x))}) | val weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot (k: parser_kind{forall (x: bitsum'_key_type b). k `is_weaker_than` (dfst (f x))}) | let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) })
= let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 725,
"start_col": 0,
"start_line": 715
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction
noextract
let id
(#t: Type)
(x: t)
: Tot t
= x
inline_for_extraction
noextract
noeq
type synth_case_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
: Type
= | SynthCase:
(f: (
(k' : bitsum'_type b) ->
type_of_tag (bitsum'_key_of_t b k') ->
Tot (refine_with_tag (tag_of_data) k')
)) ->
(f_inj: (
(k' : bitsum'_type b) ->
(pl1: type_of_tag (bitsum'_key_of_t b k')) ->
(pl2: type_of_tag (bitsum'_key_of_t b k')) ->
Lemma
(requires (f k' pl1 == f k' pl2))
(ensures (pl1 == pl2))
)) ->
(g: (
(k' : bitsum'_type b) ->
refine_with_tag (tag_of_data) k' ->
Tot (type_of_tag (bitsum'_key_of_t b k'))
)) ->
(f_g_eq: (
(k: bitsum'_type b) ->
(x: refine_with_tag (tag_of_data) k) ->
Lemma
(f k (g k x) == x)
))
-> synth_case_t b data tag_of_data type_of_tag
let synth_case_g_f_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#b: bitsum' cl tot)
(#data: Type)
(#tag_of_data: (data -> Tot (bitsum'_type b)))
(#type_of_tag: (bitsum'_key_type b -> Tot Type))
(s: synth_case_t b data tag_of_data type_of_tag)
(k: bitsum'_type b)
(x: type_of_tag (bitsum'_key_of_t b k))
: Lemma
(s.g k (s.f k x) == x)
= s.f_g_eq k (s.f k x);
s.f_inj k (s.g k (s.f k x)) x
#push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
let rec weaken_parse_bitsum_cases_kind'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(f: (x: bitsum'_key_type b) -> Tot parser_kind)
: Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x)))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> (| f (), (fun y -> ()) |)
| BitField sz rest ->
let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in
(| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |)
| BitSum' key key_size e payload ->
let keys : list key = List.Tot.map fst e in
let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma
(requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x))
(ensures (k `is_weaker_than` f y)))) =
if List.Tot.mem x keys
then
let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
assert (y1 == x);
g y2
) |)
else (| default_parser_kind, (fun y -> ()) |)
in
let k = glb_list_of #key (fun x -> dfst (phi x)) keys in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
dsnd (phi y1) y
) |) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 3,
"max_fuel": 8,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
f:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> Prims.dtuple2 LowParse.Spec.Base.parser_kind
(fun k -> LowParse.Spec.Base.parser k (type_of_tag x)))
-> k:
LowParse.Spec.Base.parser_kind
{ forall (x: LowParse.Spec.BitSum.bitsum'_key_type b).
LowParse.Spec.Base.is_weaker_than k (FStar.Pervasives.dfst (f x)) } | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_key_type",
"Prims.dtuple2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"LowParse.Spec.Base.is_weaker_than",
"FStar.Pervasives.dfst",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_Forall",
"LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind'"
] | [] | false | false | false | false | false | let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot (k: parser_kind{forall (x: bitsum'_key_type b). k `is_weaker_than` (dfst (f x))}) =
| let (| k , phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.parse_bitsum | val parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) | val parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) | let parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data)
= parse_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 63,
"end_line": 792,
"start_col": 0,
"start_line": 772
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction
noextract
let id
(#t: Type)
(x: t)
: Tot t
= x
inline_for_extraction
noextract
noeq
type synth_case_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
: Type
= | SynthCase:
(f: (
(k' : bitsum'_type b) ->
type_of_tag (bitsum'_key_of_t b k') ->
Tot (refine_with_tag (tag_of_data) k')
)) ->
(f_inj: (
(k' : bitsum'_type b) ->
(pl1: type_of_tag (bitsum'_key_of_t b k')) ->
(pl2: type_of_tag (bitsum'_key_of_t b k')) ->
Lemma
(requires (f k' pl1 == f k' pl2))
(ensures (pl1 == pl2))
)) ->
(g: (
(k' : bitsum'_type b) ->
refine_with_tag (tag_of_data) k' ->
Tot (type_of_tag (bitsum'_key_of_t b k'))
)) ->
(f_g_eq: (
(k: bitsum'_type b) ->
(x: refine_with_tag (tag_of_data) k) ->
Lemma
(f k (g k x) == x)
))
-> synth_case_t b data tag_of_data type_of_tag
let synth_case_g_f_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#b: bitsum' cl tot)
(#data: Type)
(#tag_of_data: (data -> Tot (bitsum'_type b)))
(#type_of_tag: (bitsum'_key_type b -> Tot Type))
(s: synth_case_t b data tag_of_data type_of_tag)
(k: bitsum'_type b)
(x: type_of_tag (bitsum'_key_of_t b k))
: Lemma
(s.g k (s.f k x) == x)
= s.f_g_eq k (s.f k x);
s.f_inj k (s.g k (s.f k x)) x
#push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
let rec weaken_parse_bitsum_cases_kind'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(f: (x: bitsum'_key_type b) -> Tot parser_kind)
: Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x)))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> (| f (), (fun y -> ()) |)
| BitField sz rest ->
let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in
(| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |)
| BitSum' key key_size e payload ->
let keys : list key = List.Tot.map fst e in
let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma
(requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x))
(ensures (k `is_weaker_than` f y)))) =
if List.Tot.mem x keys
then
let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
assert (y1 == x);
g y2
) |)
else (| default_parser_kind, (fun y -> ()) |)
in
let k = glb_list_of #key (fun x -> dfst (phi x)) keys in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
dsnd (phi y1) y
) |)
let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) })
= let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k
let synth_bitsum_case_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_injective (synth_case.f x))
[SMTPat (synth_injective (synth_case.f x))]
= synth_injective_intro' (synth_case.f x) (fun y z ->
synth_case.f_inj x y z
)
let parse_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bitsum'_type b)
: Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
= let tg : bitsum'_key_type b = bitsum'_key_of_t b x in
let (| k_, p |) = f tg in
weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x)
inline_for_extraction
let parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot parser_kind
= and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 3,
"max_fuel": 8,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: LowParse.Spec.BitSum.bitsum' cl tot ->
tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag ->
p: LowParse.Spec.Base.parser kt t ->
f:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> Prims.dtuple2 LowParse.Spec.Base.parser_kind
(fun k -> LowParse.Spec.Base.parser k (type_of_tag x)))
-> LowParse.Spec.Base.parser (LowParse.Spec.BitSum.parse_bitsum_kind kt b type_of_tag f) data | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.synth_case_t",
"LowParse.Spec.Base.parser",
"Prims.dtuple2",
"LowParse.Spec.Combinators.parse_tagged_union",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BitSum.parse_bitsum'",
"LowParse.Spec.BitSum.weaken_parse_bitsum_cases_kind",
"LowParse.Spec.BitSum.parse_bitsum_cases",
"LowParse.Spec.BitSum.parse_bitsum_kind"
] | [] | false | false | false | false | false | let parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data) =
| parse_tagged_union #(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f) | false |
LowParse.Spec.BitSum.fst | LowParse.Spec.BitSum.filter_bitsum'_bitstop | val filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) | val filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) | let filter_bitsum'_bitstop
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
: Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ()))
= fun _ -> true | {
"file_name": "src/lowparse/LowParse.Spec.BitSum.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 15,
"end_line": 1089,
"start_col": 0,
"start_line": 1084
} | module LowParse.Spec.BitSum
include LowParse.Spec.Enum
include LowParse.BitFields
module L = FStar.List.Tot
// IMPORTANT: these bitfield operators are defined in a MOST
// significant bit (MSB) first fashion.
noeq
type bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
=
| BitStop of (squash (bitsum'_size == 0))
| BitField :
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) ->
(rest: bitsum' cl (bitsum'_size - sz)) ->
bitsum' cl bitsum'_size
| BitSum' :
(key: eqtype) ->
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) -> // key_size made positive because F* cannot prove that (payload _) is a smaller term wrt. << without FStar.WellFounded.axiom1_dep //NS: TODO: please check this comment
(e: enum key (bitfield cl key_size)) ->
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) ->
bitsum' cl bitsum'_size
noextract
let rec bitsum'_type'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> (bitfield cl sz & bitsum'_type' rest)
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_type' (payload key))
noextract
let bitsum'_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= bitsum'_type' b
inline_for_extraction
let bitsum'_type_bitfield
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
: Tot Type
= bitfield cl sz & bitsum'_type rest
let bitsum'_type_bitsum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
: Tot Type
= (k': enum_key e & bitsum'_type (payload k'))
noextract
noeq
type filter_bitsum'_t_attr =
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type (BitSum' key key_size e payload))
: Tot (bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_type_bitsum' cl bitsum'_size key key_size e payload)
: Tot (bitsum'_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type (BitField sz rest))
: Tot (bitsum'_type_bitfield bitsum'_size sz rest)
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_type_bitfield bitsum'_size sz rest)
: Tot (bitsum'_type (BitField sz rest))
= x
noextract
let rec bitsum'_key_type
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot eqtype
(decreases (bitsum'_size))
= match b with
| BitStop _ -> unit
| BitField sz rest -> bitsum'_key_type rest
| BitSum' key key_size e payload ->
(key: enum_key e & bitsum'_key_type (payload key))
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: bitsum'_key_type (BitSum' key key_size e payload))
: Tot (k': enum_key e & bitsum'_key_type (payload k'))
= x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitSum'
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(key: eqtype)
(key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot })
(e: enum key (bitfield cl key_size))
(payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size))))
(x: (k': enum_key e & bitsum'_key_type (payload k')))
: Tot (bitsum'_key_type (BitSum' key key_size e payload))
= x
[@filter_bitsum'_t_attr]
unfold
inline_for_extraction
let coerce
(t2: Type)
(#t1: Type)
(x: t1)
: Pure t2
(requires (t1 == t2))
(ensures (fun _ -> True))
= (x <: t2)
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_intro_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type rest)
: Tot (bitsum'_key_type (BitField sz rest))
= coerce (bitsum'_key_type (BitField sz rest)) x
[@filter_bitsum'_t_attr]
inline_for_extraction
let bitsum'_key_type_elim_BitField
(#tot: pos)
(#t: eqtype)
(cl: uint_t tot t)
(bitsum'_size: nat)
(sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot })
(rest: bitsum' cl (bitsum'_size - sz))
(x: bitsum'_key_type (BitField sz rest))
: Tot (bitsum'_key_type rest)
= coerce (bitsum'_key_type rest) x
let rec filter_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: t)
: Tot bool
(decreases (bitsum'_size))
= match b with
| BitStop _ -> true
| BitField _ rest -> filter_bitsum' rest x
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
if list_mem f (list_map snd e)
then
let k = enum_key_of_repr e f in
filter_bitsum' (payload k) x
else
false
let rec synth_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: parse_filter_refine (filter_bitsum' b))
: Tot (bitsum'_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
bitsum'_type_intro_BitField cl bitsum'_size sz rest (cl.get_bitfield x (bitsum'_size - sz) bitsum'_size, synth_bitsum' rest x)
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size in
let k : enum_key e = enum_key_of_repr e f in
let z : bitsum'_type (payload k) = synth_bitsum' (payload k) x in
let p : (k' : enum_key e & bitsum'_type (payload k')) = (| k, z |) in
bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload p
module BF = LowParse.BitFields
#push-options "--z3rlimit 16"
let rec synth_bitsum'_injective'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (synth_bitsum' b x == synth_bitsum' b y))
(ensures (cl.get_bitfield x 0 bitsum'_size == cl.get_bitfield y 0 bitsum'_size))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_empty (cl.v x) 0;
BF.get_bitfield_empty (cl.v y) 0;
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitField sz rest ->
assert (cl.v (cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size)) == cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size)));
synth_bitsum'_injective' rest x y;
assert (cl.v (cl.get_bitfield x 0 (bitsum'_size - sz)) == cl.v (cl.get_bitfield y 0 (bitsum'_size - sz)));
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - sz];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
let k = enum_key_of_repr e f in
enum_repr_of_key_of_repr e f;
enum_repr_of_key_of_repr e g;
assert (cl.v f == cl.v g);
synth_bitsum'_injective' (payload k) x y;
BF.get_bitfield_partition (cl.v x) (cl.v y) 0 bitsum'_size [bitsum'_size - key_size];
assert (cl.uint_to_t (cl.v (cl.get_bitfield x 0 bitsum'_size)) == cl.uint_to_t (cl.v (cl.get_bitfield y 0 bitsum'_size)))
#pop-options
let synth_bitsum'_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
: Lemma
(synth_injective (synth_bitsum' b))
// [SMTPat (synth_injective (synth_bitsum' b))]
= synth_injective_intro' (synth_bitsum' b) (fun x y ->
synth_bitsum'_injective' b x y;
BF.get_bitfield_full (cl.v x);
BF.get_bitfield_full (cl.v y);
assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))
)
// #push-options "--z3rlimit 128 --z3cliopt smt.arith.nl=false"
#push-options "--z3rlimit 64"
let rec synth_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: parse_filter_refine (filter_bitsum' b))
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (synth_bitsum' b x == synth_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let f : bitfield cl sz = cl.get_bitfield x (bitsum'_size - sz) (bitsum'_size) in
let g : bitfield cl sz = cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - sz) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
synth_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
let k = enum_key_of_repr e f in
let u = synth_bitsum' (payload k) x in
let v = synth_bitsum' (payload k) y in
assert (synth_bitsum' (BitSum' key key_size e payload) x == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, u |));
assert (synth_bitsum' (BitSum' key key_size e payload) y == bitsum'_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, v |));
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v x) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v x) 0 bitsum'_size) (0) (bitsum'_size - key_size));
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
assert (BF.get_bitfield (cl.v y) 0 (bitsum'_size - key_size) == BF.get_bitfield (BF.get_bitfield (cl.v y) 0 bitsum'_size) (0) (bitsum'_size - key_size));
synth_bitsum'_ext (payload k) x y;
assert (u == v)
#pop-options
let parse_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(p: parser k t)
: Tot (parser (parse_filter_kind k) (bitsum'_type b))
= synth_bitsum'_injective b;
(p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b
let rec synth_bitsum'_recip'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot t
(decreases (bitsum'_size))
= match b with
| BitStop _ -> cl.uint_to_t 0
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
cl.set_bitfield (synth_bitsum'_recip' rest tl) (bitsum'_size - sz) (bitsum'_size) hd
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y1 = synth_bitsum'_recip' (payload k) tl in
let y2 = cl.set_bitfield y1 (bitsum'_size - key_size) bitsum'_size (enum_repr_of_key e k) in
y2
#push-options "--z3rlimit 16"
let rec get_bitfield_synth_bitsum'_recip'_other
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
(lo: nat)
(hi: nat { bitsum'_size <= lo /\ lo <= hi /\ hi <= tot })
: Lemma
(ensures (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) lo hi) == 0))
(decreases (bitsum'_size))
= match b with
| BitStop h ->
BF.get_bitfield_zero tot lo hi
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) bitsum'_size (cl.v hd) lo hi;
get_bitfield_synth_bitsum'_recip'_other rest tl lo hi
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) lo hi;
get_bitfield_synth_bitsum'_recip'_other (payload k) tl lo hi
#pop-options
#push-options "--z3rlimit 64"
let rec filter_bitsum'_ext
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x y: t)
: Lemma
(requires (BF.get_bitfield (cl.v x) 0 bitsum'_size == BF.get_bitfield (cl.v y) 0 bitsum'_size))
(ensures (filter_bitsum' b x == filter_bitsum' b y))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - sz);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - sz);
filter_bitsum'_ext rest x y
| BitSum' key key_size e payload ->
let f : bitfield cl key_size = cl.get_bitfield x (bitsum'_size - key_size) (bitsum'_size) in
let g : bitfield cl key_size = cl.get_bitfield y (bitsum'_size - key_size) (bitsum'_size) in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size (bitsum'_size - key_size) bitsum'_size;
assert (BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size) == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v f == BF.get_bitfield (cl.v x) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.v g == BF.get_bitfield (cl.v y) (bitsum'_size - key_size) (bitsum'_size));
assert (cl.uint_to_t (cl.v f) == cl.uint_to_t (cl.v g));
assert (f == g);
if list_mem f (list_map snd e)
then begin
let k = enum_key_of_repr e f in
BF.get_bitfield_get_bitfield (cl.v x) 0 bitsum'_size 0 (bitsum'_size - key_size);
BF.get_bitfield_get_bitfield (cl.v y) 0 bitsum'_size 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) x y
end else ()
#pop-options
let rec synth_bitsum'_recip'_prop
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (filter_bitsum' b (synth_bitsum'_recip' b x) == true))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' rest tl)) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest (synth_bitsum'_recip' b x) (synth_bitsum'_recip' rest tl);
synth_bitsum'_recip'_prop rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
BF.get_bitfield_set_bitfield_same (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
BF.get_bitfield_set_bitfield_other (cl.v (synth_bitsum'_recip' (payload k) tl)) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
assert (cl.uint_to_t (cl.v (cl.get_bitfield (synth_bitsum'_recip' b x) (bitsum'_size - key_size) (bitsum'_size))) == cl.uint_to_t (cl.v (enum_repr_of_key e k <: t)));
enum_key_of_repr_of_key e k;
filter_bitsum'_ext (payload k) (synth_bitsum'_recip' b x) (synth_bitsum'_recip' (payload k) tl);
synth_bitsum'_recip'_prop (payload k) tl
inline_for_extraction
let synth_bitsum'_recip
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (parse_filter_refine (filter_bitsum' b))
= synth_bitsum'_recip'_prop b x;
synth_bitsum'_recip' b x
#push-options "--z3rlimit 16"
let rec synth_bitsum'_recip_inverse'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Lemma
(ensures (synth_bitsum' b (synth_bitsum'_recip b x) == x))
(decreases bitsum'_size)
= match b with
| BitStop _ -> ()
| BitField sz rest ->
let (hd, tl) = bitsum'_type_elim_BitField cl bitsum'_size sz rest x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip rest tl in
(* Part 1/2: synth_bitfield cl 0 header_size header y == hd *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd);
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - sz) (bitsum'_size))) == cl.uint_to_t (cl.v hd));
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - sz) (bitsum'_size) (cl.v hd) 0 (bitsum'_size - sz);
filter_bitsum'_ext rest y y1;
synth_bitsum'_ext rest y y1 ;
synth_bitsum'_recip_inverse' rest tl
| BitSum' key key_size e payload ->
let (| k, tl |) = bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x in
let y = synth_bitsum'_recip b x in
let y1 = synth_bitsum'_recip (payload k) tl in
(* Part 1/2: k == enum_key_of_repr e f *)
BF.get_bitfield_set_bitfield_same (cl.v y1) (bitsum'_size - key_size) (bitsum'_size) (cl.v (enum_repr_of_key e k));
assert (cl.uint_to_t (cl.v (cl.get_bitfield y (bitsum'_size - key_size) bitsum'_size)) == cl.uint_to_t (cl.v (enum_repr_of_key e k)));
enum_key_of_repr_of_key e k;
(* Part 2/2: synth_bitfield cl (header_size + key_size) tot (payload k) y == tl *)
BF.get_bitfield_set_bitfield_other (cl.v y1) (bitsum'_size - key_size) bitsum'_size (cl.v (enum_repr_of_key e k)) 0 (bitsum'_size - key_size);
filter_bitsum'_ext (payload k) y y1;
synth_bitsum'_ext (payload k) y y1 ;
synth_bitsum'_recip_inverse' (payload k) tl
#pop-options
let synth_bitsum'_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Lemma
(synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))
// [SMTPat (synth_inverse (synth_bitsum' b) (synth_bitsum'_recip b))]
= synth_inverse_intro' (synth_bitsum' b) (synth_bitsum'_recip b) (fun x ->
synth_bitsum'_recip_inverse' b x
)
let serialize_bitsum'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
: Tot (serializer (parse_bitsum' b p))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
let serialize_bitsum'_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#k: parser_kind)
(#p: parser k t)
(s: serializer p)
(x: bitsum'_type b)
: Lemma
(serialize (serialize_bitsum' b s) x == serialize s (synth_bitsum'_recip b x))
= synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
serialize_synth_eq
(p `parse_filter` filter_bitsum' b)
(synth_bitsum' b)
(s `serialize_filter` filter_bitsum' b)
(synth_bitsum'_recip b)
()
x
let rec bitsum'_key_of_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(x: bitsum'_type b)
: Tot (bitsum'_key_type b)
(decreases (bitsum'_size))
= match b with
| BitStop _ -> ()
| BitField sz rest ->
begin match bitsum'_type_elim_BitField cl bitsum'_size sz rest x with
| (_, tl) ->
bitsum'_key_type_intro_BitField cl bitsum'_size sz rest (bitsum'_key_of_t rest tl)
end
| BitSum' key key_size e payload ->
begin match bitsum'_type_elim_BitSum' cl bitsum'_size key key_size e payload x with
| (| k, pl |) ->
bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, bitsum'_key_of_t (payload k) pl |)
end
inline_for_extraction
noextract
let id
(#t: Type)
(x: t)
: Tot t
= x
inline_for_extraction
noextract
noeq
type synth_case_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
: Type
= | SynthCase:
(f: (
(k' : bitsum'_type b) ->
type_of_tag (bitsum'_key_of_t b k') ->
Tot (refine_with_tag (tag_of_data) k')
)) ->
(f_inj: (
(k' : bitsum'_type b) ->
(pl1: type_of_tag (bitsum'_key_of_t b k')) ->
(pl2: type_of_tag (bitsum'_key_of_t b k')) ->
Lemma
(requires (f k' pl1 == f k' pl2))
(ensures (pl1 == pl2))
)) ->
(g: (
(k' : bitsum'_type b) ->
refine_with_tag (tag_of_data) k' ->
Tot (type_of_tag (bitsum'_key_of_t b k'))
)) ->
(f_g_eq: (
(k: bitsum'_type b) ->
(x: refine_with_tag (tag_of_data) k) ->
Lemma
(f k (g k x) == x)
))
-> synth_case_t b data tag_of_data type_of_tag
let synth_case_g_f_eq
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#b: bitsum' cl tot)
(#data: Type)
(#tag_of_data: (data -> Tot (bitsum'_type b)))
(#type_of_tag: (bitsum'_key_type b -> Tot Type))
(s: synth_case_t b data tag_of_data type_of_tag)
(k: bitsum'_type b)
(x: type_of_tag (bitsum'_key_of_t b k))
: Lemma
(s.g k (s.f k x) == x)
= s.f_g_eq k (s.f k x);
s.f_inj k (s.g k (s.f k x)) x
#push-options "--z3rlimit 16 --max_ifuel 3 --initial_ifuel 3"
let rec weaken_parse_bitsum_cases_kind'
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
(f: (x: bitsum'_key_type b) -> Tot parser_kind)
: Tot (k' : parser_kind & ((x: bitsum'_key_type b) -> Lemma (k' `is_weaker_than` f x)))
(decreases (bitsum'_size))
= match b with
| BitStop _ -> (| f (), (fun y -> ()) |)
| BitField sz rest ->
let (| g, phi |) = weaken_parse_bitsum_cases_kind' rest (fun x -> f (bitsum'_key_type_intro_BitField cl bitsum'_size sz rest x)) in
(| g, (fun x -> phi (bitsum'_key_type_elim_BitField cl bitsum'_size sz rest x)) |)
| BitSum' key key_size e payload ->
let keys : list key = List.Tot.map fst e in
let phi (x: key) : Tot (k: parser_kind & ((y: bitsum'_key_type b) -> Lemma
(requires (dfst (bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y) == x))
(ensures (k `is_weaker_than` f y)))) =
if List.Tot.mem x keys
then
let (| k, g |) = weaken_parse_bitsum_cases_kind' (payload x) (fun z -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| x, z |))) in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
assert (y1 == x);
g y2
) |)
else (| default_parser_kind, (fun y -> ()) |)
in
let k = glb_list_of #key (fun x -> dfst (phi x)) keys in
(| k, (fun y ->
let (| y1, y2 |) = bitsum'_key_type_elim_BitSum' cl bitsum'_size key key_size e payload y in
dsnd (phi y1) y
) |)
let weaken_parse_bitsum_cases_kind
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (k: parser_kind { forall (x: bitsum'_key_type b) . k `is_weaker_than` dfst (f x) })
= let (| k, phi |) = weaken_parse_bitsum_cases_kind' b (fun k -> dfst (f k)) in
Classical.forall_intro phi;
k
let synth_bitsum_case_injective
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_injective (synth_case.f x))
[SMTPat (synth_injective (synth_case.f x))]
= synth_injective_intro' (synth_case.f x) (fun y z ->
synth_case.f_inj x y z
)
let parse_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bitsum'_type b)
: Tot (parser (weaken_parse_bitsum_cases_kind b type_of_tag f) (refine_with_tag (tag_of_data) x))
= let tg : bitsum'_key_type b = bitsum'_key_of_t b x in
let (| k_, p |) = f tg in
weaken (weaken_parse_bitsum_cases_kind b type_of_tag f) (p `parse_synth` synth_case.f x)
inline_for_extraction
let parse_bitsum_kind
(kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot parser_kind
= and_then_kind (parse_filter_kind kt) (weaken_parse_bitsum_cases_kind b type_of_tag f)
let parse_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
: Tot (parser (parse_bitsum_kind kt b type_of_tag f) data)
= parse_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
module Seq = FStar.Seq
#push-options "--z3rlimit 16"
let parse_bitsum_eq
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bytes)
: Lemma
(parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse (parse_bitsum' b p) x with
| None -> None
| Some (tg, consumed1) ->
let k = bitsum'_key_of_t b tg in
begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with
| None -> None
| Some (y, consumed2) ->
Some ((synth_case.f tg y <: data), consumed1 + consumed2)
end
))
= parse_tagged_union_eq
#(parse_filter_kind kt)
#(bitsum'_type b)
(parse_bitsum' b p)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
x;
match parse (parse_bitsum' b p) x with
| None -> ()
| Some (tg, consumed1) ->
let k = bitsum'_key_of_t b tg in
synth_bitsum_case_injective b tag_of_data type_of_tag synth_case tg;
parse_synth_eq
(dsnd (f k))
(synth_case.f tg)
(Seq.slice x consumed1 (Seq.length x))
#pop-options
let parse_bitsum_eq'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(p: parser kt t)
(f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(x: bytes)
: Lemma
(parse (parse_bitsum b tag_of_data type_of_tag synth_case p f) x == (match parse p x with
| None -> None
| Some (tg', consumed1) ->
if filter_bitsum' b tg'
then
let tg = synth_bitsum' b tg' in
let k = bitsum'_key_of_t b tg in
begin match parse (dsnd (f k)) (Seq.slice x consumed1 (Seq.length x)) with
| None -> None
| Some (y, consumed2) ->
Some ((synth_case.f tg y <: data), consumed1 + consumed2)
end
else
None
))
= parse_bitsum_eq b tag_of_data type_of_tag synth_case p f x;
synth_bitsum'_injective b;
parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) x;
parse_filter_eq p (filter_bitsum' b) x
let synth_bitsum_case_recip_inverse
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(x: bitsum'_type b)
: Lemma
(synth_inverse (synth_case.f x) (synth_case.g x))
[SMTPat (synth_inverse (synth_case.f x) (synth_case.g x))] // FIXME: does not trigger. WHY WHY WHY?
= synth_inverse_intro' (synth_case.f x) (synth_case.g x) (fun y ->
synth_case.f_g_eq x y
)
let serialize_bitsum_cases
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: bitsum'_type b)
: Tot (serializer (parse_bitsum_cases b tag_of_data type_of_tag synth_case f x))
= let tg = bitsum'_key_of_t b x in
let (| _, p |) = f tg in
synth_bitsum_case_injective b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger?
synth_bitsum_case_recip_inverse b tag_of_data type_of_tag synth_case x; // FIXME: WHY WHY WHY does the pattern not trigger?
serialize_weaken (weaken_parse_bitsum_cases_kind b type_of_tag f)
(serialize_synth
p
(synth_case.f x)
(g tg)
(synth_case.g x)
())
let serialize_bitsum
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
: Tot (serializer (parse_bitsum b tag_of_data type_of_tag synth_case p f))
= serialize_tagged_union
#(parse_filter_kind kt)
#(bitsum'_type b)
#(parse_bitsum' b p)
(serialize_bitsum' b s)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
#(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
(serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
let serialize_bitsum_alt
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: GTot bytes
=
let tg = tag_of_data x in
let k = bitsum'_key_of_t b tg in
let payload = synth_case.g tg x in
serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
let serialize_bitsum_eq
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: Lemma
(serialize (serialize_bitsum b tag_of_data type_of_tag synth_case s g) x == serialize_bitsum_alt b tag_of_data type_of_tag synth_case s g x)
= serialize_tagged_union_eq
#(parse_filter_kind kt)
#(bitsum'_type b)
#(parse_bitsum' b p)
(serialize_bitsum' b s)
#(data)
(tag_of_data)
#(weaken_parse_bitsum_cases_kind b type_of_tag f)
#(parse_bitsum_cases b tag_of_data type_of_tag synth_case f)
(serialize_bitsum_cases b tag_of_data type_of_tag synth_case #f g)
x;
let tg = tag_of_data x in
let k = bitsum'_key_of_t b tg in
serialize_bitsum'_eq b s tg;
let (| _, p |) = f k in
serialize_synth_eq
#_
#(type_of_tag k)
p
(synth_case.f tg)
(g k)
(synth_case.g tg)
()
x
let serialize_bitsum_eq'
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(x: data)
: Lemma
(serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x == serialize_bitsum_alt #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g x)
= serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g x
let serialize_bitsum_alt_2
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(tg: bitsum'_type b)
(payload: type_of_tag (bitsum'_key_of_t b tg))
: GTot bytes
= let k = bitsum'_key_of_t b tg in
serialize s (synth_bitsum'_recip b tg) `Seq.append` serialize (g k) payload
let serialize_bitsum_eq_2
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(tg: bitsum'_type b)
(payload: type_of_tag (bitsum'_key_of_t b tg))
: Lemma
(serialize_bitsum #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g (synth_case.f tg payload) == serialize_bitsum_alt_2 #kt #tot #t #cl b #data tag_of_data type_of_tag synth_case #p s #f g tg payload)
= serialize_bitsum_eq b tag_of_data type_of_tag synth_case s g (synth_case.f tg payload);
synth_case_g_f_eq synth_case tg payload
(* Implementation of filter_bitsum' *)
inline_for_extraction
noextract
let filter_bitsum'_t
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(#bitsum'_size: nat)
(b: bitsum' cl bitsum'_size)
: Tot Type
= (x: t) ->
Tot (y: bool { y == filter_bitsum' b x }) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Enum.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Spec.BitSum.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "LowParse.BitFields",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Enum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 3,
"max_fuel": 8,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | cl: LowParse.BitFields.uint_t tot t
-> LowParse.Spec.BitSum.filter_bitsum'_t (LowParse.Spec.BitSum.BitStop ()) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"Prims.bool",
"Prims.eq2",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.BitSum.BitStop",
"LowParse.Spec.BitSum.filter_bitsum'_t"
] | [] | false | false | false | false | false | let filter_bitsum'_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t)
: Tot (filter_bitsum'_t #tot #t #cl #0 (BitStop ())) =
| fun _ -> true | false |
FStar.Monotonic.HyperHeap.fsti | FStar.Monotonic.HyperHeap.modifies_just | val modifies_just : s: FStar.Set.set FStar.Monotonic.HyperHeap.rid ->
m0: FStar.Monotonic.HyperHeap.hmap ->
m1: FStar.Monotonic.HyperHeap.hmap
-> Prims.logical | let modifies_just (s:Set.set rid) (m0:hmap) (m1:hmap) =
Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement s) m0)) /\
Set.subset (Map.domain m0) (Map.domain m1) | {
"file_name": "ulib/FStar.Monotonic.HyperHeap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 116,
"start_col": 0,
"start_line": 114
} | (*
Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.HyperHeap
module Set = FStar.Set
module Map = FStar.Map
open FStar.Monotonic.Heap
open FStar.Ghost
(*
* This module provides the map view of the memory and associated functions and lemmas
* The intention of this module is for it to be included in HyperStack
* Clients should not open/know about HyperHeap, they should work only with HyperStack
*)
(*
* AR: mark it must_erase_for_extraction temporarily until CMI comes in
*)
[@@must_erase_for_extraction]
val rid :eqtype
val reveal (r:rid) :GTot (list (int * int))
let rid_last_component (r:rid) :GTot int
= let open FStar.List.Tot in
let r = reveal r in
if length r = 0 then 0
else snd (hd r)
val color (x:rid) :GTot int
val rid_freeable (x:rid) : GTot bool
type hmap = Map.t rid heap
val root : r:rid{color r == 0 /\ not (rid_freeable r)}
val root_last_component (_:unit) : Lemma (rid_last_component root == 0)
let root_has_color_zero (u:unit) :Lemma (color root == 0) = ()
val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root))
private val rid_length (r:rid) :GTot nat
private val rid_tail (r:rid{rid_length r > 0}) :rid
val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2))
let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i)
val lemma_disjoint_includes (i:rid) (j:rid) (k:rid)
:Lemma (requires (disjoint i j /\ includes j k))
(ensures (disjoint i k))
(decreases (List.Tot.length (reveal k)))
[SMTPat (disjoint i j); SMTPat (includes j k)]
val extends (i:rid) (j:rid) :GTot bool
val parent (r:rid{r =!= root}) :rid
val lemma_includes_refl (i:rid)
:Lemma (includes i i)
[SMTPat (includes i i)]
val lemma_extends_includes (i:rid) (j:rid)
:Lemma (requires (extends j i))
(ensures (includes i j /\ not(includes j i)))
[SMTPat (extends j i)]
val lemma_includes_anti_symmetric (i:rid) (j:rid)
:Lemma (requires (includes i j /\ i =!= j))
(ensures (not (includes j i)))
[SMTPat (includes i j)]
val lemma_extends_disjoint (i:rid) (j:rid) (k:rid)
:Lemma (requires (extends j i /\ extends k i /\ j =!= k))
(ensures (disjoint j k))
val lemma_extends_parent (i:rid{i =!= root})
:Lemma (extends i (parent i))
[SMTPat (parent i)]
val lemma_extends_not_root (i:rid) (j:rid{extends j i})
:Lemma (j =!= root)
[SMTPat (extends j i)]
val lemma_extends_only_parent (i:rid) (j:rid{extends j i})
:Lemma (i == parent j)
[SMTPat (extends j i)]
val mod_set (s:Set.set rid) :(Set.set rid)
assume Mod_set_def: forall (x:rid) (s:Set.set rid). {:pattern Set.mem x (mod_set s)}
Set.mem x (mod_set s) <==> (exists (y:rid). Set.mem y s /\ includes y x)
let modifies (s:Set.set rid) (m0:hmap) (m1:hmap) =
Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\
Set.subset (Map.domain m0) (Map.domain m1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Heap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.HyperHeap.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Heap",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Map",
"short_module": "Map"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: FStar.Set.set FStar.Monotonic.HyperHeap.rid ->
m0: FStar.Monotonic.HyperHeap.hmap ->
m1: FStar.Monotonic.HyperHeap.hmap
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Set.set",
"FStar.Monotonic.HyperHeap.rid",
"FStar.Monotonic.HyperHeap.hmap",
"Prims.l_and",
"FStar.Map.equal",
"FStar.Monotonic.Heap.heap",
"FStar.Map.concat",
"FStar.Map.restrict",
"FStar.Set.complement",
"FStar.Set.subset",
"FStar.Map.domain",
"Prims.logical"
] | [] | false | false | false | true | true | let modifies_just (s: Set.set rid) (m0 m1: hmap) =
| Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement s) m0)) /\
Set.subset (Map.domain m0) (Map.domain m1) | false |
|
FStar.Monotonic.HyperHeap.fsti | FStar.Monotonic.HyperHeap.modifies | val modifies : s: FStar.Set.set FStar.Monotonic.HyperHeap.rid ->
m0: FStar.Monotonic.HyperHeap.hmap ->
m1: FStar.Monotonic.HyperHeap.hmap
-> Prims.logical | let modifies (s:Set.set rid) (m0:hmap) (m1:hmap) =
Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\
Set.subset (Map.domain m0) (Map.domain m1) | {
"file_name": "ulib/FStar.Monotonic.HyperHeap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 112,
"start_col": 0,
"start_line": 110
} | (*
Copyright 2008-2014 Nikhil Swamy, Aseem Rastogi, and Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.HyperHeap
module Set = FStar.Set
module Map = FStar.Map
open FStar.Monotonic.Heap
open FStar.Ghost
(*
* This module provides the map view of the memory and associated functions and lemmas
* The intention of this module is for it to be included in HyperStack
* Clients should not open/know about HyperHeap, they should work only with HyperStack
*)
(*
* AR: mark it must_erase_for_extraction temporarily until CMI comes in
*)
[@@must_erase_for_extraction]
val rid :eqtype
val reveal (r:rid) :GTot (list (int * int))
let rid_last_component (r:rid) :GTot int
= let open FStar.List.Tot in
let r = reveal r in
if length r = 0 then 0
else snd (hd r)
val color (x:rid) :GTot int
val rid_freeable (x:rid) : GTot bool
type hmap = Map.t rid heap
val root : r:rid{color r == 0 /\ not (rid_freeable r)}
val root_last_component (_:unit) : Lemma (rid_last_component root == 0)
let root_has_color_zero (u:unit) :Lemma (color root == 0) = ()
val root_is_not_freeable (_:unit) : Lemma (not (rid_freeable root))
private val rid_length (r:rid) :GTot nat
private val rid_tail (r:rid{rid_length r > 0}) :rid
val includes (r1:rid) (r2:rid) :GTot bool (decreases (reveal r2))
let disjoint (i:rid) (j:rid) :GTot bool = not (includes i j) && not (includes j i)
val lemma_disjoint_includes (i:rid) (j:rid) (k:rid)
:Lemma (requires (disjoint i j /\ includes j k))
(ensures (disjoint i k))
(decreases (List.Tot.length (reveal k)))
[SMTPat (disjoint i j); SMTPat (includes j k)]
val extends (i:rid) (j:rid) :GTot bool
val parent (r:rid{r =!= root}) :rid
val lemma_includes_refl (i:rid)
:Lemma (includes i i)
[SMTPat (includes i i)]
val lemma_extends_includes (i:rid) (j:rid)
:Lemma (requires (extends j i))
(ensures (includes i j /\ not(includes j i)))
[SMTPat (extends j i)]
val lemma_includes_anti_symmetric (i:rid) (j:rid)
:Lemma (requires (includes i j /\ i =!= j))
(ensures (not (includes j i)))
[SMTPat (includes i j)]
val lemma_extends_disjoint (i:rid) (j:rid) (k:rid)
:Lemma (requires (extends j i /\ extends k i /\ j =!= k))
(ensures (disjoint j k))
val lemma_extends_parent (i:rid{i =!= root})
:Lemma (extends i (parent i))
[SMTPat (parent i)]
val lemma_extends_not_root (i:rid) (j:rid{extends j i})
:Lemma (j =!= root)
[SMTPat (extends j i)]
val lemma_extends_only_parent (i:rid) (j:rid{extends j i})
:Lemma (i == parent j)
[SMTPat (extends j i)]
val mod_set (s:Set.set rid) :(Set.set rid)
assume Mod_set_def: forall (x:rid) (s:Set.set rid). {:pattern Set.mem x (mod_set s)}
Set.mem x (mod_set s) <==> (exists (y:rid). Set.mem y s /\ includes y x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Heap.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.HyperHeap.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic.Heap",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Map",
"short_module": "Map"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "Set"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: FStar.Set.set FStar.Monotonic.HyperHeap.rid ->
m0: FStar.Monotonic.HyperHeap.hmap ->
m1: FStar.Monotonic.HyperHeap.hmap
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Set.set",
"FStar.Monotonic.HyperHeap.rid",
"FStar.Monotonic.HyperHeap.hmap",
"Prims.l_and",
"FStar.Map.equal",
"FStar.Monotonic.Heap.heap",
"FStar.Map.concat",
"FStar.Map.restrict",
"FStar.Set.complement",
"FStar.Monotonic.HyperHeap.mod_set",
"FStar.Set.subset",
"FStar.Map.domain",
"Prims.logical"
] | [] | false | false | false | true | true | let modifies (s: Set.set rid) (m0 m1: hmap) =
| Map.equal m1 (Map.concat m1 (Map.restrict (Set.complement (mod_set s)) m0)) /\
Set.subset (Map.domain m0) (Map.domain m1) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.