file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.UInt16.fsti
FStar.UInt16.op_Plus_Question_Hat
val op_Plus_Question_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Plus_Question_Hat = add_underspec
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 317, "start_col": 7, "start_line": 317 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.add_underspec" ]
[]
false
false
false
false
false
let op_Plus_Question_Hat =
add_underspec
false
FStar.UInt16.fsti
FStar.UInt16.op_Plus_Hat
val op_Plus_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Plus_Hat = add
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 316, "start_col": 7, "start_line": 316 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.add" ]
[]
false
false
false
false
false
let op_Plus_Hat =
add
false
FStar.UInt16.fsti
FStar.UInt16.op_Star_Hat
val op_Star_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Star_Hat = mul
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 322, "start_col": 7, "start_line": 322 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.mul" ]
[]
false
false
false
false
false
let op_Star_Hat =
mul
false
FStar.UInt16.fsti
FStar.UInt16.op_Subtraction_Question_Hat
val op_Subtraction_Question_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Subtraction_Question_Hat = sub_underspec
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 320, "start_col": 7, "start_line": 320 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.sub_underspec" ]
[]
false
false
false
false
false
let op_Subtraction_Question_Hat =
sub_underspec
false
FStar.UInt16.fsti
FStar.UInt16.op_Percent_Hat
val op_Percent_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
let op_Percent_Hat = rem
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 326, "start_col": 7, "start_line": 326 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.rem" ]
[]
false
false
false
false
false
let op_Percent_Hat =
rem
false
FStar.UInt16.fsti
FStar.UInt16.op_Star_Question_Hat
val op_Star_Question_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Star_Question_Hat = mul_underspec
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 323, "start_col": 7, "start_line": 323 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.mul_underspec" ]
[]
false
false
false
false
false
let op_Star_Question_Hat =
mul_underspec
false
FStar.UInt16.fsti
FStar.UInt16.op_Amp_Hat
val op_Amp_Hat : x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Amp_Hat = logand
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 328, "start_col": 7, "start_line": 328 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.logand" ]
[]
false
false
false
false
false
let op_Amp_Hat =
logand
false
FStar.UInt16.fsti
FStar.UInt16.op_Star_Percent_Hat
val op_Star_Percent_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Star_Percent_Hat = mul_mod
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 324, "start_col": 7, "start_line": 324 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.mul_mod" ]
[]
false
false
false
false
false
let op_Star_Percent_Hat =
mul_mod
false
FStar.UInt16.fsti
FStar.UInt16.op_Bar_Hat
val op_Bar_Hat : x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Bar_Hat = logor
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 329, "start_col": 7, "start_line": 329 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.logor" ]
[]
false
false
false
false
false
let op_Bar_Hat =
logor
false
FStar.UInt16.fsti
FStar.UInt16.op_Less_Less_Hat
val op_Less_Less_Hat : a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
let op_Less_Less_Hat = shift_left
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 330, "start_col": 7, "start_line": 330 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.shift_left" ]
[]
false
false
false
false
false
let op_Less_Less_Hat =
shift_left
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.reification
val reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a)
val reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a)
let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm)
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 1595, "start_col": 0, "start_line": 1578 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> tadd: FStar.Tactics.NamedView.term -> topp: FStar.Tactics.NamedView.term -> tmone: FStar.Tactics.NamedView.term -> tmult: FStar.Tactics.NamedView.term -> munit: a -> ts: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (Prims.list (FStar.Tactics.CanonCommSemiring.polynomial a) * FStar.Tactics.CanonCommSemiring.vmap a)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Base.rev", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.tuple3", "FStar.Tactics.Util.fold_left", "FStar.Pervasives.Native.Mktuple3", "Prims.Cons", "FStar.Tactics.CanonCommSemiring.reification_aux", "Prims.Nil", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Tactics.Util.map", "FStar.Tactics.V2.Derived.norm_term", "FStar.Tactics.CanonCommSemiring.steps" ]
[]
false
true
false
false
false
let reification (#a: Type) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tadd topp tmone tmult: term) (munit: a) (ts: list term) : Tac (list (polynomial a) * vmap a) =
let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in let es, _, vm = Tactics.Util.fold_left (fun (es, vs, vm) t -> let e, vs, vm = reification_aux unquotea vs vm add opp mone mult t in (e :: es, vs, vm)) ([], [], ([], munit)) ts in (List.Tot.Base.rev es, vm)
false
FStar.UInt16.fsti
FStar.UInt16.op_Hat_Hat
val op_Hat_Hat : x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
let op_Hat_Hat = logxor
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 327, "start_col": 7, "start_line": 327 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt16.t -> y: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.logxor" ]
[]
false
false
false
false
false
let op_Hat_Hat =
logxor
false
FStar.UInt16.fsti
FStar.UInt16.op_Greater_Greater_Hat
val op_Greater_Greater_Hat : a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
let op_Greater_Greater_Hat = shift_right
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 331, "start_col": 7, "start_line": 331 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.shift_right" ]
[]
false
false
false
false
false
let op_Greater_Greater_Hat =
shift_right
false
FStar.UInt16.fsti
FStar.UInt16.op_Slash_Hat
val op_Slash_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
let op_Slash_Hat = div
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 325, "start_col": 7, "start_line": 325 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t{FStar.UInt16.v b <> 0} -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.div" ]
[]
false
false
false
false
false
let op_Slash_Hat =
div
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.ddump
val ddump : m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
let ddump m = if debugging () then dump m
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 1498, "start_col": 0, "start_line": 1498 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.string", "FStar.Stubs.Tactics.V2.Builtins.dump", "Prims.unit", "Prims.bool", "FStar.Stubs.Tactics.V2.Builtins.debugging" ]
[]
false
true
false
false
false
let ddump m =
if debugging () then dump m
false
FStar.UInt16.fsti
FStar.UInt16.op_Greater_Equals_Hat
val op_Greater_Equals_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
let op_Greater_Equals_Hat = gte
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 334, "start_col": 7, "start_line": 334 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.gte" ]
[]
false
false
false
true
false
let op_Greater_Equals_Hat =
gte
false
FStar.UInt16.fsti
FStar.UInt16.op_Greater_Hat
val op_Greater_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
let op_Greater_Hat = gt
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 333, "start_col": 7, "start_line": 333 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.gt" ]
[]
false
false
false
true
false
let op_Greater_Hat =
gt
false
FStar.UInt16.fsti
FStar.UInt16.op_Less_Equals_Hat
val op_Less_Equals_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
let op_Less_Equals_Hat = lte
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 336, "start_col": 7, "start_line": 336 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.lte" ]
[]
false
false
false
true
false
let op_Less_Equals_Hat =
lte
false
FStar.UInt16.fsti
FStar.UInt16.op_Less_Hat
val op_Less_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
let op_Less_Hat = lt
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 335, "start_col": 7, "start_line": 335 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.lt" ]
[]
false
false
false
true
false
let op_Less_Hat =
lt
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.steps
val steps : Prims.list FStar.Pervasives.norm_step
let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ]
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 1574, "start_col": 0, "start_line": 1551 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.list FStar.Pervasives.norm_step
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.primops", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.delta_only" ]
[]
false
false
false
true
false
let steps =
[ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; `%FStar.Algebra.CommMonoid.int_plus_cm; `%FStar.Algebra.CommMonoid.int_multiply_cm; `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append ] ]
false
FStar.UInt16.fsti
FStar.UInt16.minus
val minus : a: FStar.UInt16.t -> FStar.UInt16.t
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 239, "start_col": 0, "start_line": 239 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> FStar.UInt16.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.t", "FStar.UInt16.add_mod", "FStar.UInt16.lognot", "FStar.UInt16.uint_to_t" ]
[]
false
false
false
true
false
let minus (a: t) =
add_mod (lognot a) (uint_to_t 1)
false
FStar.UInt16.fsti
FStar.UInt16.op_Equals_Hat
val op_Equals_Hat : a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
let op_Equals_Hat = eq
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 332, "start_col": 7, "start_line": 332 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt16.eq" ]
[]
false
false
false
true
false
let op_Equals_Hat =
eq
false
FStar.UInt16.fsti
FStar.UInt16.n_minus_one
val n_minus_one : FStar.UInt32.t
let n_minus_one = UInt32.uint_to_t (n - 1)
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 244, "start_col": 0, "start_line": 244 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "FStar.UInt16.n" ]
[]
false
false
false
true
false
let n_minus_one =
UInt32.uint_to_t (n - 1)
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.varlist_insert_ok
val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2))
val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2))
let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 1045, "start_col": 0, "start_line": 1043 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> l1: FStar.Tactics.CanonCommSemiring.varlist -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.varlist_insert r l1 s2) == CM?.mult (CR?.cm_add r) (FStar.Tactics.CanonCommSemiring.interp_vl r vm l1) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "Prims.unit" ]
[]
true
false
true
false
false
let varlist_insert_ok #a r vm l1 s2 =
let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canon_norm
val canon_norm: Prims.unit -> Tac unit
val canon_norm: Prims.unit -> Tac unit
let canon_norm () : Tac unit = norm steps
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 1576, "start_col": 0, "start_line": 1576 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Stubs.Tactics.V2.Builtins.norm", "FStar.Tactics.CanonCommSemiring.steps" ]
[]
false
true
false
false
false
let canon_norm () : Tac unit =
norm steps
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canon_semiring
val canon_semiring (#a: eqtype) (r: cr a) : Tac unit
val canon_semiring (#a: eqtype) (r: cr a) : Tac unit
let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 1682, "start_col": 0, "start_line": 1675 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality")
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.canon_semiring_aux", "FStar.Stubs.Tactics.V2.Builtins.unquote", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.NamedView.term", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "Prims.unit", "FStar.Tactics.V2.Derived.norm_term", "FStar.Tactics.CanonCommSemiring.steps", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp" ]
[]
false
true
false
false
false
let canon_semiring (#a: eqtype) (r: cr a) : Tac unit =
canon_semiring_aux a (quote a) (unquote #a) (fun (x: a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.varlist_merge_ok
val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0])
val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0])
let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 611, "start_col": 0, "start_line": 557 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> x: FStar.Tactics.CanonCommSemiring.varlist -> y: FStar.Tactics.CanonCommSemiring.varlist -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_vl r vm (FStar.Tactics.CanonCommSemiring.varlist_merge x y) == CM?.mult (CR?.cm_mult r) (FStar.Tactics.CanonCommSemiring.interp_vl r vm x) (FStar.Tactics.CanonCommSemiring.interp_vl r vm y)) (decreases %[x;y;0])
FStar.Pervasives.Lemma
[ "lemma", "" ]
[ "varlist_merge_ok", "vm_aux_ok" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.CanonCommSemiring.index", "Prims.op_LessThan", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.interp_var", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.varlist_merge_ok", "Prims.bool", "FStar.Tactics.CanonCommSemiring.vm_aux_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__mult" ]
[ "mutual recursion" ]
false
false
true
false
false
let rec varlist_merge_ok #a r vm x y =
let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then (varlist_merge_ok r vm t1 y; assert (interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y)) else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.int_semiring
val int_semiring: Prims.unit -> Tac unit
val int_semiring: Prims.unit -> Tac unit
let int_semiring () : Tac unit = (* Check to see if goal is a `nat` equality, change the equality to `int` beforehand *) match term_as_formula (cur_goal ()) with | Comp (Eq (Some t)) _ _ -> if term_eq t (`Prims.nat) then (apply_lemma (`eq_nat_via_int); canon_semiring int_cr) else canon_semiring int_cr | _ -> canon_semiring int_cr
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 1701, "start_col": 0, "start_line": 1693 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality") let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit /// Ring of integers [@@canon_attr] let int_cr : cr int = CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ()) private let eq_nat_via_int (a b : nat) (eq : squash (eq2 #int a b)) : Lemma (eq2 #nat a b) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.NamedView.term", "FStar.Tactics.CanonCommSemiring.canon_semiring", "Prims.int", "FStar.Tactics.CanonCommSemiring.int_cr", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.bool", "FStar.Tactics.CanonCommSemiring.term_eq", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal" ]
[]
false
true
false
false
false
let int_semiring () : Tac unit =
match term_as_formula (cur_goal ()) with | Comp (Eq (Some t)) _ _ -> if term_eq t (`Prims.nat) then (apply_lemma (`eq_nat_via_int); canon_semiring int_cr) else canon_semiring int_cr | _ -> canon_semiring int_cr
false
Vale.SHA.SHA_helpers.fst
Vale.SHA.SHA_helpers.lemma_endian_relation
val lemma_endian_relation (quads qs: seq quad32) (input2: seq UInt8.t) : Lemma (requires length qs == 4 /\ length input2 == 64 /\ qs == reverse_bytes_nat32_quad32_seq quads /\ input2 == seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) (ensures quads_to_block qs == words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2)
val lemma_endian_relation (quads qs: seq quad32) (input2: seq UInt8.t) : Lemma (requires length qs == 4 /\ length input2 == 64 /\ qs == reverse_bytes_nat32_quad32_seq quads /\ input2 == seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) (ensures quads_to_block qs == words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2)
let lemma_endian_relation (quads qs:seq quad32) (input2:seq UInt8.t) : Lemma (requires length qs == 4 /\ length input2 == 64 /\ qs == reverse_bytes_nat32_quad32_seq quads /\ input2 == seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) (ensures quads_to_block qs == words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2) = let fi (i:nat{i < length (quads_to_block qs)}) : Lemma ((quads_to_block qs).[i] == (words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2).[i]) = let open Vale.Def.Words.Four_s in let open Vale.Lib.Seqs_s in let ni = (seq_four_to_seq_LE quads).[i] in let b = slice input2 (4 * i) (4 * i + 4) in // FStar.Krml.Endianness.lemma_be_to_n_is_bounded b; calc (==) { b; == {} slice input2 (4 * i) (4 * i + 4); == {} slice (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) (4 * i) (4 * i + 4); == {le_seq_quad32_to_bytes_reveal ()} slice (seq_nat8_to_seq_uint8 (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE quads))) (4 * i) (4 * i + 4); equal {} seq_nat8_to_seq_uint8 (slice (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE quads)) (4 * i) (4 * i + 4)); == {} seq_nat8_to_seq_uint8 (slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE quads))) (4 * i) (4 * i + 4)); == {slice_commutes_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE quads)) i (i + 1)} seq_nat8_to_seq_uint8 (seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE quads)) i (i + 1))); equal {reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8)} seq_nat8_to_seq_uint8 (four_to_seq_LE (nat_to_four 8 (seq_four_to_seq_LE quads).[i])); }; let open Lib.IntTypes in calc (==) { (words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2).[i]; == { } (Lib.ByteSequence.uints_from_bytes_be #U32 #SEC #(block_word_length SHA2_256) input2).[i]; == { Lib.ByteSequence.index_uints_from_bytes_be #U32 #SEC #(block_word_length SHA2_256) input2 i } Lib.ByteSequence.uint_from_bytes_be (Lib.Sequence.sub #uint8 #64 input2 (i * 4) 4); == { let open Lib.Sequence in calc (==) { sub #uint8 #64 input2 (i * 4) 4; == { } Seq.slice input2 (4 * i) (4 * i + 4); } } Lib.ByteSequence.uint_from_bytes_be #U32 #SEC b; == { calc (==) { Lib.ByteSequence.nat_from_bytes_be #SEC b; (==) { } Lib.ByteSequence.nat_from_bytes_be #SEC (seq_nat8_to_seq_uint8 (four_to_seq_LE (nat_to_four 8 ni))); (==) { lemma_be_to_n_4 (four_to_seq_LE (nat_to_four 8 ni)) } be_bytes_to_nat32 (four_to_seq_LE (nat_to_four 8 ni)); }; v_inj (Lib.ByteSequence.uint_from_bytes_be #U32 #SEC b) (u32 (be_bytes_to_nat32 (four_to_seq_LE (nat_to_four 8 ni)))) } nat32_to_word (be_bytes_to_nat32 (four_to_seq_LE (nat_to_four 8 ni))); == {} nat32_to_word (be_bytes_to_nat32 (reverse_seq (nat32_to_be_bytes ni))); == {reverse_bytes_nat32_reveal ()} nat32_to_word (reverse_bytes_nat32 ni); == {} nat32_to_word (reverse_bytes_nat32 (seq_four_to_seq_LE quads).[i]); == {reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat32)} nat32_to_word (seq_four_to_seq_LE qs).[i]; == {} (quads_to_block qs).[i]; } in FStar.Classical.forall_intro fi; assert (equal (quads_to_block qs) (words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2))
{ "file_name": "vale/code/crypto/sha/Vale.SHA.SHA_helpers.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 99, "end_line": 870, "start_col": 0, "start_line": 800 }
module Vale.SHA.SHA_helpers open FStar.Mul open Vale.Def.Prop_s open Vale.Def.Opaque_s open Spec.SHA2 open Spec.SHA2.Lemmas open Spec.Agile.Hash open Spec.Hash.Definitions open Spec.Hash.Lemmas open Vale.X64.CryptoInstructions_s open Vale.Def.Types_s open Vale.Def.Words_s open FStar.Seq open FStar.UInt32 // Interop with UInt-based SHA spec open Vale.Arch.Types friend Spec.SHA2 friend Spec.SHA2.Lemmas friend Vale.X64.CryptoInstructions_s #reset-options "--max_fuel 0 --max_ifuel 0" // Define these specific converters here, so that F* only reasons about // the correctness of the conversion once, rather that at every call site let vv (u:Lib.IntTypes.uint32) : nat32 = Lib.IntTypes.v u let to_uint32 (n:nat32) : Lib.IntTypes.uint32 = Lib.IntTypes.u32 n let word = Lib.IntTypes.uint32 let k = (Spec.SHA2.k0 SHA2_256) let reveal_word () = () val add_mod_lemma:x:Lib.IntTypes.uint32 -> y:Lib.IntTypes.uint32 -> Lemma (add_mod x y == Lib.IntTypes.(x +. y)) [SMTPat (Lib.IntTypes.(x +. y))] let add_mod_lemma x y = () unfold let ws_opaque_aux = ws let ws_opaque (b:block_w) (t:counter{t < size_k_w_256}) : nat32 = vv (ws_opaque_aux SHA2_256 b t) unfold let shuffle_core_opaque_aux = shuffle_core let shuffle_core_opaque (block:block_w) (hash:hash256) (t:counter{t < size_k_w_256}):hash256 = shuffle_core_opaque_aux SHA2_256 block hash t [@"opaque_to_smt"] let update_multi_opaque_aux = opaque_make update_multi irreducible let update_multi_reveal = opaque_revealer (`%update_multi_opaque_aux) update_multi_opaque_aux update_multi let update_multi_opaque (hash:hash256) (blocks:bytes_blocks):hash256 = (update_multi_opaque_aux SHA2_256 hash () blocks) let update_multi_transparent (hash:hash256) (blocks:bytes_blocks) = update_multi SHA2_256 hash () blocks let add_mod32 (x:word) (y:nat32) : nat32 = vv (add_mod x (to_uint32 y)) let word_to_nat32 = vv let nat32_to_word = to_uint32 let byte_to_nat8 = UInt8.v let nat8_to_byte = UInt8.uint_to_t let make_hash_def (abef cdgh:quad32) : (hash:words_state SHA2_256 { length hash == 8 /\ hash.[0] == to_uint32 abef.hi3 /\ hash.[1] == to_uint32 abef.hi2 /\ hash.[2] == to_uint32 cdgh.hi3 /\ hash.[3] == to_uint32 cdgh.hi2 /\ hash.[4] == to_uint32 abef.lo1 /\ hash.[5] == to_uint32 abef.lo0 /\ hash.[6] == to_uint32 cdgh.lo1 /\ hash.[7] == to_uint32 cdgh.lo0 } ) = let a = to_uint32 abef.hi3 in let b = to_uint32 abef.hi2 in let c = to_uint32 cdgh.hi3 in let d = to_uint32 cdgh.hi2 in let e = to_uint32 abef.lo1 in let f = to_uint32 abef.lo0 in let g = to_uint32 cdgh.lo1 in let h = to_uint32 cdgh.lo0 in let l = [a; b; c; d; e; f; g; h] in assert_norm (List.length l == 8); let hash = seq_of_list l in assert (length hash == 8); elim_of_list l; //assert_norm (index hash 2 == c); hash [@"opaque_to_smt"] let make_hash = opaque_make make_hash_def irreducible let make_hash_reveal = opaque_revealer (`%make_hash) make_hash make_hash_def let make_ordered_hash_def (abcd efgh:quad32) : (hash:words_state SHA2_256 { length hash == 8 /\ hash.[0] == to_uint32 abcd.lo0 /\ hash.[1] == to_uint32 abcd.lo1 /\ hash.[2] == to_uint32 abcd.hi2 /\ hash.[3] == to_uint32 abcd.hi3 /\ hash.[4] == to_uint32 efgh.lo0 /\ hash.[5] == to_uint32 efgh.lo1 /\ hash.[6] == to_uint32 efgh.hi2 /\ hash.[7] == to_uint32 efgh.hi3 }) = let a = to_uint32 abcd.lo0 in let b = to_uint32 abcd.lo1 in let c = to_uint32 abcd.hi2 in let d = to_uint32 abcd.hi3 in let e = to_uint32 efgh.lo0 in let f = to_uint32 efgh.lo1 in let g = to_uint32 efgh.hi2 in let h = to_uint32 efgh.hi3 in let l = [a; b; c; d; e; f; g; h] in assert_norm (List.length l == 8); let hash = seq_of_list l in assert (length hash == 8); elim_of_list l; hash [@"opaque_to_smt"] let make_ordered_hash = opaque_make make_ordered_hash_def irreducible let make_ordered_hash_reveal = opaque_revealer (`%make_ordered_hash) make_ordered_hash make_ordered_hash_def let shuffle_core_properties (block:block_w) (hash:hash256) (t:counter{t < size_k_w_256}) : Lemma(let h = shuffle_core_opaque block hash t in let open Lib.IntTypes in let a0 = hash.[0] in let b0 = hash.[1] in let c0 = hash.[2] in let d0 = hash.[3] in let e0 = hash.[4] in let f0 = hash.[5] in let g0 = hash.[6] in let h0 = hash.[7] in let t1 = h0 +. (_Sigma1 SHA2_256 e0) +. (_Ch SHA2_256 e0 f0 g0) +. (k0 SHA2_256).[t] +. (ws SHA2_256 block t) in let t2 = (_Sigma0 SHA2_256 a0) +. (_Maj SHA2_256 a0 b0 c0) in h.[0] == t1 +. t2 /\ h.[1] == a0 /\ h.[2] == b0 /\ h.[3] == c0 /\ h.[4] == d0 +. t1 /\ h.[5] == e0 /\ h.[6] == f0 /\ h.[7] == g0) = Pervasives.reveal_opaque (`%shuffle_core) shuffle_core; let h = shuffle_core SHA2_256 block hash t in let a0 = hash.[0] in let b0 = hash.[1] in let c0 = hash.[2] in let d0 = hash.[3] in let e0 = hash.[4] in let f0 = hash.[5] in let g0 = hash.[6] in let h0 = hash.[7] in let t1 = h0 +. (_Sigma1 SHA2_256 e0) +. (_Ch SHA2_256 e0 f0 g0) +. (k0 SHA2_256).[t] +. (ws SHA2_256 block t) in let t2 = (_Sigma0 SHA2_256 a0) +. (_Maj SHA2_256 a0 b0 c0) in let l = [ t1 +. t2; a0; b0; c0; d0 +. t1; e0; f0; g0 ] in assert (h == seq_of_list l); elim_of_list l; () let sha256_rnds2_spec_update_quad32 (abef cdgh:quad32) (wk:UInt32.t) : (quad32 & quad32) = let hash0 = make_hash abef cdgh in let a', b', c', d', e', f', g', h' = sha256_rnds2_spec_update hash0.[0] hash0.[1] hash0.[2] hash0.[3] hash0.[4] hash0.[5] hash0.[6] hash0.[7] wk in let abef' = Mkfour (vv f') (vv e') (vv b') (vv a') in let cdgh' = Mkfour (vv h') (vv g') (vv d') (vv c') in (abef', cdgh') let sha256_rnds2_spec_quad32 (src1 src2 wk:quad32) : quad32 = let abef', cdgh' = sha256_rnds2_spec_update_quad32 src2 src1 (to_uint32 wk.lo0) in let abef'', cdgh'' = sha256_rnds2_spec_update_quad32 abef' cdgh' (to_uint32 wk.lo1) in abef'' let lemma_sha256_rnds2_spec_quad32 (src1 src2 wk:quad32) : Lemma (sha256_rnds2_spec src1 src2 wk == sha256_rnds2_spec_quad32 src1 src2 wk) = sha256_rnds2_spec_reveal (); () let lemma_add_mod_commutes (x y:UInt32.t) : Lemma (add_mod x y == add_mod y x) = () (* let lemma_add_mod32_associates (x y z:int) : Lemma ( ((x + y % pow2_32) + z) % pow2_32 == (x + ((y + z) % pow2_32)) % pow2_32 ) = () *) let lemma_add_mod_associates_U32 (x y z:UInt32.t) : Lemma (add_mod x (add_mod y z) == add_mod (add_mod x y) z) = let open Lib.IntTypes in calc (==) { v (x +. (y +. z)); (==) { } (v x + (v y + v z) % pow2 32) % pow2 32; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v x) (v y + v z) (pow2 32) } ((v x + v y) + v z) % pow2 32; (==) { FStar.Math.Lemmas.lemma_mod_add_distr (v z) (v x + v y) (pow2 32) } ((v x + v y) % pow2 32 + v z) % pow2 32; (==) { } v ((x +. y) +. z); }; v_inj (x +. (y +. z)) ((x +. y) +. z) (* assert_norm (pow2 32 == pow2_32); //assert (add_mod y z == to_uint32 ((vv y + vv z) % pow2_32)); //assert (add_mod x (add_mod y z) == to_uint32 ((vv x + vv (to_uint32 ((vv y + vv z) % pow2_32))) % pow2_32)); lemma_add_mod32_associates (vv x) (vv y) (vv z); //assert (to_uint32 ((vv x + vv (to_uint32 ((vv y + vv z) % pow2_32))) % pow2_32) == // to_uint32 (((vv x + vv y % pow2_32) + vv z) % pow2_32)); *) #reset-options "--max_fuel 0 --max_ifuel 0" let lemma_add_wrap_is_add_mod (n0 n1:nat32) : Lemma (add_wrap n0 n1 == vv (add_mod (to_uint32 n0) (to_uint32 n1))) = assert_norm (pow2 32 == pow2_32); () let add_wrap_commutes (x y:nat32) : Lemma(add_wrap x y == add_wrap y x) = () // Walk F* through the math steps required to rearrange all of the add_mods let lemma_add_mod_a (a b c d e f g h wk:UInt32.t) : Lemma ( let u = add_mod (_Ch SHA2_256 e f g) (add_mod (_Sigma1 SHA2_256 e) (add_mod wk (add_mod h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a))))) in let t1 = add_mod h (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) in let t2 = add_mod (_Sigma0 SHA2_256 a) (_Maj SHA2_256 a b c) in let core = add_mod t1 t2 in u == core) = let t1 = add_mod h (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) in let t2 = add_mod (_Sigma0 SHA2_256 a) (_Maj SHA2_256 a b c) in let core = add_mod t1 t2 in lemma_add_mod_commutes (_Sigma0 SHA2_256 a) (_Maj SHA2_256 a b c); assert (t2 == add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a)); lemma_add_mod_commutes h (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)); assert (t1 == add_mod (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) h); lemma_add_mod_associates_U32 (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a)); assert (core == add_mod (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) (add_mod h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a)))); lemma_add_mod_associates_U32 (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g) wk; // ==> add_mod (add_mod (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g)) wk) lemma_add_mod_commutes (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g); // ==> add_mod (add_mod (_Ch SHA2_256 e f g) (_Sigma1 SHA2_256 e)) wk) lemma_add_mod_associates_U32 (add_mod (_Ch SHA2_256 e f g) (_Sigma1 SHA2_256 e)) wk (add_mod h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a))); assert (core == add_mod (add_mod (_Ch SHA2_256 e f g) (_Sigma1 SHA2_256 e)) (add_mod wk (add_mod h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a))))); lemma_add_mod_associates_U32 (_Ch SHA2_256 e f g) (_Sigma1 SHA2_256 e) (add_mod wk (add_mod h (add_mod (_Maj SHA2_256 a b c) (_Sigma0 SHA2_256 a)))); () let lemma_add_mod_e (a b c d e f g h wk:UInt32.t) : Lemma ( let u = add_mod (_Ch SHA2_256 e f g) (add_mod (_Sigma1 SHA2_256 e) (add_mod wk (add_mod h d))) in let t1 = add_mod h (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) in let core = add_mod d t1 in u == core) = let t1 = add_mod h (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) in let core = add_mod d t1 in lemma_add_mod_commutes h (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)); // t1 == add_mod (add_mod (_Sigma1 SHA2_256 e) (add_mod (_Ch SHA2_256 e f g) wk)) h); lemma_add_mod_commutes d t1; // core == add_mod t1 d lemma_add_mod_associates_U32 (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g) wk; assert (t1 == add_mod (add_mod (add_mod (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g)) wk) h); lemma_add_mod_associates_U32 (add_mod (add_mod (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g)) wk) h d; assert (core == add_mod (add_mod (add_mod (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g)) wk) (add_mod h d)); lemma_add_mod_associates_U32 (add_mod (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g)) wk (add_mod h d); assert (core == add_mod (add_mod (_Sigma1 SHA2_256 e) (_Ch SHA2_256 e f g)) (add_mod wk (add_mod h d))); lemma_add_mod_associates_U32 (_Ch SHA2_256 e f g) (_Sigma1 SHA2_256 e) (add_mod wk (add_mod h d)); assert (core == add_mod (_Ch SHA2_256 e f g) (add_mod (_Sigma1 SHA2_256 e) (add_mod wk (add_mod h d)))); () let lemma_sha256_rnds2_spec_update_is_shuffle_core (hash:hash256) (wk:UInt32.t) (t:counter) (block:block_w) : Lemma (requires t < size_k_w SHA2_256 /\ wk == to_uint32 (add_mod32 (k0 SHA2_256).[t] (ws_opaque block t))) (ensures (let a', b', c', d', e', f', g', h' = sha256_rnds2_spec_update hash.[0] hash.[1] hash.[2] hash.[3] hash.[4] hash.[5] hash.[6] hash.[7] wk in let u = seq_of_list [a'; b'; c'; d'; e'; f'; g'; h'] in let c = shuffle_core_opaque block hash t in u == c)) = let a', b', c', d', e', f', g', h' = sha256_rnds2_spec_update hash.[0] hash.[1] hash.[2] hash.[3] hash.[4] hash.[5] hash.[6] hash.[7] wk in let l:list Lib.IntTypes.uint32 = [a'; b'; c'; d'; e'; f'; g'; h'] in let u:Seq.seq UInt32.t = seq_of_list l in assert_norm (List.length l == 8); let c = shuffle_core_opaque block hash t in Pervasives.reveal_opaque (`%shuffle_core) shuffle_core; Pervasives.reveal_opaque (`%ws) ws; shuffle_core_properties block hash t; elim_of_list l; Classical.forall_intro_3 lemma_add_mod_associates_U32; lemma_add_mod_a hash.[0] hash.[1] hash.[2] hash.[3] hash.[4] hash.[5] hash.[6] hash.[7] wk; lemma_add_mod_e hash.[0] hash.[1] hash.[2] hash.[3] hash.[4] hash.[5] hash.[6] hash.[7] wk let sha256_rnds2_spec_update_core_quad32 (abef cdgh:quad32) (wk:UInt32.t) (block:block_w) (t:counter{t < size_k_w_256}) : (quad32 & quad32) = let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let abef' = Mkfour (vv hash1.[5]) (vv hash1.[4]) (vv hash1.[1]) (vv hash1.[0]) in let cdgh' = Mkfour (vv hash1.[7]) (vv hash1.[6]) (vv hash1.[3]) (vv hash1.[2]) in (abef', cdgh') let lemma_rnds_quad32 (abef cdgh:quad32) (wk:UInt32.t) (block:block_w) (t:counter{t < size_k_w_256}) : Lemma (requires wk == to_uint32 (add_mod32 (k0 SHA2_256).[t] (ws_opaque block t))) (ensures sha256_rnds2_spec_update_core_quad32 abef cdgh wk block t == sha256_rnds2_spec_update_quad32 abef cdgh wk) = let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let a', b', c', d', e', f', g', h' = sha256_rnds2_spec_update hash0.[0] hash0.[1] hash0.[2] hash0.[3] hash0.[4] hash0.[5] hash0.[6] hash0.[7] wk in let l = [a'; b'; c'; d'; e'; f'; g'; h'] in elim_of_list l; lemma_sha256_rnds2_spec_update_is_shuffle_core hash0 wk t block; () #push-options "--z3rlimit 30" let lemma_rnds2_spec_quad32_is_shuffle_core_x2 (abef cdgh:quad32) (wk0 wk1:UInt32.t) (block:block_w) (t:counter{t < size_k_w_256 - 1}) : Lemma (requires vv wk0 == add_mod32 (k0 SHA2_256).[t] (ws_opaque block t) /\ vv wk1 == add_mod32 (k0 SHA2_256).[t+1] (ws_opaque block (t+1))) (ensures (let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let hash2 = shuffle_core_opaque block hash1 (t + 1) in let abef', cdgh' = sha256_rnds2_spec_update_quad32 abef cdgh wk0 in let abef'', cdgh'' = sha256_rnds2_spec_update_quad32 abef' cdgh' wk1 in hash2 == make_hash abef'' cdgh'')) = let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let hash2 = shuffle_core_opaque block hash1 (t + 1) in let abef', cdgh' = sha256_rnds2_spec_update_quad32 abef cdgh wk0 in let abef'', cdgh'' = sha256_rnds2_spec_update_quad32 abef' cdgh' wk1 in lemma_rnds_quad32 abef cdgh wk0 block t; lemma_rnds_quad32 abef' cdgh' wk1 block (t+1); assert (equal (make_hash abef' cdgh') hash1); assert (equal (make_hash abef'' cdgh'') hash2); () #pop-options let sha256_rnds2_spec_update_quad32_x2_shifts (abef cdgh:quad32) (wk0 wk1:UInt32.t) : Lemma ((let abef', cdgh' = sha256_rnds2_spec_update_quad32 abef cdgh wk0 in let abef'', cdgh'' = sha256_rnds2_spec_update_quad32 abef' cdgh' wk1 in cdgh'' == abef)) = () let sha256_rnds2_spec_quad32_is_shuffle_core_x2 (abef cdgh wk:quad32) (block:block_w) (t:counter{t < size_k_w_256 - 1}) : Lemma (requires wk.lo0 == add_mod32 (k0 SHA2_256).[t] (ws_opaque block t) /\ wk.lo1 == add_mod32 (k0 SHA2_256).[t+1] (ws_opaque block (t+1))) (ensures (let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let hash2 = shuffle_core_opaque block hash1 (t + 1) in let abef' = sha256_rnds2_spec_quad32 cdgh abef wk in hash2 == make_hash abef' abef)) = lemma_rnds2_spec_quad32_is_shuffle_core_x2 abef cdgh (to_uint32 wk.lo0) (to_uint32 wk.lo1) block t; sha256_rnds2_spec_update_quad32_x2_shifts abef cdgh (to_uint32 wk.lo0) (to_uint32 wk.lo1); () let lemma_sha256_rnds2_two_steps (abef cdgh xmm0:quad32) (t:counter) (block:block_w) : Lemma (requires t + 1 < size_k_w_256 /\ xmm0.lo0 == add_wrap (vv (k0 SHA2_256).[t] ) (ws_opaque block t) /\ xmm0.lo1 == add_wrap (vv (k0 SHA2_256).[t+1]) (ws_opaque block (t+1)) ) (ensures (let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let hash2 = shuffle_core_opaque block hash1 (t + 1) in hash2 == make_hash (sha256_rnds2_spec cdgh abef xmm0) abef)) = let hash0 = make_hash abef cdgh in let hash1 = shuffle_core_opaque block hash0 t in let hash2 = shuffle_core_opaque block hash1 (t + 1) in lemma_add_wrap_is_add_mod (vv (k0 SHA2_256).[t] ) (ws_opaque block t); lemma_add_wrap_is_add_mod (vv (k0 SHA2_256).[t+1]) (ws_opaque block (t+1)); sha256_rnds2_spec_quad32_is_shuffle_core_x2 abef cdgh xmm0 block t; lemma_sha256_rnds2_spec_quad32 cdgh abef xmm0; () // Top-level proof for the SHA256_rnds2 instruction let lemma_sha256_rnds2 (abef cdgh xmm0:quad32) (t:counter) (block:block_w) (hash_in:hash256) : Lemma (requires t + 1 < size_k_w_256 /\ xmm0.lo0 == add_wrap (word_to_nat32 k.[t]) (ws_opaque block t) /\ xmm0.lo1 == add_wrap (word_to_nat32 k.[t+1]) (ws_opaque block (t+1)) /\ make_hash abef cdgh == Spec.Loops.repeat_range 0 t (shuffle_core_opaque block) hash_in ) (ensures make_hash (sha256_rnds2_spec cdgh abef xmm0) abef == Spec.Loops.repeat_range 0 (t+2) (shuffle_core_opaque block) hash_in) = lemma_add_wrap_is_add_mod (vv (k0 SHA2_256).[t] ) (ws_opaque block t); lemma_add_wrap_is_add_mod (vv (k0 SHA2_256).[t+1]) (ws_opaque block (t+1)); lemma_sha256_rnds2_two_steps abef cdgh xmm0 t block; Spec.Loops.repeat_range_induction 0 (t + 1) (shuffle_core_opaque block) hash_in; Spec.Loops.repeat_range_induction 0 (t + 2) (shuffle_core_opaque block) hash_in; () (* Proof work for the SHA256_msg* instructions *) let _sigma0_quad32 (q:quad32) : quad32 = Mkfour (vv (_sigma0 SHA2_256 (to_uint32 q.lo0))) (vv (_sigma0 SHA2_256 (to_uint32 q.lo1))) (vv (_sigma0 SHA2_256 (to_uint32 q.hi2))) (vv (_sigma0 SHA2_256 (to_uint32 q.hi3))) let _sigma1_quad32 (q:quad32) : quad32 = Mkfour (vv (_sigma1 SHA2_256 (to_uint32 q.lo0))) (vv (_sigma1 SHA2_256 (to_uint32 q.lo1))) (vv (_sigma1 SHA2_256 (to_uint32 q.hi2))) (vv (_sigma1 SHA2_256 (to_uint32 q.hi3))) let ws_partial_def (t:counter) (block:block_w) : quad32 = if 16 <= t && t < size_k_w_256 then (let init = ws_quad32 (t-16) block in let sigma0_in = ws_quad32 (t-15) block in let sigma0_out = _sigma0_quad32 sigma0_in in add_wrap_quad32 init sigma0_out) else Mkfour 0 0 0 0 let add_mod_quad32 (q0 q1:quad32) : quad32 = Mkfour (vv (add_mod (to_uint32 q0.lo0) (to_uint32 q1.lo0))) (vv (add_mod (to_uint32 q0.lo1) (to_uint32 q1.lo1))) (vv (add_mod (to_uint32 q0.hi2) (to_uint32 q1.hi2))) (vv (add_mod (to_uint32 q0.hi3) (to_uint32 q1.hi3))) let lemma_add_wrap_quad32_is_add_mod_quad32 (q0 q1:quad32) : Lemma (add_mod_quad32 q0 q1 == add_wrap_quad32 q0 q1) = FStar.Classical.forall_intro_2 lemma_add_wrap_is_add_mod; () #reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 30" // Top-level proof for the SHA256_msg1 instruction let lemma_sha256_msg1 (dst src:quad32) (t:counter) (block:block_w) : Lemma (requires 16 <= t /\ t < size_k_w(SHA2_256) /\ dst == ws_quad32 (t-16) block /\ src.lo0 == ws_opaque block (t-12)) (ensures sha256_msg1_spec dst src == ws_partial t block) = sha256_msg1_spec_reveal (); let init = ws_quad32 (t-16) block in let sigma0_in = ws_quad32 (t-15) block in let sigma0_out = _sigma0_quad32 sigma0_in in lemma_add_wrap_quad32_is_add_mod_quad32 init sigma0_out; ws_partial_reveal (); () #reset-options "--max_fuel 0 --max_ifuel 0" let lemma_add_mod_ws_rearrangement (a b c d:UInt32.t) : Lemma (let open Lib.IntTypes in a +. b +. c +. d == d +. c +. b +. a) = let open Lib.IntTypes in calc (==) { a +. b +. c +. d; (==) {} (((a +. b) +. c) +. d); (==) { lemma_add_mod_commutes ((a +. b) +. c) d; lemma_add_mod_commutes (a +. b) c; lemma_add_mod_commutes a b } d +. (c +. (b +. a)); (==) { lemma_add_mod_associates_U32 d c (b +. a); lemma_add_mod_associates_U32 (d +. c) b a} (((d +. c) +. b) +. a); } let ws_computed (b:block_w) (t:counter{t < size_k_w_256}): Tot (UInt32.t) = if t < block_word_length SHA2_256 then to_uint32 (ws_opaque b t) else let t16 = to_uint32 (ws_opaque b (t - 16)) in let t15 = to_uint32 (ws_opaque b (t - 15)) in let t7 = to_uint32 (ws_opaque b (t - 7)) in let t2 = to_uint32 (ws_opaque b (t - 2)) in let s1 = _sigma1 SHA2_256 t2 in let s0 = _sigma0 SHA2_256 t15 in let open Lib.IntTypes in (t16 +. s0 +. t7 +. s1) #push-options "--max_fuel 1" let lemma_ws_computed_is_ws (b:block_w) (t:counter{t < size_k_w_256}) : Lemma (ws_computed b t == ws SHA2_256 b t) = Pervasives.reveal_opaque (`%ws) ws; if t < block_word_length SHA2_256 then ( assert (vv (ws_computed b t) == ws_opaque b t); assert (to_uint32 (ws_opaque b t) == ws SHA2_256 b t); () ) else ( let t16 = to_uint32 (ws_opaque b (t - 16)) in let t15 = to_uint32 (ws_opaque b (t - 15)) in let t7 = to_uint32 (ws_opaque b (t - 7)) in let t2 = to_uint32 (ws_opaque b (t - 2)) in let s1 = _sigma1 SHA2_256 t2 in let s0 = _sigma0 SHA2_256 t15 in lemma_add_mod_ws_rearrangement s1 t7 s0 t16; () ) #pop-options let lemma_ws_computed_is_ws_opaque (b:block_w) (t:counter{t < size_k_w_256}) : Lemma (vv (ws_computed b t) == ws_opaque b t) = lemma_ws_computed_is_ws b t; Pervasives.reveal_opaque (`%ws) ws; () let ws_computed_quad32 (t:counter{t < size_k_w_256 - 3}) (block:block_w) : quad32 = Mkfour (vv (ws_computed block t)) (vv (ws_computed block (t+1))) (vv (ws_computed block (t+2))) (vv (ws_computed block (t+3))) let lemma_ws_computed_is_ws_quad32 (b:block_w) (t:counter{t < size_k_w_256 - 3}) : Lemma (ws_computed_quad32 t b == ws_quad32 t b) = let w = ws_computed_quad32 t b in let w' = ws_quad32 t b in lemma_ws_computed_is_ws_opaque b t; lemma_ws_computed_is_ws_opaque b (t+1); lemma_ws_computed_is_ws_opaque b (t+2); lemma_ws_computed_is_ws_opaque b (t+3); () #push-options "--z3rlimit 30" let lemma_ws_computed_quad32 (t:counter{16 <= t /\ t < size_k_w_256 - 4}) (block:block_w) : Lemma (let t_minus_16 = ws_quad32 (t-16) block in let t_minus_15 = ws_quad32 (t-15) block in let t_minus_7 = ws_quad32 (t - 7) block in let t_minus_2 = ws_quad32 (t - 2) block in let m1 = add_mod_quad32 t_minus_16 (_sigma0_quad32 t_minus_15) in let m2 = add_mod_quad32 m1 t_minus_7 in let m3 = add_mod_quad32 m2 (_sigma1_quad32 t_minus_2) in m3 == ws_computed_quad32 t block ) = () #pop-options let sha256_msg1_spec_t (t:counter{t < size_k_w_256 - 1}) (block:block_w) : quad32 = let init = ws_quad32 t block in let next = ws_quad32 (t + 1) block in let msg1 = add_mod_quad32 init (_sigma0_quad32 next) in msg1 #push-options "--ifuel 1" let lemma_sha256_msg1_spec_t_partial (t:counter) (block:block_w) : Lemma (requires 16 <= t /\ t < size_k_w_256 - 3) (ensures ws_partial t block == sha256_msg1_spec_t (t-16) block) = ws_partial_reveal (); let init = ws_quad32 (t-16) block in let next = ws_quad32 (t-15) block in lemma_add_wrap_quad32_is_add_mod_quad32 init (_sigma0_quad32 next); () #pop-options let lemma_sha256_msg1_spec_t (src1 src2:quad32) (t:counter) (block:block_w) : Lemma (requires t < size_k_w_256 - 4 /\ src1 == ws_quad32 t block /\ src2.lo0 == ws_opaque block (t+4)) (ensures sha256_msg1_spec_t t block == sha256_msg1_spec src1 src2) = sha256_msg1_spec_reveal (); () #push-options "--z3rlimit 70" let lemma_sha256_step2 (src1 src2:quad32) (t:counter) (block:block_w) : Lemma (requires 16 <= t /\ t < size_k_w(SHA2_256) - 3 /\ src2.hi2 == ws_opaque block (t-2) /\ src2.hi3 == ws_opaque block (t-1) /\ (let w = sha256_msg1_spec_t (t-16) block in let mid = ws_quad32 (t-7) block in src1 == add_mod_quad32 w mid)) (ensures sha256_msg2_spec src1 src2 == ws_computed_quad32 t block) = sha256_msg2_spec_reveal (); let w = sha256_msg1_spec_t (t-16) block in let mid = ws_quad32 (t-7) block in let final = sha256_msg2_spec src1 src2 in lemma_ws_computed_is_ws_opaque block (t); lemma_ws_computed_is_ws_opaque block (t+1); () #pop-options // Top-level proof for the SHA256_msg2 instruction let lemma_sha256_msg2 (src1 src2:quad32) (t:counter) (block:block_w) : Lemma (requires 16 <= t /\ t < size_k_w(SHA2_256) - 3 /\ (let step1 = ws_partial t block in let t_minus_7 = ws_quad32 (t-7) block in src1 == add_wrap_quad32 step1 t_minus_7 /\ src2.hi2 == ws_opaque block (t-2) /\ src2.hi3 == ws_opaque block (t-1))) (ensures sha256_msg2_spec src1 src2 == ws_quad32 t block) = let step1 = ws_partial t block in let t_minus_7 = ws_quad32 (t-7) block in lemma_sha256_msg1_spec_t_partial t block; // ==> step1 == sha256_msg1_spec_t (t-16) block lemma_add_wrap_quad32_is_add_mod_quad32 step1 t_minus_7; lemma_sha256_step2 src1 src2 t block; lemma_ws_computed_is_ws_quad32 block t; () (* Abbreviations and lemmas for the code itself *) #reset-options "--z3rlimit 20 --max_fuel 1" let lemma_quads_to_block qs = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat32); reveal_opaque (`%ws) ws #reset-options "--max_fuel 0 --max_ifuel 0" let translate_hash_update (h0 h1 h0' h1' a0 a1:quad32) : Lemma (requires h0' == add_wrap_quad32 a0 h0 /\ h1' == add_wrap_quad32 a1 h1) (ensures ( let h = make_hash h0 h1 in let a = make_hash a0 a1 in let h' = make_hash h0' h1' in let open Lib.IntTypes in let mapped = Spec.Loops.seq_map2 ( +. ) h a in mapped == h')) = let h = make_hash h0 h1 in let a = make_hash a0 a1 in let h' = make_hash h0' h1' in let open Lib.IntTypes in let mapped = Spec.Loops.seq_map2 ( +. ) h a in FStar.Classical.forall_intro_2 lemma_add_wrap_is_add_mod; assert (equal mapped h'); () unfold let shuffle_opaque = shuffle let update_block (hash:hash256) (block:block_w): Tot (hash256) = let hash_1 = shuffle_opaque SHA2_256 hash block in let open Lib.IntTypes in Spec.Loops.seq_map2 ( +. ) hash hash_1 #push-options "--z3cliopt smt.arith.nl=true" (* FIXME: Seemingly needed after fix to #2894 in F*, but should not be *) let lemma_update_block_equiv (hash:hash256) (block:bytes{length block = block_length}) : Lemma (update_block hash (words_of_bytes SHA2_256 #(block_word_length SHA2_256) block) == update SHA2_256 hash block) = Pervasives.reveal_opaque (`%Spec.SHA2.update) Spec.SHA2.update; Pervasives.reveal_opaque (`%Spec.SHA2.shuffle) Spec.SHA2.shuffle; assert (equal (update_block hash (words_of_bytes SHA2_256 #(block_word_length SHA2_256) block)) (update SHA2_256 hash block)); () #pop-options let update_lemma (src1 src2 src1' src2' h0 h1:quad32) (block:block_w) : Lemma (requires (let hash_orig = make_hash h0 h1 in make_hash src1 src2 == Spec.Loops.repeat_range 0 64 (shuffle_core_opaque block) hash_orig /\ src1' == add_wrap_quad32 src1 h0 /\ src2' == add_wrap_quad32 src2 h1)) (ensures (let hash_orig = make_hash h0 h1 in make_hash src1' src2' == update_block hash_orig block)) = let hash_orig = make_hash h0 h1 in let hash_1 = shuffle_opaque SHA2_256 hash_orig block in Pervasives.reveal_opaque (`%shuffle) shuffle; Pervasives.reveal_opaque (`%shuffle_core) shuffle_core; let rec f (i:nat{i <= 64}) : Lemma ( Spec.Loops.repeat_range 0 i (shuffle_core_opaque block) hash_orig == Spec.Loops.repeat_range 0 i (shuffle_core SHA2_256 block) hash_orig) = if i = 0 then ( Spec.Loops.repeat_range_base 0 (shuffle_core_opaque block) hash_orig; Spec.Loops.repeat_range_base 0 (shuffle_core SHA2_256 block) hash_orig ) else ( f (i - 1); Spec.Loops.repeat_range_induction 0 i (shuffle_core_opaque block) hash_orig; Spec.Loops.repeat_range_induction 0 i (shuffle_core SHA2_256 block) hash_orig ) in f 64; (* let h = make_hash src1 src2 in assert (forall (block:block_w) (hash:hash256) . FStar.FunctionalExtensionality.feq (shuffle_core_opaque block hash) (shuffle_core_opaque_aux SHA2_256 block hash)); //assert (forall (block:block_w) . (shuffle_core_opaque block) == (shuffle_core_opaque_aux SHA2_256 block)); assert (shuffle_core_opaque == shuffle_core_opaque_aux SHA2_256); assert (shuffle_core_opaque == shuffle_core SHA2_256); assert (shuffle_core_opaque block == shuffle_core SHA2_256 block); assert (Spec.Loops.repeat_range 0 64 (shuffle_core_opaque block) hash_orig == Spec.Loops.repeat_range 0 64 (shuffle_core SHA2_256 block) hash_orig); assert (make_hash src1 src2 == shuffle SHA2_256 hash_orig block); assert (make_hash src1 src2 == shuffle_opaque SHA2_256 hash_orig block); *) translate_hash_update src1 src2 src1' src2' h0 h1; shuffle_is_shuffle_pre SHA2_256 hash_orig block; assert (equal (make_hash src1' src2') (update_block hash_orig block)); () let lemma_le_bytes_to_seq_quad32_empty (b:seq nat8) : Lemma (requires b == empty) (ensures le_bytes_to_seq_quad32 b == empty) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; assert (equal (le_bytes_to_seq_quad32 b) empty) let lemma_le_bytes_to_seq_quad32_length (b:seq nat8) : Lemma (requires length b % 16 == 0) (ensures length (le_bytes_to_seq_quad32 b) == length b / 16) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () #push-options "--max_fuel 1" // Without this, F* refuses to do even one unfolding of recursive functions :( let lemma_slice_commutes_reverse_bytes_nat32_quad32_seq (s:seq quad32) (pivot:nat) : Lemma (requires pivot <= length s) (ensures slice (reverse_bytes_nat32_quad32_seq s) 0 pivot == reverse_bytes_nat32_quad32_seq (slice s 0 pivot)) = let rs = reverse_bytes_nat32_quad32_seq s in let srs = slice (reverse_bytes_nat32_quad32_seq s) 0 pivot in let ss = slice s 0 pivot in let rss = reverse_bytes_nat32_quad32_seq ss in if pivot = 0 then ( assert (equal ss empty); assert (equal srs empty); assert (equal empty (reverse_bytes_nat32_quad32_seq empty)); () ) else ( assert (equal srs rss) ) // One level of expansion that we can use in places that can't use fuel let lemma_update_multi_quads_unfold (s:seq quad32) (hash_orig:hash256) : Lemma (requires length s >= 4) (ensures (let prefix, qs = split s (length s - 4) in let h_prefix = update_multi_quads prefix hash_orig in let hash = update_block h_prefix (quads_to_block qs) in update_multi_quads s hash_orig == hash)) = () let lemma_update_multi_quads_short (s:seq quad32) (hash_orig:hash256) : Lemma (requires length s < 4) (ensures update_multi_quads s hash_orig == hash_orig) = () let update_multi_one (h:hash256) (b:bytes_blocks {length b = block_length}) : Lemma (ensures (update_multi SHA2_256 h () b == update SHA2_256 h b)) = update_multi_update SHA2_256 h b #pop-options friend Lib.ByteSequence #reset-options "--z3rlimit 50 --max_fuel 1 --max_ifuel 0 --z3cliopt smt.arith.nl=true" let lemma_be_to_n_4 (s:seq4 nat8) : Lemma (Lib.ByteSequence.nat_from_bytes_be #Lib.IntTypes.SEC (seq_nat8_to_seq_uint8 s) == be_bytes_to_nat32 s) = let open Lib.IntTypes in let open Vale.Def.Words.Four_s in assert (pow2 8 = 0x100); assert (pow2 16 = 0x10000); assert_norm (pow2 24 = 0x1000000); let x = seq_nat8_to_seq_uint8 s in let f = Lib.ByteSequence.nat_from_intseq_be_ #U8 #SEC in calc (==) { f x <: nat ; == { } FStar.UInt8.v (last x) + pow2 8 * f (slice x 0 3); == {} index s 3 + pow2 8 * f (slice x 0 3); == {} index s 3 + pow2 8 * index s 2 + pow2 16 * f (slice x 0 2); == {} index s 3 + pow2 8 * index s 2 + pow2 16 * index s 1 + pow2 24 * f (slice x 0 1); == {} index s 3 + pow2 8 * index s 2 + pow2 16 * index s 1 + pow2 24 * index s 0 + pow2 32 * f (slice x 0 0); == {} index s 3 + pow2 8 * index s 2 + pow2 16 * index s 1 + pow2 24 * index s 0; == {} four_to_nat_unfold 8 (seq_to_four_BE s); == {reveal_opaque (`%four_to_nat) four_to_nat} be_bytes_to_nat32 s; } #reset-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 40"
{ "checked_file": "/", "dependencies": [ "Vale.X64.CryptoInstructions_s.fst.checked", "Vale.X64.CryptoInstructions_s.fst.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Seq.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Spec.SHA2.Lemmas.fst.checked", "Spec.SHA2.Lemmas.fst.checked", "Spec.SHA2.fst.checked", "Spec.SHA2.fst.checked", "Spec.Loops.fst.checked", "Spec.Hash.Lemmas.fsti.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.SHA.SHA_helpers.fst" }
[ { "abbrev": false, "full_module": "FStar.UInt32 // Interop with UInt-based SHA spec", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CryptoInstructions_s", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Spec.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CryptoInstructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
quads: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> qs: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> input2: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length qs == 4 /\ FStar.Seq.Base.length input2 == 64 /\ qs == Vale.Arch.Types.reverse_bytes_nat32_quad32_seq quads /\ input2 == Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8 (Vale.Def.Types_s.le_seq_quad32_to_bytes quads)) (ensures Vale.SHA.SHA_helpers.quads_to_block qs == Spec.Hash.Definitions.words_of_bytes Spec.Hash.Definitions.SHA2_256 input2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "FStar.UInt8.t", "Prims._assert", "FStar.Seq.Base.equal", "Vale.SHA.SHA_helpers.word", "Vale.SHA.SHA_helpers.quads_to_block", "Spec.Hash.Definitions.words_of_bytes", "Spec.Hash.Definitions.SHA2_256", "Spec.Hash.Definitions.block_word_length", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "FStar.UInt32.t", "Spec.SHA2.op_String_Access", "Spec.Hash.Definitions.word", "Prims.l_True", "Prims.squash", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "Vale.SHA.SHA_helpers.nat32_to_word", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Types_s.reverse_bytes_nat32", "Vale.Def.Types_s.be_bytes_to_nat32", "Vale.Lib.Seqs_s.reverse_seq", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.nat32_to_be_bytes", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Lib.ByteSequence.uint_from_bytes_be", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Sequence.sub", "Lib.IntTypes.uint8", "FStar.Mul.op_Star", "Lib.IntTypes.uint_t", "Lib.ByteSequence.uints_from_bytes_be", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.ByteSequence.index_uints_from_bytes_be", "Lib.Sequence.lseq", "Prims.l_and", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.l_or", "Lib.Sequence.index", "FStar.UInt32.v_inj", "Lib.IntTypes.u32", "Lib.Sequence.length", "Lib.IntTypes.U8", "Lib.ByteSequence.nat_from_bytes_be", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8", "Vale.SHA.SHA_helpers.lemma_be_to_n_4", "Vale.Def.Types_s.reverse_bytes_nat32_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat32", "Prims.int", "Vale.Def.Words_s.nat8", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal", "Vale.Arch.Types.slice_commutes_seq_four_to_seq_LE", "Vale.Arch.Types.reverse_bytes_nat32_quad32_seq", "Prims.op_Equality", "Vale.SHA.SHA_helpers.size_block_w_256" ]
[]
false
false
true
false
false
let lemma_endian_relation (quads qs: seq quad32) (input2: seq UInt8.t) : Lemma (requires length qs == 4 /\ length input2 == 64 /\ qs == reverse_bytes_nat32_quad32_seq quads /\ input2 == seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) (ensures quads_to_block qs == words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2) =
let fi (i: nat{i < length (quads_to_block qs)}) : Lemma ((quads_to_block qs).[ i ] == (words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2).[ i ]) = let open Vale.Def.Words.Four_s in let open Vale.Lib.Seqs_s in let ni = (seq_four_to_seq_LE quads).[ i ] in let b = slice input2 (4 * i) (4 * i + 4) in calc ( == ) { b; ( == ) { () } slice input2 (4 * i) (4 * i + 4); ( == ) { () } slice (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes quads)) (4 * i) (4 * i + 4); ( == ) { le_seq_quad32_to_bytes_reveal () } slice (seq_nat8_to_seq_uint8 (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE quads))) (4 * i) (4 * i + 4); equal { () } seq_nat8_to_seq_uint8 (slice (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE quads)) (4 * i) (4 * i + 4)); ( == ) { () } seq_nat8_to_seq_uint8 (slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE quads))) (4 * i) (4 * i + 4)); ( == ) { slice_commutes_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE quads)) i (i + 1) } seq_nat8_to_seq_uint8 (seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE quads)) i (i + 1))); equal { reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat8) } seq_nat8_to_seq_uint8 (four_to_seq_LE (nat_to_four 8 (seq_four_to_seq_LE quads).[ i ])); }; let open Lib.IntTypes in calc ( == ) { (words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2).[ i ]; ( == ) { () } (Lib.ByteSequence.uints_from_bytes_be #U32 #SEC #(block_word_length SHA2_256) input2).[ i ]; ( == ) { Lib.ByteSequence.index_uints_from_bytes_be #U32 #SEC #(block_word_length SHA2_256) input2 i } Lib.ByteSequence.uint_from_bytes_be (Lib.Sequence.sub #uint8 #64 input2 (i * 4) 4); ( == ) { let open Lib.Sequence in calc ( == ) { sub #uint8 #64 input2 (i * 4) 4; ( == ) { () } Seq.slice input2 (4 * i) (4 * i + 4); } } Lib.ByteSequence.uint_from_bytes_be #U32 #SEC b; ( == ) { (calc ( == ) { Lib.ByteSequence.nat_from_bytes_be #SEC b; ( == ) { () } Lib.ByteSequence.nat_from_bytes_be #SEC (seq_nat8_to_seq_uint8 (four_to_seq_LE (nat_to_four 8 ni))); ( == ) { lemma_be_to_n_4 (four_to_seq_LE (nat_to_four 8 ni)) } be_bytes_to_nat32 (four_to_seq_LE (nat_to_four 8 ni)); }; v_inj (Lib.ByteSequence.uint_from_bytes_be #U32 #SEC b) (u32 (be_bytes_to_nat32 (four_to_seq_LE (nat_to_four 8 ni))))) } nat32_to_word (be_bytes_to_nat32 (four_to_seq_LE (nat_to_four 8 ni))); ( == ) { () } nat32_to_word (be_bytes_to_nat32 (reverse_seq (nat32_to_be_bytes ni))); ( == ) { reverse_bytes_nat32_reveal () } nat32_to_word (reverse_bytes_nat32 ni); ( == ) { () } nat32_to_word (reverse_bytes_nat32 (seq_four_to_seq_LE quads).[ i ]); ( == ) { reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #nat32) } nat32_to_word (seq_four_to_seq_LE qs).[ i ]; ( == ) { () } (quads_to_block qs).[ i ]; } in FStar.Classical.forall_intro fi; assert (equal (quads_to_block qs) (words_of_bytes SHA2_256 #(block_word_length SHA2_256) input2))
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.spolynomial_simplify_ok
val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p)
val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p)
let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 1356, "start_col": 0, "start_line": 1354 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.spolynomial_simplify r p) == FStar.Tactics.CanonCommSemiring.interp_sp r vm p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize" ]
[]
true
false
true
false
false
let spolynomial_simplify_ok #a r vm p =
canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canon_semiring_aux
val canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit
val canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit
let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality")
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 1673, "start_col": 0, "start_line": 1621 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> ta: FStar.Tactics.NamedView.term -> unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> tr: FStar.Tactics.NamedView.term -> tadd: FStar.Tactics.NamedView.term -> topp: FStar.Tactics.NamedView.term -> tmone: FStar.Tactics.NamedView.term -> tmult: FStar.Tactics.NamedView.term -> munit: a -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.focus", "Prims.unit", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.V2.Derived.trefl", "FStar.Tactics.CanonCommSemiring.canon_norm", "FStar.Tactics.V2.Derived.later", "FStar.Tactics.MApply.mapply", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.MApply.termable_term", "FStar.Tactics.CanonCommSemiring.quote_polynomial", "FStar.Tactics.CanonCommSemiring.quote_vm", "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.CanonCommSemiring.reification", "Prims.Cons", "Prims.Nil", "Prims.bool", "FStar.Tactics.CanonCommSemiring.term_eq", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Tactics.V2.Builtins.norm", "FStar.Pervasives.norm_step" ]
[]
false
true
false
false
false
let canon_semiring_aux (a: Type) (ta: term) (unquotea: (term -> Tac a)) (quotea: (a -> Tac term)) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit =
focus (fun () -> norm []; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> if term_eq t ta then match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | [e1 ; e2], vm -> let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in let te2 = quote_polynomial ta quotea e2 in mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); canon_norm (); later (); canon_norm (); trefl (); canon_norm (); trefl () | _ -> fail "Unexpected" else fail "Found equality, but terms do not have the expected type" | _ -> fail "Goal should be an equality")
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok
val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s)
val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s)
let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1350, "start_col": 0, "start_line": 1344 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_simplify r s) == FStar.Tactics.CanonCommSemiring.interp_cs r vm s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok", "Prims.unit", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[ "recursion" ]
false
false
true
false
false
let rec canonical_sum_simplify_ok #a r vm s =
let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.reification_aux
val reification_aux (#a: Type) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a)
val reification_aux (#a: Type) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a)
let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 1545, "start_col": 0, "start_line": 1521 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> ts: Prims.list FStar.Tactics.NamedView.term -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> add: FStar.Tactics.NamedView.term -> opp: FStar.Tactics.NamedView.term -> mone: FStar.Tactics.NamedView.term -> mult: FStar.Tactics.NamedView.term -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac ((FStar.Tactics.CanonCommSemiring.polynomial a * Prims.list FStar.Tactics.NamedView.term) * FStar.Tactics.CanonCommSemiring.vmap a)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Stubs.Reflection.Types.term", "Prims.l_or", "Prims.eq2", "Prims.precedes", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Pervasives.Native.fst", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.Types.fv", "FStar.Tactics.CanonCommSemiring.Pplus", "FStar.Pervasives.Native.tuple3", "FStar.Tactics.CanonCommSemiring.polynomial", "Prims.bool", "FStar.Tactics.CanonCommSemiring.Pmult", "FStar.Tactics.CanonCommSemiring.make_fvar", "FStar.Tactics.CanonCommSemiring.term_eq", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_FVar", "FStar.Pervasives.Native.Mktuple3", "FStar.Tactics.CanonCommSemiring.reification_aux", "FStar.Tactics.CanonCommSemiring.Popp", "FStar.Stubs.Reflection.V2.Data.vconst", "FStar.Tactics.CanonCommSemiring.Pconst", "FStar.Tactics.NamedView.named_term_view", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Base.list_unref", "FStar.Tactics.NamedView.inspect", "FStar.Reflection.V2.Derived.Lemmas.collect_app_ref" ]
[ "recursion" ]
false
true
false
false
false
let rec reification_aux (#a: Type) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) =
let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [t1, _ ; t2, _] -> let binop (op: (polynomial a -> polynomial a -> polynomial a)) : Tac ((polynomial a * list term) * vmap a) = let e1, ts, vm = reification_aux unquotea ts vm add opp mone mult t1 in let e2, ts, vm = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [t1, _] -> let monop (op: (polynomial a -> polynomial a)) : Tac ((polynomial a * list term) * vmap a) = let e, ts, vm = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok
val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p)
val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p)
let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 1340, "start_col": 0, "start_line": 1327 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.spolynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.spolynomial_normalize r p) == FStar.Tactics.CanonCommSemiring.interp_sp r vm p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok" ]
[ "recursion" ]
false
false
true
false
false
let rec spolynomial_normalize_ok #a r vm p =
match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.test
val test : a: Prims.int -> Prims.unit
let test (a:int) = let open FStar.Mul in assert (a + - a + 2 * a + - a == -a + 2 * a) by (int_semiring ())
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 1707, "start_col": 0, "start_line": 1705 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality") let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit /// Ring of integers [@@canon_attr] let int_cr : cr int = CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ()) private let eq_nat_via_int (a b : nat) (eq : squash (eq2 #int a b)) : Lemma (eq2 #nat a b) = () let int_semiring () : Tac unit = (* Check to see if goal is a `nat` equality, change the equality to `int` beforehand *) match term_as_formula (cur_goal ()) with | Comp (Eq (Some t)) _ _ -> if term_eq t (`Prims.nat) then (apply_lemma (`eq_nat_via_int); canon_semiring int_cr) else canon_semiring int_cr | _ -> canon_semiring int_cr #set-options "--tactic_trace_d 0 --no_smt"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": true, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Prims.op_Addition", "Prims.op_Minus", "FStar.Mul.op_Star", "Prims.unit", "FStar.Tactics.CanonCommSemiring.int_semiring" ]
[]
false
false
false
true
false
let test (a: int) =
let open FStar.Mul in FStar.Tactics.Effect.assert_by_tactic (a + - a + 2 * a + - a == - a + 2 * a) (fun _ -> (); (int_semiring ()))
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.polynomial_normalize
val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p)
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 1383, "start_col": 0, "start_line": 1374 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.CanonCommSemiring.canonical_sum a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.Cons_varlist", "FStar.Tactics.CanonCommSemiring.Cons_var", "FStar.Tactics.CanonCommSemiring.Nil_var", "FStar.Tactics.CanonCommSemiring.Nil_monom", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.canonical_sum" ]
[ "recursion" ]
false
false
false
false
false
let rec polynomial_normalize #a r p =
match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p)
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.make_fvar
val make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a)
val make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a)
let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm)
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 1518, "start_col": 0, "start_line": 1511 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> unquotea: (_: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac a) -> ts: Prims.list FStar.Tactics.NamedView.term -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> FStar.Tactics.Effect.Tac ((FStar.Tactics.CanonCommSemiring.polynomial a * Prims.list FStar.Tactics.NamedView.term) * FStar.Tactics.CanonCommSemiring.vmap a)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Tactics.CanonCommSemiring.vmap", "Prims.nat", "FStar.Pervasives.Native.Mktuple3", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.Pvar", "FStar.Pervasives.Native.tuple3", "FStar.List.Tot.Base.op_At", "Prims.Cons", "Prims.Nil", "FStar.Tactics.CanonCommSemiring.update", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.option", "FStar.Tactics.CanonCommSemiring.find" ]
[]
false
true
false
false
false
let make_fvar (#a: Type) (t: term) (unquotea: (term -> Tac a)) (ts: list term) (vm: vmap a) : Tac (polynomial a * list term * vmap a) =
match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm)
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.spolynomial_of_ok
val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p))
val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p))
let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 1434, "start_col": 0, "start_line": 1419 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_p r vm p == FStar.Tactics.CanonCommSemiring.interp_sp r vm (FStar.Tactics.CanonCommSemiring.spolynomial_of r p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.spolynomial_of_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.opp_unique", "FStar.Tactics.CanonCommSemiring.add_mult_opp", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.interp_sp", "FStar.Tactics.CanonCommSemiring.spolynomial_of" ]
[ "recursion" ]
false
false
true
false
false
let rec spolynomial_of_ok #a r vm p =
match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.spolynomial_of
val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a
val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a
let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p)
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 1402, "start_col": 0, "start_line": 1396 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.CanonCommSemiring.spolynomial a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.SPvar", "FStar.Tactics.CanonCommSemiring.SPconst", "FStar.Tactics.CanonCommSemiring.SPplus", "FStar.Tactics.CanonCommSemiring.spolynomial_of", "FStar.Tactics.CanonCommSemiring.SPmult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.spolynomial" ]
[ "recursion" ]
false
false
false
false
false
let rec spolynomial_of #a r p =
match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p)
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok
val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2))
val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2))
let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1323, "start_col": 0, "start_line": 1272 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> s1: FStar.Tactics.CanonCommSemiring.canonical_sum a -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_prod r s1 s2) == CM?.mult (CR?.cm_mult r) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s1) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3_ok", "FStar.Tactics.CanonCommSemiring.distribute_right", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[ "recursion" ]
false
false
true
false
false
let rec canonical_sum_prod_ok #a r vm s1 s2 =
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc ( == ) { interp_cs r vm (canonical_sum_prod r s1 s2); ( == ) { () } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); ( == ) { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); ( == ) { (canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2) } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); ( == ) { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); ( == ) { () } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc ( == ) { interp_cs r vm (canonical_sum_prod r s1 s2); ( == ) { () } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); ( == ) { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); ( == ) { (canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2) } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); ( == ) { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); ( == ) { () } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar_ok
val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s))
val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s))
let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1098, "start_col": 0, "start_line": 1052 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c0: a -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_scalar r c0 s) == CM?.mult (CR?.cm_mult r) c0 (FStar.Tactics.CanonCommSemiring.interp_cs r vm s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar_ok", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[ "recursion" ]
false
false
true
false
false
let rec canonical_sum_scalar_ok #a r vm c0 s =
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc ( == ) { interp_cs r vm (canonical_sum_scalar r c0 s); ( == ) { () } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); ( == ) { () } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); ( == ) { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> let c = aone in calc ( == ) { interp_cs r vm (canonical_sum_scalar r c0 s); ( == ) { () } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); ( == ) { () } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); ( == ) { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); ( == ) { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult c0 (interp_cs r vm s); } | Nil_monom -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2_ok
val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s))
val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s))
let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1175, "start_col": 0, "start_line": 1105 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> l0: FStar.Tactics.CanonCommSemiring.varlist -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2 r l0 s) == CM?.mult (CR?.cm_mult r) (FStar.Tactics.CanonCommSemiring.interp_vl r vm l0) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Tactics.CanonCommSemiring.varlist_merge_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar2_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[ "recursion" ]
false
false
true
false
false
let rec canonical_sum_scalar2_ok #a r vm l0 s =
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc ( == ) { interp_cs r vm (canonical_sum_scalar2 r l0 s); ( == ) { () } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); ( == ) { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> let c = aone in calc ( == ) { interp_cs r vm (canonical_sum_scalar2 r l0 s); ( == ) { () } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); ( == ) { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); ( == ) { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); ( == ) { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.int_cr
val int_cr:cr int
val int_cr:cr int
let int_cr : cr int = CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ())
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 1688, "start_col": 0, "start_line": 1687 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e] (* Constructs the 3 main goals of the tactic *) let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2 (* [@@plugin] *) let canon_semiring_aux (a: Type) (ta: term) (unquotea: term -> Tac a) (quotea: a -> Tac term) (tr tadd topp tmone tmult: term) (munit: a) : Tac unit = focus (fun () -> norm []; // Do not normalize anything implicitly let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) t1 t2 -> begin //ddump ("t1 = " ^ term_to_string t1 ^ "\nt2 = " ^ term_to_string t2); if term_eq t ta then begin match reification unquotea quotea tadd topp tmone tmult munit [t1; t2] with | ([e1; e2], vm) -> (* ddump (term_to_string t1); ddump (term_to_string t2); let r : cr a = unquote tr in ddump ("vm = " ^ term_to_string (quote vm) ^ "\n" ^ "before = " ^ term_to_string (norm_term steps (quote (interp_p r vm e1 == interp_p r vm e2)))); dump ("expected after = " ^ term_to_string (norm_term steps (quote ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))))); *) let tvm = quote_vm ta quotea vm in let te1 = quote_polynomial ta quotea e1 in //ddump ("te1 = " ^ term_to_string te1); let te2 = quote_polynomial ta quotea e2 in //ddump ("te2 = " ^ term_to_string te2); mapply (`(semiring_reflect #(`#ta) (`#tr) (`#tvm) (`#te1) (`#te2) (`#t1) (`#t2))); //ddump "Before canonization"; canon_norm (); //ddump "After canonization"; later (); //ddump "Before normalizing left-hand side"; canon_norm (); //ddump "After normalizing left-hand side"; trefl (); //ddump "Before normalizing right-hand side"; canon_norm (); //ddump "After normalizing right-hand side"; trefl () | _ -> fail "Unexpected" end else fail "Found equality, but terms do not have the expected type" end | _ -> fail "Goal should be an equality") let canon_semiring (#a:eqtype) (r:cr a) : Tac unit = canon_semiring_aux a (quote a) (unquote #a) (fun (x:a) -> quote x) (quote r) (norm_term steps (quote r.cm_add.mult)) (norm_term steps (quote r.opp)) (norm_term steps (quote (r.opp r.cm_mult.unit))) (norm_term steps (quote r.cm_mult.mult)) r.cm_add.unit /// Ring of integers
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Tactics.CanonCommSemiring.cr Prims.int
Prims.Tot
[ "total" ]
[]
[ "FStar.Tactics.CanonCommSemiring.CR", "Prims.int", "FStar.Algebra.CommMonoid.int_plus_cm", "FStar.Algebra.CommMonoid.int_multiply_cm", "Prims.op_Minus", "Prims.unit" ]
[]
false
false
false
true
false
let int_cr:cr int =
CR int_plus_cm int_multiply_cm op_Minus (fun x -> ()) (fun x y z -> ()) (fun x -> ())
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.polynomial_simplify_ok
val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p)
val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p)
let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; }
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 1490, "start_col": 0, "start_line": 1477 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_simplify r p) == FStar.Tactics.CanonCommSemiring.interp_p r vm p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.polynomial_simplify", "FStar.Tactics.CanonCommSemiring.interp_p", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_sp", "FStar.Tactics.CanonCommSemiring.spolynomial_of", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.canonical_sum_simplify_ok", "FStar.Tactics.CanonCommSemiring.polynomial_normalize_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_of_ok" ]
[]
false
false
true
false
false
let polynomial_simplify_ok #a r vm p =
calc ( == ) { interp_cs r vm (polynomial_simplify r p); ( == ) { () } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); ( == ) { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); ( == ) { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); ( == ) { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); ( == ) { spolynomial_of_ok r vm p } interp_p r vm p; }
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.interp_p
val interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a
val interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a
let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p)
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 1414, "start_col": 0, "start_line": 1406 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> a
Prims.Tot
[ "total" ]
[]
[ "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.interp_var", "FStar.Tactics.CanonCommSemiring.interp_p", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add" ]
[ "recursion" ]
false
false
false
true
false
let rec interp_p (#a: Type) (r: cr a) (vm: vmap a) (p: polynomial a) : a =
let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p)
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.find_aux
val find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat)
val find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat)
let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs'
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 68, "end_line": 1507, "start_col": 0, "start_line": 1504 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat)
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.nat", "FStar.Tactics.NamedView.term", "Prims.list", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some", "Prims.bool", "FStar.Tactics.CanonCommSemiring.find_aux", "Prims.op_Addition", "FStar.Tactics.CanonCommSemiring.term_eq" ]
[ "recursion" ]
false
true
false
false
false
let rec find_aux (n: nat) (x: term) (xs: list term) : Tac (option nat) =
match xs with | [] -> None | x' :: xs' -> if term_eq x x' then Some n else find_aux (n + 1) x xs'
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.semiring_reflect
val semiring_reflect: #a: eqtype -> r: cr a -> vm: vmap a -> e1: polynomial a -> e2: polynomial a -> a1: a -> a2: a -> squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2)) -> squash (a1 == interp_p r vm e1) -> squash (a2 == interp_p r vm e2) -> squash (a1 == a2)
val semiring_reflect: #a: eqtype -> r: cr a -> vm: vmap a -> e1: polynomial a -> e2: polynomial a -> a1: a -> a2: a -> squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2)) -> squash (a1 == interp_p r vm e1) -> squash (a2 == interp_p r vm e2) -> squash (a1 == a2)
let semiring_reflect (#a:eqtype) (r:cr a) (vm:vmap a) (e1 e2:polynomial a) (a1 a2:a) (_ : squash ( interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_ : squash (a1 == interp_p r vm e1)) (_ : squash (a2 == interp_p r vm e2)) : squash (a1 == a2) = polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 1618, "start_col": 0, "start_line": 1609 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm) (* The implicit argument in the application of `Pconst` is crucial *) let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> e1: FStar.Tactics.CanonCommSemiring.polynomial a -> e2: FStar.Tactics.CanonCommSemiring.polynomial a -> a1: a -> a2: a -> _: Prims.squash (FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_simplify r e1) == FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_simplify r e2)) -> _: Prims.squash (a1 == FStar.Tactics.CanonCommSemiring.interp_p r vm e1) -> _: Prims.squash (a2 == FStar.Tactics.CanonCommSemiring.interp_p r vm e2) -> Prims.squash (a1 == a2)
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "Prims.squash", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.polynomial_simplify", "FStar.Tactics.CanonCommSemiring.interp_p", "FStar.Tactics.CanonCommSemiring.polynomial_simplify_ok", "Prims.unit" ]
[]
false
false
true
false
false
let semiring_reflect (#a: eqtype) (r: cr a) (vm: vmap a) (e1: polynomial a) (e2: polynomial a) (a1: a) (a2: a) (_: squash (interp_cs r vm (polynomial_simplify r e1) == interp_cs r vm (polynomial_simplify r e2))) (_: squash (a1 == interp_p r vm e1)) (_: squash (a2 == interp_p r vm e2)) : squash (a1 == a2) =
polynomial_simplify_ok r vm e1; polynomial_simplify_ok r vm e2
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.polynomial_normalize_ok
val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)))
val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)))
let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1))
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 1472, "start_col": 0, "start_line": 1440 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> p: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.polynomial_normalize r p) == FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.spolynomial_normalize r (FStar.Tactics.CanonCommSemiring.spolynomial_of r p)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Tactics.CanonCommSemiring.index", "FStar.Tactics.CanonCommSemiring.polynomial_normalize_ok", "Prims.unit", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.spolynomial_normalize", "FStar.Tactics.CanonCommSemiring.spolynomial_of", "FStar.Tactics.CanonCommSemiring.polynomial_normalize", "FStar.Tactics.CanonCommSemiring.canonical_sum_prod_ok", "FStar.Tactics.CanonCommSemiring.spolynomial", "FStar.Tactics.CanonCommSemiring.SPconst", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__opp", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult" ]
[ "recursion" ]
false
false
true
false
false
let rec polynomial_normalize_ok #a r vm p =
match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1))
false
FStar.UInt16.fsti
FStar.UInt16.gte_mask
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 312, "start_col": 0, "start_line": 295 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.t", "Prims.unit", "FStar.UInt.lemma_msb_gte", "FStar.UInt16.n", "FStar.UInt16.v", "FStar.UInt16.lemma_sub_msbs", "FStar.UInt16.sub_mod", "FStar.UInt16.uint_to_t", "FStar.UInt16.shift_right", "FStar.UInt16.n_minus_one", "FStar.UInt16.logxor", "FStar.UInt16.logor", "Prims.l_True", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan" ]
[]
false
false
false
false
false
let gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) =
let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.monom_insert_ok
val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2))
val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2))
let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1037, "start_col": 0, "start_line": 909 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c1: a -> l1: FStar.Tactics.CanonCommSemiring.varlist -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.monom_insert r c1 l1 s2) == CM?.mult (CR?.cm_add r) (CM?.mult (CR?.cm_mult r) c1 (FStar.Tactics.CanonCommSemiring.interp_vl r vm l1)) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "Prims.op_Equality", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_m", "FStar.Tactics.CanonCommSemiring.ics_aux", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.ics_aux_ok", "FStar.Tactics.CanonCommSemiring.interp_m_ok", "FStar.Tactics.CanonCommSemiring.distribute_right", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "Prims.bool", "FStar.Tactics.CanonCommSemiring.varlist_lt", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Algebra.CommMonoid.__proj__CM__item__unit", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__mult" ]
[ "recursion" ]
false
false
true
false
false
let rec monom_insert_ok #a r vm c1 l1 s2 =
let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); ( == ) { () } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; ( == ) { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); ( == ) { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); ( == ) { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); ( == ) { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); ( == ) { () } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); ( == ) { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); ( == ) { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); ( == ) { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); ( == ) { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> let c2 = aone in if l1 = l2 then calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); ( == ) { () } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; ( == ) { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); ( == ) { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); ( == ) { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); ( == ) { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc ( == ) { interp_cs r vm (monom_insert r c1 l1 s2); ( == ) { () } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); ( == ) { () } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); ( == ) { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); ( == ) { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); ( == ) { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); ( == ) { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3_ok
val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s))
val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s))
let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> ()
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 1266, "start_col": 0, "start_line": 1182 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) ==
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c0: a -> l0: FStar.Tactics.CanonCommSemiring.varlist -> s: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3 r c0 l0 s) == CM?.mult (CR?.cm_mult r) (CM?.mult (CR?.cm_mult r) c0 (FStar.Tactics.CanonCommSemiring.interp_vl r vm l0)) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3", "FStar.Tactics.CanonCommSemiring.interp_vl", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.varlist_merge", "FStar.Tactics.CanonCommSemiring.monom_insert", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.monom_insert_ok", "FStar.Tactics.CanonCommSemiring.varlist_merge_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_scalar3_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__distribute", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[ "recursion" ]
false
false
true
false
false
let rec canonical_sum_scalar3_ok #a r vm c0 l0 s =
let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc ( == ) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); ( == ) { () } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); ( == ) { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> let c = aone in calc ( == ) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); ( == ) { () } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); ( == ) { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); ( == ) { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); ( == ) { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); ( == ) { () } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> ()
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.quote_polynomial
val quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term
val quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term
let rec quote_polynomial (#a:Type) (ta:term) (quotea:a -> Tac term) (e:polynomial a) : Tac term = match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e]
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 1606, "start_col": 0, "start_line": 1598 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1]) let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end val monom_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (monom_insert r c1 l1 s2) == r.cm_add.mult (r.cm_mult.mult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) let rec monom_insert_ok #a r vm c1 l1 s2 = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in if l1 = l2 then calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom (aplus c1 c2) l1 t2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) t2; == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) t2 } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm t2); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l2)) (interp_cs r vm t2); == { distribute_right r c1 c2 (interp_vl r vm l2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (interp_cs r vm t2); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) } aplus (amult c1 (interp_vl r vm l1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } else if varlist_lt l1 l2 then () else calc (==) { interp_cs r vm (monom_insert r c1 l1 s2); == { } interp_cs r vm (Cons_monom c2 l2 (monom_insert r c1 l1 t2)); == { } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (monom_insert r c1 l1 t2)); == { monom_insert_ok r vm c1 l1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2)); == { r.cm_add.commutativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (amult c1 (interp_vl r vm l1))); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (amult c1 (interp_vl r vm l1)) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (amult c1 (interp_vl r vm l1)); == { ics_aux_ok r vm (interp_m r vm c2 l2) t2 } aplus (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)); == { r.cm_add.commutativity (interp_cs r vm s2) (amult c1 (interp_vl r vm l1)) } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2); } | Nil_monom -> () val varlist_insert_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l1:varlist -> s2:canonical_sum a -> Lemma (interp_cs r vm (varlist_insert r l1 s2) == r.cm_add.mult (interp_vl r vm l1) (interp_cs r vm s2)) let varlist_insert_ok #a r vm l1 s2 = let aone = r.cm_mult.unit in monom_insert_ok r vm aone l1 s2 val canonical_sum_scalar_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar r c0 s) == r.cm_mult.mult c0 (interp_cs r vm s)) let rec canonical_sum_scalar_ok #a r vm c0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = r.cm_mult.unit let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar r c0 s); == { } interp_cs r vm (Cons_monom (amult c0 c) l (canonical_sum_scalar r c0 t)); == { } aplus (amult (amult c0 c) (interp_vl r vm l)) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { r.cm_mult.associativity c0 c (interp_vl r vm l) } aplus (amult c0 (amult c (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar r c0 t)); == { canonical_sum_scalar_ok r vm c0 t } aplus (amult c0 (amult c (interp_vl r vm l))) (amult c0 (interp_cs r vm t)); == { r.distribute c0 (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult c0 (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult c0 (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar2_ok: #a:eqtype -> r:cr a -> vm:vmap a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar2 r l0 s) == r.cm_mult.mult (interp_vl r vm l0) (interp_cs r vm s)) let rec canonical_sum_scalar2_ok #a r vm l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar2 r l0 s); == { } interp_cs r vm (monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t)); == { monom_insert_ok r vm c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) } aplus (amult c (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar2 r l0 t)); == { canonical_sum_scalar2_ok r vm l0 t } aplus (amult c (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity c (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult c (interp_vl r vm l0)) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.commutativity (interp_vl r vm l0) c } aplus (amult (amult (interp_vl r vm l0) c) (interp_vl r vm l)) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.cm_mult.associativity (interp_vl r vm l0) c (interp_vl r vm l) } aplus (amult (interp_vl r vm l0) (amult c (interp_vl r vm l))) (amult (interp_vl r vm l0) (interp_cs r vm t)); == { r.distribute (interp_vl r vm l0) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (interp_vl r vm l0) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (interp_vl r vm l0) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_scalar3_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c0:a -> l0:varlist -> s:canonical_sum a -> Lemma ( interp_cs r vm (canonical_sum_scalar3 r c0 l0 s) == r.cm_mult.mult (r.cm_mult.mult c0 (interp_vl r vm l0)) (interp_cs r vm s)) let rec canonical_sum_scalar3_ok #a r vm c0 l0 s = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Cons_varlist l t -> // Same as Cons_monom c l t with c = aone let c = aone in calc (==) { interp_cs r vm (canonical_sum_scalar3 r c0 l0 s); == { } interp_cs r vm (monom_insert r (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t)); == { monom_insert_ok r vm (amult c0 c) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) } aplus (amult (amult c0 c) (interp_vl r vm (varlist_merge l0 l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { varlist_merge_ok r vm l0 l } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (interp_cs r vm (canonical_sum_scalar3 r c0 l0 t)); == { canonical_sum_scalar3_ok r vm c0 l0 t } aplus (amult (amult c0 c) (amult (interp_vl r vm l0) (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 c) (interp_vl r vm l0) (interp_vl r vm l) } aplus (amult (amult (amult c0 c) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c0 c } aplus (amult (amult (amult c c0) (interp_vl r vm l0)) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity c c0 (interp_vl r vm l0) } aplus (amult (amult c (amult c0 (interp_vl r vm l0))) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.commutativity c (amult c0 (interp_vl r vm l0)) } aplus (amult (amult (amult c0 (interp_vl r vm l0)) c) (interp_vl r vm l)) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.cm_mult.associativity (amult c0 (interp_vl r vm l0)) c (interp_vl r vm l) } aplus (amult (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l))) (amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm t)); == { r.distribute (amult c0 (interp_vl r vm l0)) (amult c (interp_vl r vm l)) (interp_cs r vm t) } amult (amult c0 (interp_vl r vm l0)) (aplus (amult c (interp_vl r vm l)) (interp_cs r vm t)); == { } amult (amult c0 (interp_vl r vm l0)) (interp_cs r vm s); } | Nil_monom -> () val canonical_sum_prod_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_prod r s1 s2) == r.cm_mult.mult (interp_cs r vm s1) (interp_cs r vm s2)) let rec canonical_sum_prod_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar3 r c1 l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar3_ok r vm c1 l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (amult c1 (interp_vl r vm l1)) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_prod r s1 s2); == { } interp_cs r vm (canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2)); == { canonical_sum_merge_ok r vm (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) } aplus (interp_cs r vm (canonical_sum_scalar2 r l1 s2)) (interp_cs r vm (canonical_sum_prod r t1 s2)); == { canonical_sum_scalar2_ok r vm l1 s2; canonical_sum_prod_ok r vm t1 s2 } aplus (amult (interp_vl r vm l1) (interp_cs r vm s2)) (amult (interp_cs r vm t1) (interp_cs r vm s2)); == { distribute_right r (interp_vl r vm l1) (interp_cs r vm t1) (interp_cs r vm s2) } amult (aplus (interp_vl r vm l1) (interp_cs r vm t1)) (interp_cs r vm s2); == { } amult (interp_cs r vm s1) (interp_cs r vm s2); } | Nil_monom -> () val spolynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_normalize r p) == interp_sp r vm p) let rec spolynomial_normalize_ok #a r vm p = match p with | SPvar _ -> () | SPconst _ -> () | SPplus l q -> canonical_sum_merge_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q | SPmult l q -> canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r q); spolynomial_normalize_ok r vm l; spolynomial_normalize_ok r vm q val canonical_sum_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s:canonical_sum a -> Lemma (interp_cs r vm (canonical_sum_simplify r s) == interp_cs r vm s) let rec canonical_sum_simplify_ok #a r vm s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in match s with | Cons_monom c _ t -> canonical_sum_simplify_ok r vm t | Cons_varlist _ t -> canonical_sum_simplify_ok r vm t | Nil_monom -> () val spolynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:spolynomial a -> Lemma (interp_cs r vm (spolynomial_simplify r p) == interp_sp r vm p) let spolynomial_simplify_ok #a r vm p = canonical_sum_simplify_ok r vm (spolynomial_normalize r p); spolynomial_normalize_ok r vm p (** * This is the type where we first reflect expressions, * before eliminating additive inverses **) type polynomial a = | Pvar : index -> polynomial a | Pconst : a -> polynomial a | Pplus : polynomial a -> polynomial a -> polynomial a | Pmult : polynomial a -> polynomial a -> polynomial a | Popp : polynomial a -> polynomial a (** Canonize a reflected expression *) val polynomial_normalize: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let rec polynomial_normalize #a r p = match p with | Pvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | Pconst c -> Cons_monom c Nil_var Nil_monom | Pplus l q -> canonical_sum_merge r (polynomial_normalize r l) (polynomial_normalize r q) | Pmult l q -> canonical_sum_prod r (polynomial_normalize r l) (polynomial_normalize r q) | Popp p -> canonical_sum_scalar3 r (r.opp r.cm_mult.unit) Nil_var (polynomial_normalize r p) val polynomial_simplify: #a:eqtype -> cr a -> polynomial a -> canonical_sum a [@@canon_attr] let polynomial_simplify #a r p = canonical_sum_simplify r (polynomial_normalize r p) (** Translate to a representation without additive inverses *) val spolynomial_of: #a:eqtype -> cr a -> polynomial a -> spolynomial a [@@canon_attr] let rec spolynomial_of #a r p = match p with | Pvar i -> SPvar i | Pconst c -> SPconst c | Pplus l q -> SPplus (spolynomial_of r l) (spolynomial_of r q) | Pmult l q -> SPmult (spolynomial_of r l) (spolynomial_of r q) | Popp p -> SPmult (SPconst (r.opp r.cm_mult.unit)) (spolynomial_of r p) (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_p (#a:Type) (r:cr a) (vm:vmap a) (p:polynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | Pconst c -> c | Pvar i -> interp_var vm i | Pplus p1 p2 -> aplus (interp_p r vm p1) (interp_p r vm p2) | Pmult p1 p2 -> amult (interp_p r vm p1) (interp_p r vm p2) | Popp p -> r.opp (interp_p r vm p) val spolynomial_of_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_p r vm p == interp_sp r vm (spolynomial_of r p)) let rec spolynomial_of_ok #a r vm p = match p with | Pconst c -> () | Pvar i -> () | Pplus p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Pmult p1 p2 -> spolynomial_of_ok r vm p1; spolynomial_of_ok r vm p2 | Popp p -> spolynomial_of_ok r vm p; let x = interp_sp r vm (spolynomial_of r p) in let y = r.cm_mult.mult (r.opp r.cm_mult.unit) x in add_mult_opp r x; opp_unique r x y val polynomial_normalize_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_normalize r p) == interp_cs r vm (spolynomial_normalize r (spolynomial_of r p))) let rec polynomial_normalize_ok #a r vm p = match p with | Pvar _ -> () | Pconst _ -> () | Pplus l q -> canonical_sum_merge_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_merge_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Pmult l q -> canonical_sum_prod_ok r vm (polynomial_normalize r l) (polynomial_normalize r q); canonical_sum_prod_ok r vm (spolynomial_normalize r (spolynomial_of r l)) (spolynomial_normalize r (spolynomial_of r q)); polynomial_normalize_ok r vm l; polynomial_normalize_ok r vm q | Popp p1 -> let l = SPconst (r.opp r.cm_mult.unit) in polynomial_normalize_ok r vm p1; canonical_sum_prod_ok r vm (spolynomial_normalize r l) (polynomial_normalize r p1); canonical_sum_prod_ok r vm (spolynomial_normalize r l) (spolynomial_normalize r (spolynomial_of r p1)) val polynomial_simplify_ok: #a:eqtype -> r:cr a -> vm:vmap a -> p:polynomial a -> Lemma (interp_cs r vm (polynomial_simplify r p) == interp_p r vm p) let polynomial_simplify_ok #a r vm p = calc (==) { interp_cs r vm (polynomial_simplify r p); == { } interp_cs r vm (canonical_sum_simplify r (polynomial_normalize r p)); == { canonical_sum_simplify_ok r vm (polynomial_normalize r p) } interp_cs r vm (polynomial_normalize r p); == { polynomial_normalize_ok r vm p } interp_cs r vm (spolynomial_normalize r (spolynomial_of r p)); == { spolynomial_normalize_ok r vm (spolynomial_of r p) } interp_sp r vm (spolynomial_of r p); == { spolynomial_of_ok r vm p } interp_p r vm p; } /// /// Tactic definition /// (* Only dump when debugging is on *) let ddump m = if debugging () then dump m (** * Finds the position of first occurrence of x in xs. * This is specialized to terms and their funny term_eq. **) let rec find_aux (n:nat) (x:term) (xs:list term) : Tac (option nat) = match xs with | [] -> None | x'::xs' -> if term_eq x x' then Some n else find_aux (n+1) x xs' let find = find_aux 0 let make_fvar (#a:Type) (t:term) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) : Tac (polynomial a * list term * vmap a) = match find t ts with | Some v -> (Pvar v, ts, vm) | None -> let vfresh = length ts in let z = unquotea t in (Pvar vfresh, ts @ [t], update vfresh z vm) (** This expects that add, opp, mone mult, and t have already been normalized *) let rec reification_aux (#a:Type) (unquotea:term -> Tac a) (ts:list term) (vm:vmap a) (add opp mone mult t: term) : Tac (polynomial a * list term * vmap a) = // ddump ("term = " ^ term_to_string t ^ "\n"); let hd, tl = collect_app_ref t in match inspect hd, list_unref tl with | Tv_FVar fv, [(t1, _) ; (t2, _)] -> //ddump ("add = " ^ term_to_string add ^ " // \nmul = " ^ term_to_string mult); //ddump ("fv = " ^ term_to_string (pack (Tv_FVar fv))); let binop (op:polynomial a -> polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e1, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in let (e2, ts, vm) = reification_aux unquotea ts vm add opp mone mult t2 in (op e1 e2, ts, vm) in if term_eq (pack (Tv_FVar fv)) add then binop Pplus else if term_eq (pack (Tv_FVar fv)) mult then binop Pmult else make_fvar t unquotea ts vm | Tv_FVar fv, [(t1, _)] -> let monop (op:polynomial a -> polynomial a) : Tac (polynomial a * list term * vmap a) = let (e, ts, vm) = reification_aux unquotea ts vm add opp mone mult t1 in (op e, ts, vm) in if term_eq (pack (Tv_FVar fv)) opp then monop Popp else make_fvar t unquotea ts vm | Tv_Const _, [] -> Pconst (unquotea t), ts, vm | _, _ -> make_fvar t unquotea ts vm (** * How to normalize terms in the tactic. * This is carefully tuned to unfold all and no more than required **) let steps = [ primops; iota; zeta; delta_attr [`%canon_attr]; delta_only [ `%FStar.Mul.op_Star; // For integer ring `%FStar.Algebra.CommMonoid.int_plus_cm; // For integer ring `%FStar.Algebra.CommMonoid.int_multiply_cm; // For integer ring `%FStar.Algebra.CommMonoid.__proj__CM__item__mult; `%FStar.Algebra.CommMonoid.__proj__CM__item__unit; `%__proj__CR__item__cm_add; `%__proj__CR__item__opp; `%__proj__CR__item__cm_mult; `%FStar.List.Tot.assoc; `%FStar.Pervasives.Native.fst; `%FStar.Pervasives.Native.snd; `%FStar.Pervasives.Native.__proj__Mktuple2__item___1; `%FStar.Pervasives.Native.__proj__Mktuple2__item___2; `%FStar.List.Tot.op_At; `%FStar.List.Tot.append; ] ] let canon_norm () : Tac unit = norm steps let reification (#a:Type) (unquotea:term -> Tac a) (quotea:a -> Tac term) (tadd topp tmone tmult:term) (munit:a) (ts:list term) : Tac (list (polynomial a) * vmap a) = // Be careful not to normalize operations too much // E.g. we don't want to turn ( +% ) into (a + b) % prime // or we won't be able to spot ring operations let add = tadd in let opp = topp in let mone = tmone in let mult = tmult in let ts = Tactics.Util.map (norm_term steps) ts in //ddump ("add = " ^ term_to_string add ^ "\nmult = " ^ term_to_string mult); let (es, _, vm) = Tactics.Util.fold_left (fun (es, vs, vm) t -> let (e, vs, vm) = reification_aux unquotea vs vm add opp mone mult t in (e::es, vs, vm)) ([],[], ([], munit)) ts in (List.Tot.Base.rev es, vm)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ta: FStar.Tactics.NamedView.term -> quotea: (_: a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term) -> e: FStar.Tactics.CanonCommSemiring.polynomial a -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.CanonCommSemiring.polynomial", "FStar.Reflection.V2.Derived.mk_app", "Prims.list", "FStar.Stubs.Reflection.V2.Data.argv", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.V2.Data.Q_Implicit", "Prims.Nil", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "FStar.Tactics.CanonCommSemiring.index", "FStar.Reflection.V2.Derived.mk_e_app", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Const", "FStar.Stubs.Reflection.V2.Data.C_Int", "FStar.Tactics.CanonCommSemiring.quote_polynomial" ]
[ "recursion" ]
false
true
false
false
false
let rec quote_polynomial (#a: Type) (ta: term) (quotea: (a -> Tac term)) (e: polynomial a) : Tac term =
match e with | Pconst c -> mk_app (`Pconst) [(ta, Q_Implicit); (quotea c, Q_Explicit)] | Pvar x -> mk_e_app (`Pvar) [pack (Tv_Const (C_Int x))] | Pplus e1 e2 -> mk_e_app (`Pplus) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Pmult e1 e2 -> mk_e_app (`Pmult) [quote_polynomial ta quotea e1; quote_polynomial ta quotea e2] | Popp e -> mk_e_app (`Popp) [quote_polynomial ta quotea e]
false
FStar.Tactics.CanonCommSemiring.fst
FStar.Tactics.CanonCommSemiring.csm_aux_ok
val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1])
val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1])
let rec canonical_sum_merge_ok #a r vm s1 s2 = let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match s1 with | Cons_monom c1 l1 t1 -> csm_aux_ok #a r vm c1 l1 t1 s2 | Cons_varlist l1 t1 -> calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } interp_cs r vm (csm_aux r aone l1 t1 s2); == { csm_aux_ok #a r vm aone l1 t1 s2 } aplus (interp_cs r vm (Cons_monom aone l1 t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (interp_vl r vm l1) t1 } aplus (interp_cs r vm (Cons_varlist l1 t1)) (interp_cs r vm s2); } | Nil_monom -> () and csm_aux_ok #a r vm c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end | Cons_varlist l2 t2 -> // Same as Cons_monom with c2 = aone let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); == { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); == { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); == { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); == { ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else if varlist_lt l1 l2 then begin calc (==) { interp_cs r vm (canonical_sum_merge r s1 s2); == { } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); == { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); == { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); == { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end else begin calc (==) { interp_cs r vm (csm_aux r c1 l1 t1 s2); == { } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); == { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); == { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); == { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); == { ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1 } aplus (interp_cs r vm s2) (interp_cs r vm s1); == { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } end
{ "file_name": "ulib/FStar.Tactics.CanonCommSemiring.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 902, "start_col": 0, "start_line": 667 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.CanonCommSemiring /// A tactic to solve equalities on a commutative semiring (a, +, *, 0, 1) /// /// The tactic [canon_semiring] is parameterized by the base type [a] and /// a semiring theory [cr a]. This requires: /// /// - A commutative monoid (a, +, 0) for addition /// That is, + is associative, commutative and has identity element 0 /// - An additive inverse operator for (a, +, 0), making it an Abelian group /// That is, a + -a = 0 /// - A commutative monoid (a, *, 1) for multiplication /// That is, * is associative, commutative and has identity element 1 /// - Multiplication left-distributes over addition /// That is, a * (b + c) == a * b + a * c /// - 0 is an absorbing element of multiplication /// That is, 0 * a = 0 /// /// In contrast to the previous version of FStar.Tactics.CanonCommSemiring, /// the tactic defined here canonizes products, additions and additive inverses, /// collects coefficients in monomials, and eliminates trivial expressions. /// /// This is based on the legacy (second) version of Coq's ring tactic: /// - https://github.com/coq-contribs/legacy-ring/ /// /// See also the newest ring tactic in Coq, which is even more general /// and efficient: /// - https://coq.inria.fr/refman/addendum/ring.html /// - http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Algebra.CommMonoid let term_eq = FStar.Tactics.term_eq_old (** An attribute for marking definitions to unfold by the tactic *) irreducible let canon_attr = () /// /// Commutative semiring theory /// let distribute_left_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma (x * (y + z) == x * y + x * z) let distribute_right_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = let ( + ) = cm_add.mult in let ( * ) = cm_mult.mult in x:a -> y:a -> z:a -> Lemma ((x + y) * z == x * z + y * z) let mult_zero_l_lemma (a:Type) (cm_add:cm a) (cm_mult:cm a) = x:a -> Lemma (cm_mult.mult cm_add.unit x == cm_add.unit) let add_opp_r_lemma (a:Type) (cm_add:cm a) (opp:(a -> a)) = let ( + ) = cm_add.mult in x:a -> Lemma (x + opp x == cm_add.unit) [@@canon_attr] unopteq type cr (a:Type) = | CR : cm_add: cm a -> cm_mult: cm a -> opp: (a -> a) -> add_opp: add_opp_r_lemma a cm_add opp -> distribute: distribute_left_lemma a cm_add cm_mult -> mult_zero_l: mult_zero_l_lemma a cm_add cm_mult -> cr a let distribute_right (#a:Type) (r:cr a) : distribute_right_lemma a r.cm_add r.cm_mult = fun x y z -> r.cm_mult.commutativity (r.cm_add.mult x y) z; r.distribute z x y; r.cm_mult.commutativity x z; r.cm_mult.commutativity y z /// /// Syntax of canonical ring expressions /// (** * Marking expressions we would like to normalize fully. * This does not do anything at the moment, but it would be nice * to have a cheap mechanism to make this work without traversing the * whole goal. **) [@@canon_attr] unfold let norm_fully (#a:Type) (x:a) = x let index: eqtype = nat (* * A list of variables represents a sorted product of one or more variables. * We do not need to prove sortedness to prove correctness, so we never * make it explicit. *) type varlist = | Nil_var : varlist | Cons_var : index -> varlist -> varlist (* * A canonical expression represents an ordered sum of monomials. * Each monomial is either: * - a varlist (a product of variables): x1 * ... * xk * - a product of a scalar and a varlist: c * x1 * ... * xk * * The order on monomials is the lexicographic order on varlist, with the * additional convention that monomials with a scalar are less than monomials * without a scalar. *) type canonical_sum a = | Nil_monom : canonical_sum a | Cons_monom : a -> varlist -> canonical_sum a -> canonical_sum a | Cons_varlist : varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec varlist_lt (x y:varlist) : bool = match x, y with | Nil_var, Cons_var _ _ -> true | Cons_var i xs, Cons_var j ys -> if i < j then true else i = j && varlist_lt xs ys | _, _ -> false [@@canon_attr] val varlist_merge: l1:varlist -> l2:varlist -> Tot varlist (decreases %[l1; l2; 0]) [@@canon_attr] val vm_aux: index -> t1:varlist -> l2:varlist -> Tot varlist (decreases %[t1; l2; 1]) (* Merges two lists of variables, preserving sortedness *) [@@canon_attr] let rec varlist_merge l1 l2 = match l1, l2 with | _, Nil_var -> l1 | Nil_var, _ -> l2 | Cons_var v1 t1, Cons_var v2 t2 -> vm_aux v1 t1 l2 and vm_aux v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then Cons_var v1 (varlist_merge t1 l2) else Cons_var v2 (vm_aux v1 t1 t2) | _ -> Cons_var v1 t1 (* * Merges two canonical expressions * * We require that [a] is eqtype for better reasons later. * Here it is convenient to fix the universe of [a] in * mutually recursive functions. *) [@@canon_attr] val canonical_sum_merge : #a:eqtype -> cr a -> s1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[s1; s2; 0]) [@@canon_attr] val csm_aux: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Tot (canonical_sum a) (decreases %[t1; s2; 1]) [@@canon_attr] let rec canonical_sum_merge #a r s1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s1 with | Cons_monom c1 l1 t1 -> csm_aux r c1 l1 t1 s2 | Cons_varlist l1 t1 -> csm_aux r aone l1 t1 s2 | Nil_monom -> s2 and csm_aux #a r c1 l1 t1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_monom c2 l2 (csm_aux #a r c1 l1 t1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 (canonical_sum_merge r t1 t2) else if varlist_lt l1 l2 then Cons_monom c1 l1 (canonical_sum_merge r t1 s2) else Cons_varlist l2 (csm_aux r c1 l1 t1 t2) | Nil_monom -> //if c1 = aone then Cons_varlist l1 t1 else Cons_monom c1 l1 t1 (* Inserts a monomial into the appropriate position in a canonical sum *) val monom_insert: #a:eqtype -> r:cr a -> c1:a -> l1:varlist -> s2:canonical_sum a -> canonical_sum a [@@canon_attr] let rec monom_insert #a r c1 l1 s2 = let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in match s2 with | Cons_monom c2 l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 c2)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_monom c2 l2 (monom_insert r c1 l1 t2) | Cons_varlist l2 t2 -> if l1 = l2 then Cons_monom (norm_fully (aplus c1 aone)) l1 t2 else if varlist_lt l1 l2 then Cons_monom c1 l1 s2 else Cons_varlist l2 (monom_insert r c1 l1 t2) | Nil_monom -> if c1 = aone then Cons_varlist l1 Nil_monom else Cons_monom c1 l1 Nil_monom (* Inserts a monomial without scalar into a canonical sum *) val varlist_insert: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let varlist_insert #a r l1 s2 = let aone = r.cm_mult.unit in monom_insert r aone l1 s2 (* Multiplies a sum by a scalar c0 *) val canonical_sum_scalar: #a:Type -> cr a -> a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar #a r c0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> Cons_monom (norm_fully (amult c0 c)) l (canonical_sum_scalar r c0 t) | Cons_varlist l t -> Cons_monom c0 l (canonical_sum_scalar r c0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial without scalar *) val canonical_sum_scalar2: #a:eqtype -> cr a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar2 #a r l0 s = match s with | Cons_monom c l t -> monom_insert r c (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Cons_varlist l t -> varlist_insert r (varlist_merge l0 l) (canonical_sum_scalar2 r l0 t) | Nil_monom -> Nil_monom (* Multiplies a sum by a monomial with scalar *) val canonical_sum_scalar3: #a:eqtype -> cr a -> a -> varlist -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_scalar3 #a r c0 l0 s = let amult = r.cm_mult.mult in match s with | Cons_monom c l t -> monom_insert r (norm_fully (amult c0 c)) (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Cons_varlist l t -> monom_insert r c0 (varlist_merge l0 l) (canonical_sum_scalar3 r c0 l0 t) | Nil_monom -> s (* Multiplies two canonical sums *) val canonical_sum_prod: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_prod #a r s1 s2 = match s1 with | Cons_monom c1 l1 t1 -> canonical_sum_merge r (canonical_sum_scalar3 r c1 l1 s2) (canonical_sum_prod r t1 s2) | Cons_varlist l1 t1 -> canonical_sum_merge r (canonical_sum_scalar2 r l1 s2) (canonical_sum_prod r t1 s2) | Nil_monom -> s1 /// /// Syntax of concrete semiring polynomials /// (* This is the type where we reflect expressions before normalization *) type spolynomial a = | SPvar : index -> spolynomial a | SPconst : a -> spolynomial a | SPplus : spolynomial a -> spolynomial a -> spolynomial a | SPmult : spolynomial a -> spolynomial a -> spolynomial a (** Canonize a reflected expression *) val spolynomial_normalize: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let rec spolynomial_normalize #a r p = match p with | SPvar i -> Cons_varlist (Cons_var i Nil_var) Nil_monom | SPconst c -> Cons_monom c Nil_var Nil_monom | SPplus l q -> canonical_sum_merge r (spolynomial_normalize r l) (spolynomial_normalize r q) | SPmult l q -> canonical_sum_prod r (spolynomial_normalize r l) (spolynomial_normalize r q) (** * Simplify a canonical sum. * Removes 0 * x1 * ... * xk and turns 1 * x1 * ... * xk into x1 * ... * xk **) val canonical_sum_simplify: #a:eqtype -> cr a -> canonical_sum a -> canonical_sum a [@@canon_attr] let rec canonical_sum_simplify #a r s = let azero = r.cm_add.unit in let aone = r.cm_mult.unit in let aplus = r.cm_add.mult in match s with | Cons_monom c l t -> if norm_fully (c = azero) then canonical_sum_simplify r t else if norm_fully (c = aone) then Cons_varlist l (canonical_sum_simplify r t) else Cons_monom c l (canonical_sum_simplify r t) | Cons_varlist l t -> Cons_varlist l (canonical_sum_simplify r t) | Nil_monom -> s (** * The main canonization algorithm: turn an expression into a sum and * simplify it. **) val spolynomial_simplify: #a:eqtype -> cr a -> spolynomial a -> canonical_sum a [@@canon_attr] let spolynomial_simplify #a r p = canonical_sum_simplify r (spolynomial_normalize r p) /// /// Interpretation of varlists, monomials and canonical sums /// (** * The variable map: * This maps polynomial variables to ring expressions. That is, any term * that is not an addition or a multiplication is turned into a variable * * The representation is inefficient. For large terms it might be worthwhile * using a better data structure. **) let vmap a = list (var * a) * a (** Add a new entry in a variable map *) let update (#a:Type) (x:var) (xa:a) (vm:vmap a) : vmap a = let l, y = vm in (x, xa) :: l, y (** Quotes a list *) let rec quote_list (#a:Type) (ta:term) (quotea:a -> Tac term) (xs:list a) : Tac term = match xs with | [] -> mk_app (`Nil) [(ta, Q_Implicit)] | x::xs' -> mk_app (`Cons) [(ta, Q_Implicit); (quotea x, Q_Explicit); (quote_list ta quotea xs', Q_Explicit)] (** Quotes a variable map *) let quote_vm (#a:Type) (ta: term) (quotea:a -> Tac term) (vm:vmap a) : Tac term = let quote_map_entry (p:(nat * a)) : Tac term = mk_app (`Mktuple2) [(`nat, Q_Implicit); (ta, Q_Implicit); (pack (Tv_Const (C_Int (fst p))), Q_Explicit); (quotea (snd p), Q_Explicit)] in let tyentry = mk_e_app (`tuple2) [(`nat); ta] in let tlist = quote_list tyentry quote_map_entry (fst vm) in let tylist = mk_e_app (`list) [tyentry] in mk_app (`Mktuple2) [(tylist, Q_Implicit); (ta, Q_Implicit); (tlist, Q_Explicit); (quotea (snd vm), Q_Explicit)] (** * A varlist is interpreted as the product of the entries in the variable map * * Unbound variables are mapped to the default value according to the map. * This would normally never occur, but it makes it easy to prove correctness. *) [@@canon_attr] let interp_var (#a:Type) (vm:vmap a) (i:index) = match List.Tot.Base.assoc i (fst vm) with | Some x -> x | _ -> snd vm [@@canon_attr] private let rec ivl_aux (#a:Type) (r:cr a) (vm:vmap a) (x:index) (t:varlist) : Tot a (decreases t) = let amult = r.cm_mult.mult in match t with | Nil_var -> interp_var vm x | Cons_var x' t' -> amult (interp_var vm x) (ivl_aux r vm x' t') [@@canon_attr] let interp_vl (#a:Type) (r:cr a) (vm:vmap a) (l:varlist) = let aone = r.cm_mult.unit in match l with | Nil_var -> aone | Cons_var x t -> ivl_aux r vm x t [@@canon_attr] let interp_m (#a:Type) (r:cr a) (vm:vmap a) (c:a) (l:varlist) = let amult = r.cm_mult.mult in match l with | Nil_var -> c | Cons_var x t -> amult c (ivl_aux r vm x t) [@@canon_attr] let rec ics_aux (#a:Type) (r:cr a) (vm:vmap a) (x:a) (s:canonical_sum a) : Tot a (decreases s) = let aplus = r.cm_add.mult in match s with | Nil_monom -> x | Cons_varlist l t -> aplus x (ics_aux r vm (interp_vl r vm l) t) | Cons_monom c l t -> aplus x (ics_aux r vm (interp_m r vm c l) t) (** Interpretation of a canonical sum *) [@@canon_attr] let interp_cs (#a:Type) (r:cr a) (vm:vmap a) (s:canonical_sum a) : a = let azero = r.cm_add.unit in match s with | Nil_monom -> azero | Cons_varlist l t -> ics_aux r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux r vm (interp_m r vm c l) t (** Interpretation of a polynomial *) [@@canon_attr] let rec interp_sp (#a:Type) (r:cr a) (vm:vmap a) (p:spolynomial a) : a = let aplus = r.cm_add.mult in let amult = r.cm_mult.mult in match p with | SPconst c -> c | SPvar i -> interp_var vm i | SPplus p1 p2 -> aplus (interp_sp r vm p1) (interp_sp r vm p2) | SPmult p1 p2 -> amult (interp_sp r vm p1) (interp_sp r vm p2) /// /// Proof of correctness /// val mult_one_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_mult.unit x == x) [SMTPat (r.cm_mult.mult r.cm_mult.unit x)] let mult_one_l #a r x = r.cm_mult.identity x val mult_one_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_mult.unit == x) [SMTPat (r.cm_mult.mult x r.cm_mult.unit)] let mult_one_r #a r x = r.cm_mult.commutativity r.cm_mult.unit x val mult_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult r.cm_add.unit x == r.cm_add.unit) [SMTPat (r.cm_mult.mult r.cm_add.unit x)] let mult_zero_l #a r x = r.mult_zero_l x val mult_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_mult.mult x r.cm_add.unit == r.cm_add.unit) [SMTPat (r.cm_mult.mult x r.cm_add.unit)] let mult_zero_r #a r x = r.cm_mult.commutativity x r.cm_add.unit val add_zero_l (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult r.cm_add.unit x == x) [SMTPat (r.cm_add.mult r.cm_add.unit x)] let add_zero_l #a r x = r.cm_add.identity x val add_zero_r (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x r.cm_add.unit == x) [SMTPat (r.cm_add.mult x r.cm_add.unit)] let add_zero_r #a r x = r.cm_add.commutativity r.cm_add.unit x val opp_unique (#a:Type) (r:cr a) (x y:a) : Lemma (requires r.cm_add.mult x y == r.cm_add.unit) (ensures y == r.opp x) let opp_unique #a r x y = let ( + ) = r.cm_add.mult in let zero = r.cm_add.unit in calc (==) { y; == { r.add_opp x } y + (x + r.opp x); == { r.cm_add.associativity y x (r.opp x) } (y + x) + r.opp x; == { r.cm_add.commutativity x y } zero + r.opp x; == { } r.opp x; } val add_mult_opp (#a:Type) (r:cr a) (x:a) : Lemma (r.cm_add.mult x (r.cm_mult.mult (r.opp r.cm_mult.unit) x) == r.cm_add.unit) let add_mult_opp #a r x = let ( + ) = r.cm_add.mult in let ( * ) = r.cm_mult.mult in let zero = r.cm_add.unit in let one = r.cm_mult.unit in calc (==) { x + r.opp one * x; == { } one * x + r.opp one * x; == { distribute_right r one (r.opp one) x } (one + r.opp one) * x; == { r.add_opp one } zero * x; == { } zero; } val ivl_aux_ok (#a:Type) (r:cr a) (vm:vmap a) (v:varlist) (i:index) : Lemma (ivl_aux r vm i v == r.cm_mult.mult (interp_var vm i) (interp_vl r vm v)) let ivl_aux_ok #a r vm v i = () val vm_aux_ok (#a:eqtype) (r:cr a) (vm:vmap a) (v:index) (t l:varlist) : Lemma (ensures interp_vl r vm (vm_aux v t l) == r.cm_mult.mult (interp_vl r vm (Cons_var v t)) (interp_vl r vm l)) (decreases %[t; l; 1]) val varlist_merge_ok (#a:eqtype) (r:cr a) (vm:vmap a) (x y:varlist) : Lemma (ensures interp_vl r vm (varlist_merge x y) == r.cm_mult.mult (interp_vl r vm x) (interp_vl r vm y)) (decreases %[x; y; 0]) let rec varlist_merge_ok #a r vm x y = let amult = r.cm_mult.mult in match x, y with | Cons_var v1 t1, Nil_var -> () | Cons_var v1 t1, Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 y; assert ( interp_vl r vm (varlist_merge x y) == amult (interp_var vm v1) (amult (interp_vl r vm t1) (interp_vl r vm y))); r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm y) end else vm_aux_ok r vm v1 t1 y | Nil_var, _ -> () and vm_aux_ok #a r vm v1 t1 l2 = match l2 with | Cons_var v2 t2 -> if v1 < v2 then begin varlist_merge_ok r vm t1 l2; r.cm_mult.associativity (interp_var vm v1) (interp_vl r vm t1) (interp_vl r vm l2) end else begin vm_aux_ok r vm v1 t1 t2; calc (==) { interp_vl r vm (Cons_var v2 (vm_aux v1 t1 t2)); == { } ivl_aux r vm v2 (vm_aux v1 t1 t2); == { } r.cm_mult.mult (interp_var vm v2) (interp_vl r vm (vm_aux v1 t1 t2)); == { } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm t2) } r.cm_mult.mult (interp_var vm v2) (r.cm_mult.mult (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) ); == { r.cm_mult.associativity (interp_var vm v2) (interp_vl r vm t2) (interp_vl r vm (Cons_var v1 t1)) } r.cm_mult.mult (r.cm_mult.mult (interp_var vm v2) (interp_vl r vm t2)) (interp_vl r vm (Cons_var v1 t1)); == { r.cm_mult.commutativity (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)) } r.cm_mult.mult (interp_vl r vm (Cons_var v1 t1)) (interp_vl r vm (Cons_var v2 t2)); } end | _ -> () val ics_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> s:canonical_sum a -> Lemma (ensures ics_aux r vm x s == r.cm_add.mult x (interp_cs r vm s)) (decreases s) let rec ics_aux_ok #a r vm x s = match s with | Nil_monom -> () | Cons_varlist l t -> ics_aux_ok r vm (interp_vl r vm l) t | Cons_monom c l t -> ics_aux_ok r vm (interp_m r vm c l) t val interp_m_ok: #a:eqtype -> r:cr a -> vm:vmap a -> x:a -> l:varlist -> Lemma (interp_m r vm x l == r.cm_mult.mult x (interp_vl r vm l)) let interp_m_ok #a r vm x l = () val aplus_assoc_4: #a:Type -> r:cr a -> w:a -> x:a -> y:a -> z:a -> Lemma (let aplus = r.cm_add.mult in aplus (aplus w x) (aplus y z) == aplus (aplus w y) (aplus x z)) let aplus_assoc_4 #a r w x y z = let aplus = r.cm_add.mult in let assoc = r.cm_add.associativity in let comm = r.cm_add.commutativity in calc (==) { aplus (aplus w x) (aplus y z); == { assoc w x (aplus y z) } aplus w (aplus x (aplus y z)); == { comm x (aplus y z) } aplus w (aplus (aplus y z) x); == { assoc w (aplus y z) x } aplus (aplus w (aplus y z)) x; == { assoc w y z } aplus (aplus (aplus w y) z) x; == { assoc (aplus w y) z x } aplus (aplus w y) (aplus z x); == { comm z x } aplus (aplus w y) (aplus x z); } val canonical_sum_merge_ok: #a:eqtype -> r:cr a -> vm:vmap a -> s1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (canonical_sum_merge r s1 s2) == r.cm_add.mult (interp_cs r vm s1) (interp_cs r vm s2)) (decreases %[s1; s2; 0]) val csm_aux_ok: #a:eqtype -> r:cr a -> vm:vmap a -> c1:a -> l1:varlist -> t1:canonical_sum a -> s2:canonical_sum a -> Lemma (ensures interp_cs r vm (csm_aux r c1 l1 t1 s2) == r.cm_add.mult (interp_cs r vm (Cons_monom c1 l1 t1)) (interp_cs r vm s2)) (decreases %[t1; s2; 1])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.CanonCommSemiring.fst" }
[ { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Tactics.CanonCommSemiring.cr a -> vm: FStar.Tactics.CanonCommSemiring.vmap a -> c1: a -> l1: FStar.Tactics.CanonCommSemiring.varlist -> t1: FStar.Tactics.CanonCommSemiring.canonical_sum a -> s2: FStar.Tactics.CanonCommSemiring.canonical_sum a -> FStar.Pervasives.Lemma (ensures FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.csm_aux r c1 l1 t1 s2) == CM?.mult (CR?.cm_add r) (FStar.Tactics.CanonCommSemiring.interp_cs r vm (FStar.Tactics.CanonCommSemiring.Cons_monom c1 l1 t1)) (FStar.Tactics.CanonCommSemiring.interp_cs r vm s2)) (decreases %[t1;s2;1])
FStar.Pervasives.Lemma
[ "lemma", "" ]
[ "canonical_sum_merge_ok", "csm_aux_ok" ]
[ "Prims.eqtype", "FStar.Tactics.CanonCommSemiring.cr", "FStar.Tactics.CanonCommSemiring.vmap", "FStar.Tactics.CanonCommSemiring.varlist", "FStar.Tactics.CanonCommSemiring.canonical_sum", "Prims.op_Equality", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Tactics.CanonCommSemiring.interp_cs", "FStar.Tactics.CanonCommSemiring.csm_aux", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Tactics.CanonCommSemiring.interp_vl", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge", "FStar.Tactics.CanonCommSemiring.interp_m", "FStar.Tactics.CanonCommSemiring.ics_aux", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Tactics.CanonCommSemiring.ics_aux_ok", "FStar.Tactics.CanonCommSemiring.interp_m_ok", "FStar.Tactics.CanonCommSemiring.canonical_sum_merge_ok", "FStar.Tactics.CanonCommSemiring.distribute_right", "FStar.Tactics.CanonCommSemiring.aplus_assoc_4", "Prims.bool", "FStar.Tactics.CanonCommSemiring.varlist_lt", "FStar.Algebra.CommMonoid.__proj__CM__item__associativity", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_add", "FStar.Tactics.CanonCommSemiring.csm_aux_ok", "FStar.Algebra.CommMonoid.__proj__CM__item__commutativity", "FStar.Tactics.CanonCommSemiring.Cons_monom", "FStar.Algebra.CommMonoid.__proj__CM__item__mult", "FStar.Tactics.CanonCommSemiring.__proj__CR__item__cm_mult", "FStar.Algebra.CommMonoid.__proj__CM__item__unit" ]
[ "mutual recursion" ]
false
false
true
false
false
let rec csm_aux_ok #a r vm c1 l1 t1 s2 =
let aplus = r.cm_add.mult in let aone = r.cm_mult.unit in let amult = r.cm_mult.mult in match s2 with | Nil_monom -> () | Cons_monom c2 l2 t2 -> let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then calc ( == ) { interp_cs r vm (csm_aux r c1 l1 t1 s2); ( == ) { () } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); ( == ) { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); ( == ) { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); ( == ) { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); ( == ) { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); ( == ) { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { (ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1) } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { (ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } else if varlist_lt l1 l2 then calc ( == ) { interp_cs r vm (canonical_sum_merge r s1 s2); ( == ) { () } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); ( == ) { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); ( == ) { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); ( == ) { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); ( == ) { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); ( == ) { (ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } else calc ( == ) { interp_cs r vm (csm_aux r c1 l1 t1 s2); ( == ) { () } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); ( == ) { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); ( == ) { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); ( == ) { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); ( == ) { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); ( == ) { (ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1) } aplus (interp_cs r vm s2) (interp_cs r vm s1); ( == ) { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } | Cons_varlist l2 t2 -> let c2 = aone in let s1 = Cons_monom c1 l1 t1 in if l1 = l2 then calc ( == ) { interp_cs r vm (csm_aux r c1 l1 t1 s2); ( == ) { () } ics_aux r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2); ( == ) { ics_aux_ok r vm (interp_m r vm (aplus c1 c2) l1) (canonical_sum_merge r t1 t2) } aplus (interp_m r vm (aplus c1 c2) l1) (interp_cs r vm (canonical_sum_merge r t1 t2)); ( == ) { interp_m_ok r vm (aplus c1 c2) l1 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 t2)); ( == ) { canonical_sum_merge_ok r vm t1 t2 } aplus (amult (aplus c1 c2) (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); ( == ) { distribute_right r c1 c2 (interp_vl r vm l1) } aplus (aplus (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2))) (aplus (interp_cs r vm t1) (interp_cs r vm t2)); ( == ) { aplus_assoc_4 r (amult c1 (interp_vl r vm l1)) (amult c2 (interp_vl r vm l2)) (interp_cs r vm t1) (interp_cs r vm t2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { (ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1) } aplus (interp_cs r vm s1) (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)); ( == ) { (ics_aux_ok r vm (amult c2 (interp_vl r vm l2)) t2; interp_m_ok r vm c2 l2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } else if varlist_lt l1 l2 then calc ( == ) { interp_cs r vm (canonical_sum_merge r s1 s2); ( == ) { () } ics_aux r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2); ( == ) { ics_aux_ok r vm (interp_m r vm c1 l1) (canonical_sum_merge r t1 s2) } aplus (interp_m r vm c1 l1) (interp_cs r vm (canonical_sum_merge r t1 s2)); ( == ) { interp_m_ok r vm c1 l1 } aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm (canonical_sum_merge r t1 s2)); ( == ) { canonical_sum_merge_ok r vm t1 s2 } aplus (amult c1 (interp_vl r vm l1)) (aplus (interp_cs r vm t1) (interp_cs r vm s2)); ( == ) { r.cm_add.associativity (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1) (interp_cs r vm s2) } aplus (aplus (amult c1 (interp_vl r vm l1)) (interp_cs r vm t1)) (interp_cs r vm s2); ( == ) { (ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1) } aplus (interp_cs r vm s1) (interp_cs r vm s2); } else calc ( == ) { interp_cs r vm (csm_aux r c1 l1 t1 s2); ( == ) { () } ics_aux r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2); ( == ) { ics_aux_ok r vm (interp_m r vm c2 l2) (csm_aux r c1 l1 t1 t2) } aplus (interp_m r vm c2 l2) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); ( == ) { interp_m_ok r vm c2 l2 } aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm (csm_aux r c1 l1 t1 t2)); ( == ) { csm_aux_ok r vm c1 l1 t1 t2 } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm s1) (interp_cs r vm t2)); ( == ) { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm t2) } aplus (amult c2 (interp_vl r vm l2)) (aplus (interp_cs r vm t2) (interp_cs r vm s1)); ( == ) { r.cm_add.associativity (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2) (interp_cs r vm s1) } aplus (aplus (amult c2 (interp_vl r vm l2)) (interp_cs r vm t2)) (interp_cs r vm s1); ( == ) { (ics_aux_ok r vm (amult c1 (interp_vl r vm l1)) t1; interp_m_ok r vm c1 l1) } aplus (interp_cs r vm s2) (interp_cs r vm s1); ( == ) { r.cm_add.commutativity (interp_cs r vm s1) (interp_cs r vm s2) } aplus (interp_cs r vm s1) (interp_cs r vm s2); }
false
FStar.UInt16.fsti
FStar.UInt16.eq_mask
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c
{ "file_name": "ulib/FStar.UInt16.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 283, "start_col": 0, "start_line": 256 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt16 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 16 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum shift value for this type, i.e. its width minus one, as an UInt32. *) inline_for_extraction let n_minus_one = UInt32.uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt16.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt16.t -> b: FStar.UInt16.t -> Prims.Pure FStar.UInt16.t
Prims.Pure
[]
[]
[ "FStar.UInt16.t", "Prims.unit", "Prims.op_Equality", "Prims._assert", "Prims.b2t", "FStar.UInt.uint_t", "FStar.UInt16.n", "FStar.UInt16.v", "FStar.UInt.ones", "Prims.l_and", "Prims.int", "FStar.UInt.logor_lemma_1", "FStar.UInt.lognot_lemma_1", "FStar.UInt.logxor_self", "Prims.bool", "FStar.UInt.zero", "FStar.UInt.lemma_minus_zero", "FStar.UInt.lemma_msb_pow2", "FStar.UInt16.lognot", "FStar.UInt.logxor_neq_nonzero", "FStar.UInt16.sub_mod", "FStar.UInt16.uint_to_t", "FStar.UInt16.shift_right", "FStar.UInt16.n_minus_one", "FStar.UInt16.logor", "FStar.UInt16.minus", "FStar.UInt16.logxor", "Prims.l_True", "Prims.l_imp", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_disEquality" ]
[]
false
false
false
false
false
let eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) =
let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then (logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n)) else (logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n)); c
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_get_len
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 8, "end_line": 36, "start_col": 0, "start_line": 33 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Bignum.MontArithmetic.bn_field_get_len_st t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_get_len #t k =
let open LowStar.BufferOps in let k1 = !*k in k1.len
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_check_modulus
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 41, "start_col": 0, "start_line": 39 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_check_modulus_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Prims.bool", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__mont_check" ]
[]
false
false
false
false
false
let bn_field_check_modulus #t km n =
let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_one
val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len
val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len
let bn_field_one #t km k oneM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 139, "start_col": 0, "start_line": 133 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_one_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_one", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.bn_mont_one", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__from", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_one #t km k oneM =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_free
val bn_field_free: #t:limb_t -> bn_field_free_st t
val bn_field_free: #t:limb_t -> bn_field_free_st t
let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 76, "start_col": 0, "start_line": 68 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Bignum.MontArithmetic.bn_field_free_st t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "LowStar.Monotonic.Buffer.free", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.Buffer.trivial_preorder", "Prims.unit", "Hacl.Bignum.Definitions.limb", "LowStar.Monotonic.Buffer.freeable_disjoint", "Lib.Buffer.buffer_t", "Lib.Buffer.MUT", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "LowStar.BufferOps.op_Bang_Star" ]
[]
false
false
false
false
false
let bn_field_free #t k =
let open LowStar.BufferOps in let k1 = !*k in let n:buffer (limb t) = k1.n in let r2:buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_to_field
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 85, "start_col": 0, "start_line": 79 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_to_field_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_to_field", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__to", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_to_field #t km k a aM =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_add
val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len
val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len
let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 86, "end_line": 103, "start_col": 0, "start_line": 97 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_add_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_add", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.__proj__Mkbn__item__add_mod_n", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_add #t km k aM bM cM =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_mul
val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len
val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len
let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 86, "end_line": 121, "start_col": 0, "start_line": 115 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_mul_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_mul", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__mul", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_mul #t km k aM bM cM =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_sqr
val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len
val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len
let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 130, "start_col": 0, "start_line": 124 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_sqr_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_sqr", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__sqr", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_sqr #t km k aM cM =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_from_field
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 94, "start_col": 0, "start_line": 88 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_from_field_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_from_field", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__from", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_from_field #t km k aM a =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
false
FStar.Stubs.Reflection.V2.Data.fsti
FStar.Stubs.Reflection.V2.Data.ppname_t
val ppname_t : Type0
let ppname_t = FStar.Sealed.Inhabited.sealed ""
{ "file_name": "ulib/FStar.Stubs.Reflection.V2.Data.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 23, "start_col": 0, "start_line": 23 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Stubs.Reflection.V2.Data include FStar.Stubs.Syntax.Syntax open FStar.Stubs.Reflection.Types (* The type of a string observable only with a tactic.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Stubs.Syntax.Syntax.fsti.checked", "FStar.Stubs.Reflection.Types.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Stubs.Reflection.V2.Data.fsti" }
[ { "abbrev": false, "full_module": "FStar.Stubs.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Syntax.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Sealed.Inhabited.sealed", "Prims.string" ]
[]
false
false
false
true
true
let ppname_t =
FStar.Sealed.Inhabited.sealed ""
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_sub
val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len
val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len
let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 86, "end_line": 112, "start_col": 0, "start_line": 106 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_sub_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Prims._assert", "Prims.eq2", "Lib.Sequence.seq", "Hacl.Bignum.Definitions.limb", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_and", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len", "Hacl.Bignum.MontArithmetic.as_pctx", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.Bignum.MontArithmetic.bn_field_sub", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.__proj__Mkbn__item__sub_mod_n", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_sub #t km k aM bM cM =
let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
false
FStar.Stubs.Reflection.V2.Data.fsti
FStar.Stubs.Reflection.V2.Data.notAscription
val notAscription (tv: term_view) : bool
val notAscription (tv: term_view) : bool
let notAscription (tv:term_view) : bool = not (Tv_AscribedT? tv) && not (Tv_AscribedC? tv)
{ "file_name": "ulib/FStar.Stubs.Reflection.V2.Data.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 158, "start_col": 0, "start_line": 157 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Stubs.Reflection.V2.Data include FStar.Stubs.Syntax.Syntax open FStar.Stubs.Reflection.Types (* The type of a string observable only with a tactic. All values of type ppname_t are provably equal *) let ppname_t = FStar.Sealed.Inhabited.sealed "" let as_ppname (x:string) : ppname_t = FStar.Sealed.Inhabited.seal x noeq type vconst = | C_Unit : vconst | C_Int : int -> vconst // Not exposing the full details of our integer repr. | C_True : vconst | C_False : vconst | C_String : string -> vconst | C_Range : range -> vconst | C_Reify : vconst | C_Reflect : name -> vconst (* TODO: complete *) type universes = list universe type ident_view = string & range noeq type pattern = // A built-in constant | Pat_Constant : c : vconst -> pattern // A fully applied constructor, each boolean marks whether the // argument was an explicitly-provided implicit argument | Pat_Cons : head : fv -> univs : option universes -> subpats : list (pattern * bool) -> pattern // A pattern-bound variable. It has a sealed sort in it. // This sort is ignored by the typechecker, but may be useful // for metaprogram to look at heuristically. There is nothing // else here but a ppname, the variable is referred to by its DB index. // This means all Pat_Var are provably equal. | Pat_Var : sort : sealed term -> ppname : ppname_t -> pattern // Dot pattern: resolved by other elements in the pattern and type | Pat_Dot_Term : t : option term -> pattern type branch = pattern * term // | pattern -> term noeq type aqualv = | Q_Implicit | Q_Explicit | Q_Meta of term type argv = term * aqualv (* A named variable, with a unique identifier *) noeq type namedv_view = { uniq : nat; sort : sealed typ; // REMOVE? ppname : ppname_t; } (* A bound variable, with a de Bruijn index *) noeq type bv_view = { index : nat; sort : sealed typ; // REMOVE? ppname : ppname_t; } (* Binders consist of a type, qualifiers, and attributes. There is also a sealed name. *) noeq type binder_view = { sort : typ; qual : aqualv; attrs : list term; ppname : ppname_t; } (* A binding is a variable in the environment. It is like a namedv, but has an explicit (unsealed) sort *) noeq type binding = { uniq : nat; sort : typ; ppname : ppname_t; } type bindings = list binding (** We use the binder type for letbindings and refinements, but no qualifiers nor attributes can appear there. We call these binders simple. This module assumes an abstract predicate for them, which is later assumed to be equivalent to being a binder without qualifiers nor attributes (once inspect_binder is in scope). *) val binder_is_simple : binder -> Tot bool type simple_binder = b:binder{binder_is_simple b} noeq type universe_view = | Uv_Zero : universe_view | Uv_Succ : universe -> universe_view | Uv_Max : universes -> universe_view | Uv_BVar : nat -> universe_view | Uv_Name : univ_name -> universe_view | Uv_Unif : universe_uvar -> universe_view | Uv_Unk : universe_view noeq type term_view = | Tv_Var : v:namedv -> term_view | Tv_BVar : v:bv -> term_view | Tv_FVar : v:fv -> term_view | Tv_UInst : v:fv -> us:universes -> term_view | Tv_App : hd:term -> a:argv -> term_view | Tv_Abs : bv:binder -> body:term -> term_view | Tv_Arrow : bv:binder -> c:comp -> term_view | Tv_Type : universe -> term_view | Tv_Refine : b:simple_binder -> ref:term -> term_view | Tv_Const : vconst -> term_view | Tv_Uvar : nat -> ctx_uvar_and_subst -> term_view | Tv_Let : recf:bool -> attrs:(list term) -> b:simple_binder -> def:term -> body:term -> term_view | Tv_Match : scrutinee:term -> ret:option match_returns_ascription -> brs:(list branch) -> term_view | Tv_AscribedT : e:term -> t:term -> tac:option term -> use_eq:bool -> term_view | Tv_AscribedC : e:term -> c:comp -> tac:option term -> use_eq:bool -> term_view | Tv_Unknown : term_view // An underscore: _ | Tv_Unsupp : term_view // failed to inspect, not supported
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Stubs.Syntax.Syntax.fsti.checked", "FStar.Stubs.Reflection.Types.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Stubs.Reflection.V2.Data.fsti" }
[ { "abbrev": false, "full_module": "FStar.Stubs.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Syntax.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tv: FStar.Stubs.Reflection.V2.Data.term_view -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.V2.Data.term_view", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.Stubs.Reflection.V2.Data.uu___is_Tv_AscribedT", "FStar.Stubs.Reflection.V2.Data.uu___is_Tv_AscribedC", "Prims.bool" ]
[]
false
false
false
true
false
let notAscription (tv: term_view) : bool =
not (Tv_AscribedT? tv) && not (Tv_AscribedC? tv)
false
FStar.Stubs.Reflection.V2.Data.fsti
FStar.Stubs.Reflection.V2.Data.as_ppname
val as_ppname (x: string) : ppname_t
val as_ppname (x: string) : ppname_t
let as_ppname (x:string) : ppname_t = FStar.Sealed.Inhabited.seal x
{ "file_name": "ulib/FStar.Stubs.Reflection.V2.Data.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 24, "start_col": 0, "start_line": 24 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Stubs.Reflection.V2.Data include FStar.Stubs.Syntax.Syntax open FStar.Stubs.Reflection.Types (* The type of a string observable only with a tactic. All values of type ppname_t are provably equal *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Stubs.Syntax.Syntax.fsti.checked", "FStar.Stubs.Reflection.Types.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Stubs.Reflection.V2.Data.fsti" }
[ { "abbrev": false, "full_module": "FStar.Stubs.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Syntax.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.string -> FStar.Stubs.Reflection.V2.Data.ppname_t
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "FStar.Sealed.Inhabited.seal", "FStar.Stubs.Reflection.V2.Data.ppname_t" ]
[]
false
false
false
true
false
let as_ppname (x: string) : ppname_t =
FStar.Sealed.Inhabited.seal x
false
FStar.Stubs.Reflection.V2.Data.fsti
FStar.Stubs.Reflection.V2.Data.var
val var:eqtype
val var:eqtype
let var : eqtype = nat
{ "file_name": "ulib/FStar.Stubs.Reflection.V2.Data.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 241, "start_col": 0, "start_line": 241 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Stubs.Reflection.V2.Data include FStar.Stubs.Syntax.Syntax open FStar.Stubs.Reflection.Types (* The type of a string observable only with a tactic. All values of type ppname_t are provably equal *) let ppname_t = FStar.Sealed.Inhabited.sealed "" let as_ppname (x:string) : ppname_t = FStar.Sealed.Inhabited.seal x noeq type vconst = | C_Unit : vconst | C_Int : int -> vconst // Not exposing the full details of our integer repr. | C_True : vconst | C_False : vconst | C_String : string -> vconst | C_Range : range -> vconst | C_Reify : vconst | C_Reflect : name -> vconst (* TODO: complete *) type universes = list universe type ident_view = string & range noeq type pattern = // A built-in constant | Pat_Constant : c : vconst -> pattern // A fully applied constructor, each boolean marks whether the // argument was an explicitly-provided implicit argument | Pat_Cons : head : fv -> univs : option universes -> subpats : list (pattern * bool) -> pattern // A pattern-bound variable. It has a sealed sort in it. // This sort is ignored by the typechecker, but may be useful // for metaprogram to look at heuristically. There is nothing // else here but a ppname, the variable is referred to by its DB index. // This means all Pat_Var are provably equal. | Pat_Var : sort : sealed term -> ppname : ppname_t -> pattern // Dot pattern: resolved by other elements in the pattern and type | Pat_Dot_Term : t : option term -> pattern type branch = pattern * term // | pattern -> term noeq type aqualv = | Q_Implicit | Q_Explicit | Q_Meta of term type argv = term * aqualv (* A named variable, with a unique identifier *) noeq type namedv_view = { uniq : nat; sort : sealed typ; // REMOVE? ppname : ppname_t; } (* A bound variable, with a de Bruijn index *) noeq type bv_view = { index : nat; sort : sealed typ; // REMOVE? ppname : ppname_t; } (* Binders consist of a type, qualifiers, and attributes. There is also a sealed name. *) noeq type binder_view = { sort : typ; qual : aqualv; attrs : list term; ppname : ppname_t; } (* A binding is a variable in the environment. It is like a namedv, but has an explicit (unsealed) sort *) noeq type binding = { uniq : nat; sort : typ; ppname : ppname_t; } type bindings = list binding (** We use the binder type for letbindings and refinements, but no qualifiers nor attributes can appear there. We call these binders simple. This module assumes an abstract predicate for them, which is later assumed to be equivalent to being a binder without qualifiers nor attributes (once inspect_binder is in scope). *) val binder_is_simple : binder -> Tot bool type simple_binder = b:binder{binder_is_simple b} noeq type universe_view = | Uv_Zero : universe_view | Uv_Succ : universe -> universe_view | Uv_Max : universes -> universe_view | Uv_BVar : nat -> universe_view | Uv_Name : univ_name -> universe_view | Uv_Unif : universe_uvar -> universe_view | Uv_Unk : universe_view noeq type term_view = | Tv_Var : v:namedv -> term_view | Tv_BVar : v:bv -> term_view | Tv_FVar : v:fv -> term_view | Tv_UInst : v:fv -> us:universes -> term_view | Tv_App : hd:term -> a:argv -> term_view | Tv_Abs : bv:binder -> body:term -> term_view | Tv_Arrow : bv:binder -> c:comp -> term_view | Tv_Type : universe -> term_view | Tv_Refine : b:simple_binder -> ref:term -> term_view | Tv_Const : vconst -> term_view | Tv_Uvar : nat -> ctx_uvar_and_subst -> term_view | Tv_Let : recf:bool -> attrs:(list term) -> b:simple_binder -> def:term -> body:term -> term_view | Tv_Match : scrutinee:term -> ret:option match_returns_ascription -> brs:(list branch) -> term_view | Tv_AscribedT : e:term -> t:term -> tac:option term -> use_eq:bool -> term_view | Tv_AscribedC : e:term -> c:comp -> tac:option term -> use_eq:bool -> term_view | Tv_Unknown : term_view // An underscore: _ | Tv_Unsupp : term_view // failed to inspect, not supported let notAscription (tv:term_view) : bool = not (Tv_AscribedT? tv) && not (Tv_AscribedC? tv) // Very basic for now noeq type comp_view = | C_Total : ret:typ -> comp_view | C_GTotal : ret:typ -> comp_view | C_Lemma : term -> term -> term -> comp_view // pre, post, patterns | C_Eff : us:universes -> eff_name:name -> result:term -> eff_args:(list argv) -> decrs:list term -> comp_view (* Constructor for an inductive type. See explanation in [Sg_Inductive] below. *) type ctor = name & typ noeq type lb_view = { lb_fv : fv; lb_us : list univ_name; lb_typ : typ; lb_def : term } noeq type sigelt_view = | Sg_Let : (r:bool) -> (lbs:list letbinding) -> sigelt_view // Sg_Inductive basically coalesces the Sig_bundle used internally, // where the type definition and its constructors are split. // While that might be better for typechecking, this is probably better for metaprogrammers // (no mutually defined types for now) | Sg_Inductive : (nm:name) -> // name of the inductive type being defined (univs:list univ_name) -> // universe variables (params:binders) -> // parameters (typ:typ) -> // the type annotation for the inductive, i.e., indices -> Type #u (cts:list ctor) -> // the constructors, opened with univs and applied to params already sigelt_view | Sg_Val : (nm:name) -> (univs:list univ_name) -> (typ:typ) -> sigelt_view | Unk (* Qualifiers for sigelts, see src/FStar.Syntax.Syntax for an explanation. *) noeq type qualifier = | Assumption | InternalAssumption | New | Private | Unfold_for_unification_and_vcgen | Visible_default | Irreducible | Inline_for_extraction | NoExtract | Noeq | Unopteq | TotalEffect | Logic | Reifiable | Reflectable of name | Discriminator of name | Projector of name * ident | RecordType of list ident * list ident | RecordConstructor of list ident * list ident | Action of name | ExceptionConstructor | HasMaskedEffect | Effect | OnlyName
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Stubs.Syntax.Syntax.fsti.checked", "FStar.Stubs.Reflection.Types.fsti.checked", "FStar.Sealed.Inhabited.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Stubs.Reflection.V2.Data.fsti" }
[ { "abbrev": false, "full_module": "FStar.Stubs.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Syntax.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "Prims.nat" ]
[]
false
false
false
true
false
let var:eqtype =
nat
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_init
val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len
val bn_field_init: #t:limb_t -> len:BN.meta_len t -> precomp_r2:BM.bn_precomp_r2_mod_n_st t len -> bn_field_init_st t len
let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 65, "start_col": 0, "start_line": 44 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Hacl.Bignum.meta_len t -> precomp_r2: Hacl.Bignum.Montgomery.bn_precomp_r2_mod_n_st t len -> Hacl.Bignum.MontArithmetic.bn_field_init_st t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.Montgomery.bn_precomp_r2_mod_n_st", "FStar.Monotonic.HyperHeap.rid", "Hacl.Bignum.Definitions.lbignum", "LowStar.Buffer.malloc", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.trivial_preorder", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable", "Prims.unit", "LowStar.Monotonic.Buffer.modifies_only_not_unused_in", "LowStar.Monotonic.Buffer.loc_none", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Prims._assert", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv", "Hacl.Bignum.MontArithmetic.as_ctx", "Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx", "Hacl.Spec.Bignum.MontArithmetic.bn_field_init", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.MontArithmetic.Mkbn_mont_ctx'", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Bignum.ModInvLimb.mod_inv_limb", "Lib.Buffer.op_Array_Access", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Lib.IntTypes.range", "Prims.op_Multiply", "Lib.IntTypes.mk_int", "Hacl.Spec.Bignum.Base.unsafe_size_from_limb", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_LessThanOrEqual", "Lib.IntTypes.SEC", "Prims.op_Subtraction", "Prims.pow2", "Hacl.Bignum.Lib.bn_get_top_index", "Lib.Buffer.copy", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.op_GreaterThanOrEqual", "Lib.Buffer.buffer_t", "LowStar.Monotonic.Buffer.mmalloc", "Lib.IntTypes.uint", "LowStar.Monotonic.Buffer.lmbuffer" ]
[]
false
false
false
false
false
let bn_field_init #t len precomp_r2 r n =
let h0 = ST.get () in let r2:buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1:buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in (let open B in modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2:lbignum t len = r2 in let n1:lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res:bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); (let open B in modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_exp_consttime
val bn_field_exp_consttime: #t:limb_t -> km:BM.mont t -> bn_field_exp_consttime_st t km.BM.bn.BN.len
val bn_field_exp_consttime: #t:limb_t -> km:BM.mont t -> bn_field_exp_consttime_st t km.BM.bn.BN.len
let bn_field_exp_consttime #t km k aM bBits b resM = let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_consttime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 154, "start_col": 0, "start_line": 142 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) let bn_field_one #t km k oneM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_exp_consttime_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval_inj", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Spec.Bignum.MontArithmetic.bn_field_exp_consttime", "Hacl.Bignum.MontArithmetic.as_pctx", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.MontExponentiation.bn_exp_mont_consttime", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Lib.Buffer.copy", "Lib.Buffer.lbuffer_t", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_exp_consttime #t km k aM bBits b resM =
let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_consttime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame ()
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_exp_vartime
val bn_field_exp_vartime: #t:limb_t -> km:BM.mont t -> bn_field_exp_vartime_st t km.BM.bn.BN.len
val bn_field_exp_vartime: #t:limb_t -> km:BM.mont t -> bn_field_exp_vartime_st t km.BM.bn.BN.len
let bn_field_exp_vartime #t km k aM bBits b resM = let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_vartime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 169, "start_col": 0, "start_line": 157 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) let bn_field_one #t km k oneM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k)) let bn_field_exp_consttime #t km k aM bBits b resM = let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_consttime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
km: Hacl.Bignum.Montgomery.mont t -> Hacl.Bignum.MontArithmetic.bn_field_exp_vartime_st t (Mkbn?.len (Mkmont?.bn km))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Montgomery.mont", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.__proj__Mkbn__item__len", "Hacl.Bignum.Montgomery.__proj__Mkmont__item__bn", "Lib.IntTypes.size_t", "Hacl.Bignum.Definitions.blocks0", "Lib.IntTypes.size", "Lib.IntTypes.bits", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval_inj", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Hacl.Spec.Bignum.MontArithmetic.bn_field_exp_vartime", "Hacl.Bignum.MontArithmetic.as_pctx", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Hacl.Bignum.Definitions.bn_v", "Hacl.Bignum.MontArithmetic.bn_v_n", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Bignum.MontExponentiation.bn_exp_mont_vartime", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2", "Lib.Buffer.copy", "Lib.Buffer.lbuffer_t", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_exp_vartime #t km k aM bBits b resM =
let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_vartime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame ()
false
Hacl.Bignum.MontArithmetic.fst
Hacl.Bignum.MontArithmetic.bn_field_inv
val bn_field_inv: #t:limb_t -> len:Ghost.erased _ -> bn_field_exp_vartime:bn_field_exp_vartime_st t len -> bn_field_inv_st t len
val bn_field_inv: #t:limb_t -> len:Ghost.erased _ -> bn_field_exp_vartime:bn_field_exp_vartime_st t len -> bn_field_inv_st t len
let bn_field_inv #t len bn_field_exp_vartime k aM aInvM = let open LowStar.BufferOps in let k1 = !*k in let len = k1.len in push_frame (); let n2 = create len (uint #t #SEC 0) in BI.bn_mod_inv_prime_n2 len k1.n n2; bn_field_exp_vartime k aM (k1.len *! size (bits t)) n2 aInvM; pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 180, "start_col": 0, "start_line": 172 }
module Hacl.Bignum.MontArithmetic open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module B = LowStar.Buffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module S = Hacl.Spec.Bignum.MontArithmetic module BD = Hacl.Spec.Bignum.Definitions module BB = Hacl.Bignum.Base module BL = Hacl.Bignum.Lib module ME = Hacl.Bignum.MontExponentiation module BE = Hacl.Bignum.Exponentiation module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery module BI = Hacl.Bignum.ModInv friend Hacl.Spec.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let _align_fsti = () let bn_field_get_len #t k = let open LowStar.BufferOps in let k1 = !*k in k1.len let bn_field_check_modulus #t km n = let m = km.BM.mont_check n in BB.unsafe_bool_of_limb m let bn_field_init #t len precomp_r2 r n = let h0 = ST.get () in let r2 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let n1 : buffer (limb t) = B.mmalloc r (uint #t #SEC 0) len in let h1 = ST.get () in B.(modifies_only_not_unused_in loc_none h0 h1); assert (B.length r2 == FStar.UInt32.v len); assert (B.length n1 == FStar.UInt32.v len); let r2 : lbignum t len = r2 in let n1 : lbignum t len = n1 in copy n1 n; let nBits = size (bits t) *! BB.unsafe_size_from_limb (BL.bn_get_top_index len n) in precomp_r2 nBits n r2; let mu = BM.mod_inv_limb n.(0ul) in let res : bn_mont_ctx t = { len = len; n = n1; mu = mu; r2 = r2 } in let h2 = ST.get () in assert (as_ctx h2 res == S.bn_field_init (as_seq h0 n)); assert (S.bn_mont_ctx_inv (as_ctx h2 res)); B.(modifies_only_not_unused_in loc_none h0 h2); B.malloc r res 1ul let bn_field_free #t k = let open LowStar.BufferOps in let k1 = !*k in let n : buffer (limb t) = k1.n in let r2 : buffer (limb t) = k1.r2 in B.free n; B.freeable_disjoint n r2; B.free r2; B.free k let bn_to_field #t km k a aM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.to k1.n k1.mu k1.r2 a aM; let h1 = ST.get () in assert (as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) let bn_from_field #t km k aM a = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.from k1.n k1.mu aM a; let h1 = ST.get () in assert (as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) let bn_field_add #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.add_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sub #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.bn.BN.sub_mod_n k1.n aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_mul #t km k aM bM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.mul k1.n k1.mu aM bM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) let bn_field_sqr #t km k aM cM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in km.BM.sqr k1.n k1.mu aM cM; let h1 = ST.get () in assert (as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) let bn_field_one #t km k oneM = let open LowStar.BufferOps in let k1 = !*k in let h0 = ST.get () in BM.bn_mont_one km.BM.bn.BN.len km.BM.from k1.n k1.mu k1.r2 oneM; let h1 = ST.get () in assert (as_seq h1 oneM == S.bn_field_one (as_pctx h0 k)) let bn_field_exp_consttime #t km k aM bBits b resM = let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_consttime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame () let bn_field_exp_vartime #t km k aM bBits b resM = let open LowStar.BufferOps in let k1 = !*k in push_frame (); let aMc = create k1.len (uint #t #SEC 0) in copy aMc aM; ME.bn_exp_mont_vartime #t km k1.n k1.mu k1.r2 aMc bBits b resM; let h0 = ST.get () in assert (bn_v h0 aM < bn_v_n h0 k); BD.bn_eval_inj (v k1.len) (S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b)) (as_seq h0 resM); pop_frame ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.MontArithmetic.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.MontExponentiation.fst.checked", "Hacl.Bignum.ModInv.fst.checked", "Hacl.Bignum.Lib.fst.checked", "Hacl.Bignum.Exponentiation.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Bignum.MontArithmetic.fst" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.ModInv", "short_module": "BI" }, { "abbrev": true, "full_module": "Hacl.Bignum.MontExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Bignum.Lib", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Bignum.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.MontArithmetic", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: FStar.Ghost.erased (Hacl.Bignum.meta_len t) -> bn_field_exp_vartime: Hacl.Bignum.MontArithmetic.bn_field_exp_vartime_st t (FStar.Ghost.reveal len) -> Hacl.Bignum.MontArithmetic.bn_field_inv_st t (FStar.Ghost.reveal len)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "FStar.Ghost.erased", "Hacl.Bignum.meta_len", "Hacl.Bignum.MontArithmetic.bn_field_exp_vartime_st", "FStar.Ghost.reveal", "Hacl.Bignum.MontArithmetic.pbn_mont_ctx", "Hacl.Bignum.Definitions.lbignum", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len", "Hacl.Bignum.MontArithmetic.lb", "Hacl.Bignum.MontArithmetic.ll", "Lib.IntTypes.size", "Lib.IntTypes.bits", "Hacl.Bignum.ModInv.bn_mod_inv_prime_n2", "Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.create", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame", "Hacl.Bignum.MontArithmetic.bn_mont_ctx", "LowStar.BufferOps.op_Bang_Star", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
false
false
let bn_field_inv #t len bn_field_exp_vartime k aM aInvM =
let open LowStar.BufferOps in let k1 = !*k in let len = k1.len in push_frame (); let n2 = create len (uint #t #SEC 0) in BI.bn_mod_inv_prime_n2 len k1.n n2; bn_field_exp_vartime k aM (k1.len *! size (bits t)) n2 aInvM; pop_frame ()
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_384_512
val lemma_spec_update_384_512 (b st: _) : Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st)
val lemma_spec_update_384_512 (b st: _) : Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st)
let lemma_spec_update_384_512 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_512 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_512 b st } Spec.Agile.Hash.update SHA2_512 st b; (==) { Spec.SHA2.Lemmas.update_384_512 st b } Spec.Agile.Hash.update SHA2_384 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_384 b st } Hacl.Spec.SHA2.update SHA2_384 b st; }
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 158, "start_col": 0, "start_line": 146 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; } let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0) let lemma_spec_update_nblocks_vec_224_256 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0) let lemma_spec_update_last_vec_224_256 totlen (len:size_t{v len <= block_length SHA2_256}) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let hacl_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) [ SMTPat (Hacl.Spec.SHA2.update SHA2_256 b st) ] = lemma_spec_update_224_256 b st in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_last #SHA2_256 totlen (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_256 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_256 totlen (v len) b0.(|0|) st0_m32; (==) { } Hacl.Spec.SHA2.update_last SHA2_224 totlen (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_224 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: s: Lib.Sequence.seq Lib.IntTypes.uint8 { FStar.Seq.Base.length s == Spec.Hash.Definitions.block_length Spec.Hash.Definitions.SHA2_512 /\ FStar.Seq.Base.length s == Spec.Hash.Definitions.block_length Spec.Hash.Definitions.SHA2_384 } -> st: s: Lib.Sequence.seq (Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_384) { FStar.Seq.Base.length s == Spec.Hash.Definitions.state_word_length Spec.Hash.Definitions.SHA2_384 /\ FStar.Seq.Base.length s == Spec.Hash.Definitions.state_word_length Spec.Hash.Definitions.SHA2_512 } -> FStar.Pervasives.Lemma (ensures Hacl.Spec.SHA2.update Spec.Hash.Definitions.SHA2_512 b st == Hacl.Spec.SHA2.update Spec.Hash.Definitions.SHA2_384 b st)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Spec.Hash.Definitions.block_length", "Spec.Hash.Definitions.SHA2_512", "Spec.Hash.Definitions.SHA2_384", "Spec.Hash.Definitions.word", "Spec.Hash.Definitions.state_word_length", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Hacl.Spec.SHA2.update", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Spec.Agile.Hash.update", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.SHA2.EquivScalar.update_lemma", "Prims.squash", "Spec.SHA2.Lemmas.update_384_512", "Prims.l_True", "Prims.l_or", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_spec_update_384_512 b st : Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) =
calc ( == ) { Hacl.Spec.SHA2.update SHA2_512 b st; ( == ) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_512 b st } Spec.Agile.Hash.update SHA2_512 st b; ( == ) { Spec.SHA2.Lemmas.update_384_512 st b } Spec.Agile.Hash.update SHA2_384 st b; ( == ) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_384 b st } Hacl.Spec.SHA2.update SHA2_384 b st; }
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_224_256
val lemma_spec_update_224_256 (b st: _) : Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st)
val lemma_spec_update_224_256 (b st: _) : Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st)
let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; }
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 48, "start_col": 0, "start_line": 36 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: s: Lib.Sequence.seq Lib.IntTypes.uint8 { FStar.Seq.Base.length s == Spec.Hash.Definitions.block_length Spec.Hash.Definitions.SHA2_256 /\ FStar.Seq.Base.length s == Spec.Hash.Definitions.block_length Spec.Hash.Definitions.SHA2_224 } -> st: s: Lib.Sequence.seq (Spec.Hash.Definitions.word Spec.Hash.Definitions.SHA2_224) { FStar.Seq.Base.length s == Spec.Hash.Definitions.state_word_length Spec.Hash.Definitions.SHA2_224 /\ FStar.Seq.Base.length s == Spec.Hash.Definitions.state_word_length Spec.Hash.Definitions.SHA2_256 } -> FStar.Pervasives.Lemma (ensures Hacl.Spec.SHA2.update Spec.Hash.Definitions.SHA2_256 b st == Hacl.Spec.SHA2.update Spec.Hash.Definitions.SHA2_224 b st)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Spec.Hash.Definitions.block_length", "Spec.Hash.Definitions.SHA2_256", "Spec.Hash.Definitions.SHA2_224", "Spec.Hash.Definitions.word", "Spec.Hash.Definitions.state_word_length", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Hacl.Spec.SHA2.update", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Spec.Agile.Hash.update", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.SHA2.EquivScalar.update_lemma", "Prims.squash", "Spec.SHA2.Lemmas.update_224_256", "Prims.l_True", "Prims.l_or", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_spec_update_224_256 b st : Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) =
calc ( == ) { Hacl.Spec.SHA2.update SHA2_256 b st; ( == ) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; ( == ) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; ( == ) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; }
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256
val lemma_spec_update_vec_224_256 (b0 st0: _) : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0)
val lemma_spec_update_vec_224_256 (b0 st0: _) : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0)
let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0)
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 72, "start_col": 0, "start_line": 50 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; }
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b0: Hacl.Spec.SHA2.Vec.multiblock_spec Spec.Hash.Definitions.SHA2_224 Hacl.Spec.SHA2.Vec.M32 -> st0: s: Lib.Sequence.seq (Hacl.Spec.SHA2.Vec.element_t Spec.Hash.Definitions.SHA2_256 Hacl.Spec.SHA2.Vec.M32) {FStar.Seq.Base.length s == 8 /\ FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.SHA2.Vec.update b0 st0 == Hacl.Spec.SHA2.Vec.update b0 st0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.SHA2.Vec.multiblock_spec", "Spec.Hash.Definitions.SHA2_224", "Hacl.Spec.SHA2.Vec.M32", "Lib.Sequence.seq", "Hacl.Spec.SHA2.Vec.element_t", "Spec.Hash.Definitions.SHA2_256", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality", "Hacl.Spec.SHA2.Vec.update", "Prims.unit", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.SHA2.update", "Lib.MultiBuffer.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8", "Spec.Hash.Definitions.block_length", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Spec.SHA2.Equiv.update_lemma_l", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_224_256", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.l_True", "Prims.l_or", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) =
let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[ 0 ] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[ 0 ] <: words_state SHA2_256 in calc ( == ) { st1_m32; ( == ) { () } (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[ 0 ]; ( == ) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(| 0 |) st0_m32; ( == ) { lemma_spec_update_224_256 b0.(| 0 |) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[ 0 ]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0)
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512
val lemma_spec_update_vec_384_512 (b0 st0: _) : Lemma (ensures SpecVec.update #SHA2_384 #M32 b0 st0 == SpecVec.update #SHA2_512 #M32 b0 st0)
val lemma_spec_update_vec_384_512 (b0 st0: _) : Lemma (ensures SpecVec.update #SHA2_384 #M32 b0 st0 == SpecVec.update #SHA2_512 #M32 b0 st0)
let lemma_spec_update_vec_384_512 b0 st0 : Lemma (ensures SpecVec.update #SHA2_384 #M32 b0 st0 == SpecVec.update #SHA2_512 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_512 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_512 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_512 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_512 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_512 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_512 b0.(|0|) st0_m32; (==) { lemma_spec_update_384_512 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_384 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_384 #M32 b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update #SHA2_384 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update #SHA2_512 b0 st0) (SpecVec.update #SHA2_384 #M32 b0 st0)
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 182, "start_col": 0, "start_line": 160 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; } let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0) let lemma_spec_update_nblocks_vec_224_256 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0) let lemma_spec_update_last_vec_224_256 totlen (len:size_t{v len <= block_length SHA2_256}) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let hacl_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) [ SMTPat (Hacl.Spec.SHA2.update SHA2_256 b st) ] = lemma_spec_update_224_256 b st in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_last #SHA2_256 totlen (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_256 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_256 totlen (v len) b0.(|0|) st0_m32; (==) { } Hacl.Spec.SHA2.update_last SHA2_224 totlen (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_224 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0) let lemma_spec_update_384_512 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_512 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_512 b st } Spec.Agile.Hash.update SHA2_512 st b; (==) { Spec.SHA2.Lemmas.update_384_512 st b } Spec.Agile.Hash.update SHA2_384 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_384 b st } Hacl.Spec.SHA2.update SHA2_384 b st; }
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b0: Hacl.Spec.SHA2.Vec.multiblock_spec Spec.Hash.Definitions.SHA2_384 Hacl.Spec.SHA2.Vec.M32 -> st0: s: Lib.Sequence.seq (Hacl.Spec.SHA2.Vec.element_t Spec.Hash.Definitions.SHA2_512 Hacl.Spec.SHA2.Vec.M32) {FStar.Seq.Base.length s == 8 /\ FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.SHA2.Vec.update b0 st0 == Hacl.Spec.SHA2.Vec.update b0 st0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.SHA2.Vec.multiblock_spec", "Spec.Hash.Definitions.SHA2_384", "Hacl.Spec.SHA2.Vec.M32", "Lib.Sequence.seq", "Hacl.Spec.SHA2.Vec.element_t", "Spec.Hash.Definitions.SHA2_512", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality", "Hacl.Spec.SHA2.Vec.update", "Prims.unit", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.SHA2.update", "Lib.MultiBuffer.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8", "Spec.Hash.Definitions.block_length", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Spec.SHA2.Equiv.update_lemma_l", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_384_512", "Hacl.Spec.SHA2.Vec.state_spec", "Prims.l_True", "Prims.l_or", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_spec_update_vec_384_512 b0 st0 : Lemma (ensures SpecVec.update #SHA2_384 #M32 b0 st0 == SpecVec.update #SHA2_512 #M32 b0 st0) =
let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_512 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[ 0 ] <: words_state SHA2_512 in let st1_m32 = (state_spec_v st1).[ 0 ] <: words_state SHA2_512 in calc ( == ) { st1_m32; ( == ) { () } (state_spec_v (SpecVec.update #SHA2_512 b0 st0)).[ 0 ]; ( == ) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_512 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_512 b0.(| 0 |) st0_m32; ( == ) { lemma_spec_update_384_512 b0.(| 0 |) st0_m32 } Hacl.Spec.SHA2.update SHA2_384 b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_384 #M32 b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update #SHA2_384 b0 st0)).[ 0 ]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update #SHA2_512 b0 st0) (SpecVec.update #SHA2_384 #M32 b0 st0)
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality
val state_spec_v_extensionality (a: hash_alg{is_sha2 a}) (acc1 acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2)
val state_spec_v_extensionality (a: hash_alg{is_sha2 a}) (acc1 acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2)
let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 34, "start_col": 0, "start_line": 10 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50"
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.Hash.Definitions.is_sha2 a} -> acc1: Hacl.Spec.SHA2.Vec.state_spec a Hacl.Spec.SHA2.Vec.M32 -> acc2: Hacl.Spec.SHA2.Vec.state_spec a Hacl.Spec.SHA2.Vec.M32 -> FStar.Pervasives.Lemma (requires Lib.Sequence.index (Hacl.Spec.SHA2.Vec.state_spec_v acc1) 0 == Lib.Sequence.index (Hacl.Spec.SHA2.Vec.state_spec_v acc2) 0) (ensures acc1 == acc2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.Hash.Definitions.is_sha2", "Hacl.Spec.SHA2.Vec.state_spec", "Hacl.Spec.SHA2.Vec.M32", "Lib.Sequence.eq_intro", "Hacl.Spec.SHA2.Vec.element_t", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.op_LessThan", "Prims.eq2", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Prims.l_True", "Prims.squash", "Lib.Sequence.index", "Prims.Nil", "FStar.Pervasives.pattern", "Lib.IntVector.vecv_extensionality", "Spec.Hash.Definitions.word_t", "Hacl.Spec.SHA2.Vec.lanes", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.IntVector.vec_v", "Prims._assert", "Hacl.Spec.SHA2.Vec.word", "Lib.Sequence.lseq", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "FStar.Pervasives.allow_inversion" ]
[]
false
false
true
false
false
let state_spec_v_extensionality (a: hash_alg{is_sha2 a}) (acc1 acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) =
let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[ 0 ] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[ 0 ] <: lseq (word a) 8 in let aux (i: nat{i < 8}) : Lemma (acc1.[ i ] == acc2.[ i ]) = assert (index (vec_v acc1.[ i ]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[ i ]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[ i ]) 0 == index (vec_v acc2.[ i ]) 0); eq_intro (vec_v acc1.[ i ]) (vec_v acc2.[ i ]); vecv_extensionality acc1.[ i ] acc2.[ i ] in Classical.forall_intro aux; eq_intro acc1 acc2
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512
val lemma_spec_update_nblocks_vec_384_512 (len: size_t) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0))
val lemma_spec_update_nblocks_vec_384_512 (len: size_t) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0))
let lemma_spec_update_nblocks_vec_384_512 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; let st1 = SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_512 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_512) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_512 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_512 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_512 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_512 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_512 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_512) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_384_512; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_512) (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_512) (Hacl.Spec.SHA2.update SHA2_384) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_512) (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_384) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_384) (block_length SHA2_384) b0_m32' (Hacl.Spec.SHA2.update SHA2_384) (st0_m32 <: words_state SHA2_384); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_384 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_384 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_384 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update_nblocks #SHA2_384 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update_nblocks #SHA2_512 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0)
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 221, "start_col": 0, "start_line": 184 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; } let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0) let lemma_spec_update_nblocks_vec_224_256 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0) let lemma_spec_update_last_vec_224_256 totlen (len:size_t{v len <= block_length SHA2_256}) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let hacl_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) [ SMTPat (Hacl.Spec.SHA2.update SHA2_256 b st) ] = lemma_spec_update_224_256 b st in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_last #SHA2_256 totlen (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_256 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_256 totlen (v len) b0.(|0|) st0_m32; (==) { } Hacl.Spec.SHA2.update_last SHA2_224 totlen (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_224 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0) let lemma_spec_update_384_512 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_512 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_512 b st } Spec.Agile.Hash.update SHA2_512 st b; (==) { Spec.SHA2.Lemmas.update_384_512 st b } Spec.Agile.Hash.update SHA2_384 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_384 b st } Hacl.Spec.SHA2.update SHA2_384 b st; } let lemma_spec_update_vec_384_512 b0 st0 : Lemma (ensures SpecVec.update #SHA2_384 #M32 b0 st0 == SpecVec.update #SHA2_512 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_512 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_512 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_512 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_512 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_512 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_512 b0.(|0|) st0_m32; (==) { lemma_spec_update_384_512 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_384 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_384 #M32 b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update #SHA2_384 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update #SHA2_512 b0 st0) (SpecVec.update #SHA2_384 #M32 b0 st0)
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t -> b0: Hacl.Spec.SHA2.Vec.multiseq (Hacl.Spec.SHA2.Vec.lanes Spec.Hash.Definitions.SHA2_384 Hacl.Spec.SHA2.Vec.M32) (Lib.IntTypes.v len) -> st0: s: Lib.Sequence.seq (Hacl.Spec.SHA2.Vec.element_t Spec.Hash.Definitions.SHA2_512 Hacl.Spec.SHA2.Vec.M32) {FStar.Seq.Base.length s == 8 /\ FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t Spec.Hash.Definitions.SHA2_512 len; Hacl.Spec.SHA2.Vec.update_nblocks (Lib.IntTypes.v len) b0 st0 == Hacl.Spec.SHA2.Vec.update_nblocks (Lib.IntTypes.v len) b0 st0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_t", "Hacl.Spec.SHA2.Vec.multiseq", "Hacl.Spec.SHA2.Vec.lanes", "Spec.Hash.Definitions.SHA2_384", "Hacl.Spec.SHA2.Vec.M32", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Sequence.seq", "Hacl.Spec.SHA2.Vec.element_t", "Spec.Hash.Definitions.SHA2_512", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality", "Hacl.Spec.SHA2.Vec.update_nblocks", "Prims.unit", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.SHA2.update_nblocks", "Lib.MultiBuffer.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8", "Lib.Sequence.repeat_blocks_multi", "Spec.Hash.Definitions.block_length", "Hacl.Spec.SHA2.update", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l", "Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi", "Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality", "FStar.Classical.forall_intro_2", "Spec.Hash.Definitions.word", "Spec.Hash.Definitions.state_word_length", "Prims.l_or", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_384_512", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.op_Modulus", "Hacl.Spec.SHA2.Vec.state_spec", "Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_spec_update_nblocks_vec_384_512 (len: size_t) b0 st0 : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0)) =
let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; let st1 = SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[ 0 ] <: words_state SHA2_512 in let b0_m32' = Seq.slice b0.(| 0 |) 0 (Seq.length b0.(| 0 |) - Seq.length b0.(| 0 |) % block_length SHA2_512) in let st1_m32 = (state_spec_v st1).[ 0 ] <: words_state SHA2_512 in calc ( == ) { st1_m32; ( == ) { () } (state_spec_v (SpecVec.update_nblocks #SHA2_512 (v len) b0 st0)).[ 0 ]; ( == ) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_512 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_512 (v len) b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_512 (v len) b0.(| 0 |) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_512) st0_m32; ( == ) { (FStar.Classical.forall_intro_2 lemma_spec_update_384_512; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_512) (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_512) (Hacl.Spec.SHA2.update SHA2_384) st0_m32) } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_512) (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_384) st0_m32; ( == ) { () } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_384) (block_length SHA2_384) b0_m32' (Hacl.Spec.SHA2.update SHA2_384) (st0_m32 <: words_state SHA2_384); ( == ) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_384 (v len) b0.(| 0 |) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_384 (v len) b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_384 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update_nblocks #SHA2_384 (v len) b0 st0)).[ 0 ]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update_nblocks #SHA2_512 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0)
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256
val lemma_spec_update_nblocks_vec_224_256 (len: size_t) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0))
val lemma_spec_update_nblocks_vec_224_256 (len: size_t) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0))
let lemma_spec_update_nblocks_vec_224_256 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0)
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 111, "start_col": 0, "start_line": 74 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; } let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0)
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t -> b0: Hacl.Spec.SHA2.Vec.multiseq (Hacl.Spec.SHA2.Vec.lanes Spec.Hash.Definitions.SHA2_224 Hacl.Spec.SHA2.Vec.M32) (Lib.IntTypes.v len) -> st0: s: Lib.Sequence.seq (Hacl.Spec.SHA2.Vec.element_t Spec.Hash.Definitions.SHA2_256 Hacl.Spec.SHA2.Vec.M32) {FStar.Seq.Base.length s == 8 /\ FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t Spec.Hash.Definitions.SHA2_256 len; Hacl.Spec.SHA2.Vec.update_nblocks (Lib.IntTypes.v len) b0 st0 == Hacl.Spec.SHA2.Vec.update_nblocks (Lib.IntTypes.v len) b0 st0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.size_t", "Hacl.Spec.SHA2.Vec.multiseq", "Hacl.Spec.SHA2.Vec.lanes", "Spec.Hash.Definitions.SHA2_224", "Hacl.Spec.SHA2.Vec.M32", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Sequence.seq", "Hacl.Spec.SHA2.Vec.element_t", "Spec.Hash.Definitions.SHA2_256", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality", "Hacl.Spec.SHA2.Vec.update_nblocks", "Prims.unit", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.SHA2.update_nblocks", "Lib.MultiBuffer.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8", "Lib.Sequence.repeat_blocks_multi", "Spec.Hash.Definitions.block_length", "Hacl.Spec.SHA2.update", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l", "Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi", "Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality", "FStar.Classical.forall_intro_2", "Spec.Hash.Definitions.word", "Spec.Hash.Definitions.state_word_length", "Prims.l_or", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_224_256", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.op_Modulus", "Hacl.Spec.SHA2.Vec.state_spec", "Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_spec_update_nblocks_vec_224_256 (len: size_t) b0 st0 : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) =
let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[ 0 ] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(| 0 |) 0 (Seq.length b0.(| 0 |) - Seq.length b0.(| 0 |) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[ 0 ] <: words_state SHA2_256 in calc ( == ) { st1_m32; ( == ) { () } (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[ 0 ]; ( == ) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(| 0 |) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; ( == ) { (FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32) } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; ( == ) { () } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); ( == ) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(| 0 |) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[ 0 ]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0)
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_224_256
val lemma_spec_update_last_vec_224_256 (totlen: _) (len: size_t{v len <= block_length SHA2_256}) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0))
val lemma_spec_update_last_vec_224_256 (totlen: _) (len: size_t{v len <= block_length SHA2_256}) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0))
let lemma_spec_update_last_vec_224_256 totlen (len:size_t{v len <= block_length SHA2_256}) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let hacl_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) [ SMTPat (Hacl.Spec.SHA2.update SHA2_256 b st) ] = lemma_spec_update_224_256 b st in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_last #SHA2_256 totlen (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_256 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_256 totlen (v len) b0.(|0|) st0_m32; (==) { } Hacl.Spec.SHA2.update_last SHA2_224 totlen (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_224 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 143, "start_col": 0, "start_line": 113 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; } let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0) let lemma_spec_update_nblocks_vec_224_256 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0)
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
totlen: Spec.Hash.Definitions.len_t Spec.Hash.Definitions.SHA2_224 -> len: Lib.IntTypes.size_t {Lib.IntTypes.v len <= Spec.Hash.Definitions.block_length Spec.Hash.Definitions.SHA2_256} -> b0: Hacl.Spec.SHA2.Vec.multiseq (Hacl.Spec.SHA2.Vec.lanes Spec.Hash.Definitions.SHA2_224 Hacl.Spec.SHA2.Vec.M32) (Lib.IntTypes.v len) -> st0: s: Lib.Sequence.seq (Hacl.Spec.SHA2.Vec.element_t Spec.Hash.Definitions.SHA2_256 Hacl.Spec.SHA2.Vec.M32) {FStar.Seq.Base.length s == 8 /\ FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t Spec.Hash.Definitions.SHA2_256 len; Hacl.Spec.SHA2.Vec.update_last totlen (Lib.IntTypes.v len) b0 st0 == Hacl.Spec.SHA2.Vec.update_last totlen (Lib.IntTypes.v len) b0 st0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.len_t", "Spec.Hash.Definitions.SHA2_224", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Hash.Definitions.block_length", "Spec.Hash.Definitions.SHA2_256", "Hacl.Spec.SHA2.Vec.multiseq", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Vec.M32", "Lib.Sequence.seq", "Hacl.Spec.SHA2.Vec.element_t", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality", "Hacl.Spec.SHA2.Vec.update_last", "Prims.unit", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.SHA2.update_last", "Lib.MultiBuffer.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Spec.SHA2.Equiv.update_last_lemma_l", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Hash.Definitions.word", "Spec.Hash.Definitions.state_word_length", "Prims.l_True", "Prims.l_or", "Hacl.Spec.SHA2.update", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_224_256", "Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t", "Hacl.Spec.SHA2.Vec.state_spec" ]
[]
false
false
true
false
false
let lemma_spec_update_last_vec_224_256 totlen (len: size_t{v len <= block_length SHA2_256}) b0 st0 : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)) =
let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[ 0 ] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[ 0 ] <: words_state SHA2_256 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let hacl_spec_update_224_256 b st : Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) [SMTPat (Hacl.Spec.SHA2.update SHA2_256 b st)] = lemma_spec_update_224_256 b st in calc ( == ) { st1_m32; ( == ) { () } (state_spec_v (SpecVec.update_last #SHA2_256 totlen (v len) b0 st0)).[ 0 ]; ( == ) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_256 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_256 totlen (v len) b0.(| 0 |) st0_m32; ( == ) { () } Hacl.Spec.SHA2.update_last SHA2_224 totlen (v len) b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_224 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0)).[ 0 ]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)
false
Spec.Chacha20.fst
Spec.Chacha20.size_key
val size_key : Prims.int
let size_key = 32
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 14, "start_col": 0, "start_line": 14 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let size_key =
32
false
Spec.Chacha20.fst
Spec.Chacha20.size_nonce
val size_nonce : Prims.int
let size_nonce = 12
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 16, "start_col": 0, "start_line": 16 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let size_nonce =
12
false
Spec.Chacha20.fst
Spec.Chacha20.size_block
val size_block : Prims.int
let size_block = 64
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 15, "start_col": 0, "start_line": 15 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let size_block =
64
false
Spec.Chacha20.fst
Spec.Chacha20.keylen
val keylen : Prims.int
let keylen = 32
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 19, "start_col": 0, "start_line": 19 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let keylen =
32
false
Hacl.SHA2.Scalar32.Lemmas.fst
Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_384_512
val lemma_spec_update_last_vec_384_512 (totlen: _) (len: size_t{v len <= block_length SHA2_512}) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0))
val lemma_spec_update_last_vec_384_512 (totlen: _) (len: size_t{v len <= block_length SHA2_512}) (b0 st0: _) : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0))
let lemma_spec_update_last_vec_384_512 totlen (len:size_t{v len <= block_length SHA2_512}) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0)) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_512 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_512 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; let hacl_spec_update_384_512 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) [ SMTPat (Hacl.Spec.SHA2.update SHA2_512 b st) ] = lemma_spec_update_384_512 b st in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_last #SHA2_512 totlen (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_512 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_512 totlen (v len) b0.(|0|) st0_m32; (==) { } Hacl.Spec.SHA2.update_last SHA2_384 totlen (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_384 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0)
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.Lemmas.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 253, "start_col": 0, "start_line": 223 }
module Hacl.SHA2.Scalar32.Lemmas open Lib.IntTypes open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec #push-options "--fuel 0 --ifuel 0 --z3rlimit 50" let state_spec_v_extensionality (a : hash_alg { is_sha2 a }) (acc1: Hacl.Spec.SHA2.Vec.(state_spec a M32)) (acc2: Hacl.Spec.SHA2.Vec.(state_spec a M32)) : Lemma (requires (let open Hacl.Spec.SHA2.Vec in Lib.Sequence.index (state_spec_v acc1) 0 == Lib.Sequence.index (state_spec_v acc2) 0)) (ensures acc1 == acc2) = let open Lib.Sequence in let open Lib.IntVector in let open Hacl.Spec.SHA2.Vec in allow_inversion hash_alg; let acc1_s = (state_spec_v acc1).[0] <: lseq (word a) 8 in let acc2_s = (state_spec_v acc2).[0] <: lseq (word a) 8 in let aux (i:nat{i < 8}) : Lemma (acc1.[i] == acc2.[i]) = assert (index (vec_v acc1.[i]) 0 == index #(word a) #8 acc1_s i); assert (index (vec_v acc2.[i]) 0 == index #(word a) #8 acc2_s i); assert (index (vec_v acc1.[i]) 0 == index (vec_v acc2.[i]) 0); eq_intro (vec_v acc1.[i]) (vec_v acc2.[i]); vecv_extensionality acc1.[i] acc2.[i] in Classical.forall_intro aux; eq_intro acc1 acc2 let lemma_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_256 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_256 b st } Spec.Agile.Hash.update SHA2_256 st b; (==) { Spec.SHA2.Lemmas.update_224_256 st b } Spec.Agile.Hash.update SHA2_224 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_224 b st } Hacl.Spec.SHA2.update SHA2_224 b st; } let lemma_spec_update_vec_224_256 b0 st0 : Lemma (ensures SpecVec.update #SHA2_224 #M32 b0 st0 == SpecVec.update #SHA2_256 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_256 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_256 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_256 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_256 b0.(|0|) st0_m32; (==) { lemma_spec_update_224_256 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_224 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_224 #M32 b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update #SHA2_224 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update #SHA2_256 b0 st0) (SpecVec.update #SHA2_224 #M32 b0 st0) let lemma_spec_update_nblocks_vec_224_256 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let st1 = SpecVec.update_nblocks #SHA2_256 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_256) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_256 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_256 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_256 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_224_256; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_256) (Hacl.Spec.SHA2.update SHA2_224) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_256) (block_length SHA2_256) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_224) (block_length SHA2_224) b0_m32' (Hacl.Spec.SHA2.update SHA2_224) (st0_m32 <: words_state SHA2_224); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_224 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_224 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_224 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_224 #M32 (SpecVec.update_nblocks #SHA2_224 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_nblocks #SHA2_256 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_224 #M32 (v len) b0 st0) let lemma_spec_update_last_vec_224_256 totlen (len:size_t{v len <= block_length SHA2_256}) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0)) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_256 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_256 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_256 len; let hacl_spec_update_224_256 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_256 b st == Hacl.Spec.SHA2.update SHA2_224 b st) [ SMTPat (Hacl.Spec.SHA2.update SHA2_256 b st) ] = lemma_spec_update_224_256 b st in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_last #SHA2_256 totlen (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_256 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_256 totlen (v len) b0.(|0|) st0_m32; (==) { } Hacl.Spec.SHA2.update_last SHA2_224 totlen (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_224 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_256 (SpecVec.update_last #SHA2_224 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_256 #M32 totlen (v len) b0 st0) let lemma_spec_update_384_512 b st: Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) = calc (==) { Hacl.Spec.SHA2.update SHA2_512 b st; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_512 b st } Spec.Agile.Hash.update SHA2_512 st b; (==) { Spec.SHA2.Lemmas.update_384_512 st b } Spec.Agile.Hash.update SHA2_384 st b; (==) { Hacl.Spec.SHA2.EquivScalar.update_lemma SHA2_384 b st } Hacl.Spec.SHA2.update SHA2_384 b st; } let lemma_spec_update_vec_384_512 b0 st0 : Lemma (ensures SpecVec.update #SHA2_384 #M32 b0 st0 == SpecVec.update #SHA2_512 #M32 b0 st0) = let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update #SHA2_512 #M32 b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_512 in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_512 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update #SHA2_512 b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_512 #M32 b0 st0 0 } Hacl.Spec.SHA2.update SHA2_512 b0.(|0|) st0_m32; (==) { lemma_spec_update_384_512 b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update SHA2_384 b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_lemma_l #SHA2_384 #M32 b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update #SHA2_384 b0 st0)).[0]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update #SHA2_512 b0 st0) (SpecVec.update #SHA2_384 #M32 b0 st0) let lemma_spec_update_nblocks_vec_384_512 (len:size_t) b0 st0 : Lemma (ensures ( Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0 == SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0)) = let open Lib.IntTypes in let open Lib.Sequence in let open Lib.MultiBuffer in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; let st1 = SpecVec.update_nblocks #SHA2_512 #M32 (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[0] <: words_state SHA2_512 in let b0_m32' = Seq.slice b0.(|0|) 0 (Seq.length b0.(|0|) - Seq.length b0.(|0|) % block_length SHA2_512) in let st1_m32 = (state_spec_v st1).[0] <: words_state SHA2_512 in calc (==) { st1_m32; (==) {} (state_spec_v (SpecVec.update_nblocks #SHA2_512 (v len) b0 st0)).[0]; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_512 #M32 (v len) b0 st0 0 } Hacl.Spec.SHA2.update_nblocks SHA2_512 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_512 (v len) b0.(|0|) st0_m32 } Lib.Sequence.repeat_blocks_multi (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_512) st0_m32; (==) { FStar.Classical.forall_intro_2 lemma_spec_update_384_512; Lib.Sequence.Lemmas.repeat_blocks_multi_extensionality #uint8 #(words_state SHA2_512) (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_512) (Hacl.Spec.SHA2.update SHA2_384) st0_m32 } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_512) (block_length SHA2_512) b0_m32' (Hacl.Spec.SHA2.update SHA2_384) st0_m32; (==) { } Lib.Sequence.repeat_blocks_multi #uint8 #(words_state SHA2_384) (block_length SHA2_384) b0_m32' (Hacl.Spec.SHA2.update SHA2_384) (st0_m32 <: words_state SHA2_384); (==) { Hacl.Spec.SHA2.EquivScalar.update_nblocks_is_repeat_blocks_multi SHA2_384 (v len) b0.(|0|) st0_m32 } Hacl.Spec.SHA2.update_nblocks SHA2_384 (v len) b0.(|0|) st0_m32; (==) { Hacl.Spec.SHA2.Equiv.update_nblocks_lemma_l #SHA2_384 #M32 (v len) b0 st0 0 } (state_spec_v #SHA2_384 #M32 (SpecVec.update_nblocks #SHA2_384 (v len) b0 st0)).[0]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update_nblocks #SHA2_512 (v len) b0 st0) (SpecVec.update_nblocks #SHA2_384 #M32 (v len) b0 st0)
{ "checked_file": "/", "dependencies": [ "Spec.SHA2.Lemmas.fsti.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.Lemmas.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.Spec.SHA2.EquivScalar.fsti.checked", "Hacl.Spec.SHA2.Equiv.fst.checked", "Hacl.Spec.SHA2.fst.checked", "Hacl.Impl.SHA2.Core.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.Lemmas.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2.Scalar32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
totlen: Spec.Hash.Definitions.len_t Spec.Hash.Definitions.SHA2_384 -> len: Lib.IntTypes.size_t {Lib.IntTypes.v len <= Spec.Hash.Definitions.block_length Spec.Hash.Definitions.SHA2_512} -> b0: Hacl.Spec.SHA2.Vec.multiseq (Hacl.Spec.SHA2.Vec.lanes Spec.Hash.Definitions.SHA2_384 Hacl.Spec.SHA2.Vec.M32) (Lib.IntTypes.v len) -> st0: s: Lib.Sequence.seq (Hacl.Spec.SHA2.Vec.element_t Spec.Hash.Definitions.SHA2_512 Hacl.Spec.SHA2.Vec.M32) {FStar.Seq.Base.length s == 8 /\ FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t Spec.Hash.Definitions.SHA2_512 len; Hacl.Spec.SHA2.Vec.update_last totlen (Lib.IntTypes.v len) b0 st0 == Hacl.Spec.SHA2.Vec.update_last totlen (Lib.IntTypes.v len) b0 st0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Spec.Hash.Definitions.len_t", "Spec.Hash.Definitions.SHA2_384", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Hash.Definitions.block_length", "Spec.Hash.Definitions.SHA2_512", "Hacl.Spec.SHA2.Vec.multiseq", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Vec.M32", "Lib.Sequence.seq", "Hacl.Spec.SHA2.Vec.element_t", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Hacl.SHA2.Scalar32.Lemmas.state_spec_v_extensionality", "Hacl.Spec.SHA2.Vec.update_last", "Prims.unit", "FStar.Calc.calc_finish", "Spec.Hash.Definitions.words_state", "Lib.Sequence.op_String_Access", "Hacl.Spec.SHA2.Vec.words_state'", "Hacl.Spec.SHA2.Vec.state_spec_v", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.SHA2.update_last", "Lib.MultiBuffer.op_Lens_Access", "FStar.Seq.Properties.lseq", "Lib.IntTypes.uint8", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Hacl.Spec.SHA2.Equiv.update_last_lemma_l", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Hash.Definitions.word", "Spec.Hash.Definitions.state_word_length", "Prims.l_True", "Prims.l_or", "Hacl.Spec.SHA2.update", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_384_512", "Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t", "Hacl.Spec.SHA2.Vec.state_spec" ]
[]
false
false
true
false
false
let lemma_spec_update_last_vec_384_512 totlen (len: size_t{v len <= block_length SHA2_512}) b0 st0 : Lemma (ensures (Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0 == SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0)) =
let open Lib.Sequence in let open Lib.MultiBuffer in let st1 = SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0 in let st0_m32 = (state_spec_v st0).[ 0 ] <: words_state SHA2_512 in let st1_m32 = (state_spec_v st1).[ 0 ] <: words_state SHA2_512 in Hacl.Impl.SHA2.Core.lemma_len_lt_max_a_fits_size_t SHA2_512 len; let hacl_spec_update_384_512 b st : Lemma (ensures Hacl.Spec.SHA2.update SHA2_512 b st == Hacl.Spec.SHA2.update SHA2_384 b st) [SMTPat (Hacl.Spec.SHA2.update SHA2_512 b st)] = lemma_spec_update_384_512 b st in calc ( == ) { st1_m32; ( == ) { () } (state_spec_v (SpecVec.update_last #SHA2_512 totlen (v len) b0 st0)).[ 0 ]; ( == ) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_512 #M32 totlen (v len) b0 st0 0 } Hacl.Spec.SHA2.update_last SHA2_512 totlen (v len) b0.(| 0 |) st0_m32; ( == ) { () } Hacl.Spec.SHA2.update_last SHA2_384 totlen (v len) b0.(| 0 |) st0_m32; ( == ) { Hacl.Spec.SHA2.Equiv.update_last_lemma_l #SHA2_384 #M32 totlen (v len) b0 st0 0 } (state_spec_v (SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0)).[ 0 ]; }; state_spec_v_extensionality SHA2_512 (SpecVec.update_last #SHA2_384 #M32 totlen (v len) b0 st0) (SpecVec.update_last #SHA2_512 #M32 totlen (v len) b0 st0)
false
Spec.Chacha20.fst
Spec.Chacha20.op_At
val op_At : f: (_: _ -> _) -> g: (_: _ -> _) -> x: _ -> _
let op_At f g = fun x -> g (f x)
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 35, "start_col": 0, "start_line": 35 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: _ -> _) -> g: (_: _ -> _) -> x: _ -> _
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let ( @ ) f g =
fun x -> g (f x)
false
Spec.Chacha20.fst
Spec.Chacha20.blocklen
val blocklen : Prims.int
let blocklen = 64
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 20, "start_col": 0, "start_line": 20 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let blocklen =
64
false
Spec.Chacha20.fst
Spec.Chacha20.noncelen
val noncelen : Prims.int
let noncelen = 12
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 21, "start_col": 0, "start_line": 21 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.int
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let noncelen =
12
false
Spec.Chacha20.fst
Spec.Chacha20.double_round
val double_round:shuffle
val double_round:shuffle
let double_round : shuffle = column_round @ diagonal_round
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 63, "start_col": 0, "start_line": 62 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Chacha20.shuffle
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.op_At", "Spec.Chacha20.state", "Spec.Chacha20.column_round", "Spec.Chacha20.diagonal_round" ]
[]
false
false
false
true
false
let double_round:shuffle =
column_round @ diagonal_round
false
Spec.Chacha20.fst
Spec.Chacha20.rounds
val rounds:shuffle
val rounds:shuffle
let rounds : shuffle = repeat 10 double_round
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 66, "start_col": 0, "start_line": 65 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Chacha20.shuffle
Prims.Tot
[ "total" ]
[]
[ "Lib.LoopCombinators.repeat", "Spec.Chacha20.state", "Spec.Chacha20.double_round" ]
[]
false
false
false
true
false
let rounds:shuffle =
repeat 10 double_round
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_unpack_state
val frodo_unpack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0
val frodo_unpack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0
let frodo_unpack_state #n1 #n2 i = lseq uint16 (8 * i)
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 102, "start_col": 0, "start_line": 102 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i) val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1) let frodo_pack_inner #n1 #n2 d a i s = s @| frodo_pack8 d (Seq.sub a (8 * i) 8) val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> lbytes (d * ((n1 * n2) / 8)) let frodo_pack #n1 #n2 d a = Loops.repeat_gen ((n1 * n2) / 8) (frodo_pack_state #n1 #n2 d) (frodo_pack_inner #n1 #n2 d a) (Seq.create 0 (u8 0)) /// Unpack val frodo_unpack8: d:size_nat{d <= 16} -> b:lbytes d -> lseq uint16 8 let frodo_unpack8 d b = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let v16 = Seq.create 16 (u8 0) in let src = update_sub v16 (16 - d) d b in let templong: uint_t U128 SEC = uint_from_bytes_be src in let res = Seq.create 8 (u16 0) in let res = res.[0] <- to_u16 (templong >>. size (7 * d)) &. maskd in let res = res.[1] <- to_u16 (templong >>. size (6 * d)) &. maskd in let res = res.[2] <- to_u16 (templong >>. size (5 * d)) &. maskd in let res = res.[3] <- to_u16 (templong >>. size (4 * d)) &. maskd in let res = res.[4] <- to_u16 (templong >>. size (3 * d)) &. maskd in let res = res.[5] <- to_u16 (templong >>. size (2 * d)) &. maskd in let res = res.[6] <- to_u16 (templong >>. size (1 * d)) &. maskd in let res = res.[7] <- to_u16 (templong >>. size (0 * d)) &. maskd in res val frodo_unpack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> i:size_nat{i <= (n1 * n2) / 8}
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Lib.IntTypes.size_nat{i <= n1 * n2 / 8} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Lib.Sequence.lseq", "Lib.IntTypes.uint16" ]
[]
false
false
false
false
true
let frodo_unpack_state #n1 #n2 i =
lseq uint16 (8 * i)
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_core
val chacha20_core (ctr: counter) (s0: state) : Tot state
val chacha20_core (ctr: counter) (s0: state) : Tot state
let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 98, "start_col": 0, "start_line": 94 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctr: Spec.Chacha20.counter -> s0: Spec.Chacha20.state -> Spec.Chacha20.state
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.counter", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_add_counter", "Spec.Chacha20.sum_state", "Spec.Chacha20.rounds" ]
[]
false
false
false
true
false
let chacha20_core (ctr: counter) (s0: state) : Tot state =
let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr
false
Spec.Chacha20.fst
Spec.Chacha20.c1
val c1 : FStar.UInt32.t
let c1 = 0x3320646eul
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 103, "start_col": 0, "start_line": 103 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let c1 =
0x3320646eul
false
Spec.Chacha20.fst
Spec.Chacha20.c2
val c2 : FStar.UInt32.t
let c2 = 0x79622d32ul
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 105, "start_col": 0, "start_line": 105 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let c2 =
0x79622d32ul
false
Spec.Chacha20.fst
Spec.Chacha20.c0
val c0 : FStar.UInt32.t
let c0 = 0x61707865ul
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 101, "start_col": 0, "start_line": 101 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let c0 =
0x61707865ul
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_pack
val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> lbytes (d * ((n1 * n2) / 8))
val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> lbytes (d * ((n1 * n2) / 8))
let frodo_pack #n1 #n2 d a = Loops.repeat_gen ((n1 * n2) / 8) (frodo_pack_state #n1 #n2 d) (frodo_pack_inner #n1 #n2 d a) (Seq.create 0 (u8 0))
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 73, "start_col": 0, "start_line": 69 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i) val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1) let frodo_pack_inner #n1 #n2 d a i s = s @| frodo_pack8 d (Seq.sub a (8 * i) 8) val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d * (n1 * n2 / 8) <= Lib.IntTypes.max_size_t /\ d <= 16} -> a: Spec.Matrix.matrix n1 n2 -> Lib.ByteSequence.lbytes (d * (n1 * n2 / 8))
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Spec.Matrix.matrix", "Lib.LoopCombinators.repeat_gen", "Spec.Frodo.Pack.frodo_pack_state", "Spec.Frodo.Pack.frodo_pack_inner", "Lib.Sequence.create", "Lib.IntTypes.uint8", "Lib.IntTypes.u8", "Lib.ByteSequence.lbytes" ]
[]
false
false
false
false
false
let frodo_pack #n1 #n2 d a =
Loops.repeat_gen ((n1 * n2) / 8) (frodo_pack_state #n1 #n2 d) (frodo_pack_inner #n1 #n2 d a) (Seq.create 0 (u8 0))
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_pack_state
val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0
val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0
let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i)
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 50, "start_col": 0, "start_line": 50 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8}
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d * (n1 * n2 / 8) <= Lib.IntTypes.max_size_t /\ d <= 16} -> i: Lib.IntTypes.size_nat{i <= n1 * n2 / 8} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Lib.Sequence.lseq", "Lib.IntTypes.uint8" ]
[]
false
false
false
false
true
let frodo_pack_state #n1 #n2 d i =
lseq uint8 (d * i)
false
Spec.Chacha20.fst
Spec.Chacha20.c3
val c3 : FStar.UInt32.t
let c3 = 0x6b206574ul
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 107, "start_col": 0, "start_line": 107 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let c3 =
0x6b206574ul
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_encrypt_block
val chacha20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block
val chacha20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block
let chacha20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = chacha20_core incr st0 in xor_block k b
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 143, "start_col": 0, "start_line": 141 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
st0: Spec.Chacha20.state -> incr: Spec.Chacha20.counter -> b: Spec.Chacha20.block -> Spec.Chacha20.block
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Spec.Chacha20.counter", "Spec.Chacha20.block", "Spec.Chacha20.xor_block", "Spec.Chacha20.chacha20_core" ]
[]
false
false
false
true
false
let chacha20_encrypt_block (st0: state) (incr: counter) (b: block) : Tot block =
let k = chacha20_core incr st0 in xor_block k b
false
Spec.Chacha20.fst
Spec.Chacha20.diagonal_round
val diagonal_round:shuffle
val diagonal_round:shuffle
let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 60, "start_col": 0, "start_line": 56 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Chacha20.shuffle
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.op_At", "Spec.Chacha20.state", "Spec.Chacha20.quarter_round" ]
[]
false
false
false
true
false
let diagonal_round:shuffle =
quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14
false