file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Hacl.SHA2.Scalar32.fst
Hacl.SHA2.Scalar32.sha224_update_nblocks
val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32
val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32
let sha224_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 46, "start_col": 0, "start_line": 43 }
module Hacl.SHA2.Scalar32 open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.NTuple open Lib.Buffer open Lib.MultiBuffer open Spec.Hash.Definitions open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec open Hacl.Impl.SHA2.Generic // This module only contains internal helpers that are in support of either the // full hash function, or the streaming functor. The top-level API is now // exposed in Hacl.Streaming.SHA2.fst [@CInline] let sha256_init = init #SHA2_256 #M32 [@CInline] let sha256_update = update #SHA2_256 #M32 [@CInline] let sha256_update_nblocks: update_nblocks_vec_t' SHA2_256 M32 = update_nblocks #SHA2_256 #M32 sha256_update [@CInline] let sha256_update_last = update_last #SHA2_256 #M32 sha256_update [@CInline] let sha256_finish = finish #SHA2_256 #M32 [@CInline] let sha224_init = init #SHA2_224 #M32 inline_for_extraction noextract val sha224_update: update_vec_t SHA2_224 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha224_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256 (as_seq_multi h0 b) (as_seq h0 st); sha256_update b st [@CInline]
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.SHA2.Scalar32.Lemmas.fst.checked", "Hacl.Impl.SHA2.Generic.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.SHA2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.MultiBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.SHA2.Generic.update_nblocks_vec_t' Spec.Hash.Definitions.SHA2_224 Hacl.Spec.SHA2.Vec.M32
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Lib.MultiBuffer.multibuf", "Hacl.Spec.SHA2.Vec.lanes", "Spec.Hash.Definitions.SHA2_224", "Hacl.Spec.SHA2.Vec.M32", "Hacl.Impl.SHA2.Core.state_t", "Hacl.SHA2.Scalar32.sha256_update_nblocks", "Prims.unit", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256", "Lib.MultiBuffer.as_seq_multi", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.SHA2.Vec.element_t", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
false
false
true
false
let sha224_update_nblocks len b st =
let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.skey_len_pre
val skey_len_pre : t: Hacl.Spec.Bignum.Definitions.limb_t -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat -> Prims.logical
let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 107, "start_col": 0, "start_line": 103 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Hacl.Spec.Bignum.Definitions.limb_t -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.l_and", "Hacl.Spec.RSAPSS.pkey_len_pre", "Prims.b2t", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Prims.op_Addition", "Prims.int", "Lib.IntTypes.bits", "Prims.logical" ]
[]
false
false
false
true
true
let skey_len_pre (t: limb_t) (modBits eBits dBits: size_nat) =
let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.bn_lt_pow2
val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool
val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool
let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1))
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 33, "start_col": 0, "start_line": 31 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = ()
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_pos{1 < modBits} -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.op_disEquality", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "Prims.bool", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb0", "Hacl.Spec.Bignum.bn_get_ith_bit" ]
[]
false
false
false
false
false
let bn_lt_pow2 #t modBits m =
if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1))
false
Hacl.SHA2.Scalar32.fst
Hacl.SHA2.Scalar32.sha384_update_nblocks
val sha384_update_nblocks: update_nblocks_vec_t' SHA2_384 M32
val sha384_update_nblocks: update_nblocks_vec_t' SHA2_384 M32
let sha384_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512 len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_nblocks len b st
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 85, "start_col": 0, "start_line": 82 }
module Hacl.SHA2.Scalar32 open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.NTuple open Lib.Buffer open Lib.MultiBuffer open Spec.Hash.Definitions open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec open Hacl.Impl.SHA2.Generic // This module only contains internal helpers that are in support of either the // full hash function, or the streaming functor. The top-level API is now // exposed in Hacl.Streaming.SHA2.fst [@CInline] let sha256_init = init #SHA2_256 #M32 [@CInline] let sha256_update = update #SHA2_256 #M32 [@CInline] let sha256_update_nblocks: update_nblocks_vec_t' SHA2_256 M32 = update_nblocks #SHA2_256 #M32 sha256_update [@CInline] let sha256_update_last = update_last #SHA2_256 #M32 sha256_update [@CInline] let sha256_finish = finish #SHA2_256 #M32 [@CInline] let sha224_init = init #SHA2_224 #M32 inline_for_extraction noextract val sha224_update: update_vec_t SHA2_224 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha224_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256 (as_seq_multi h0 b) (as_seq h0 st); sha256_update b st [@CInline] val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32 let sha224_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st val sha224_update_last: update_last_vec_t' SHA2_224 M32 let sha224_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_224_256 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_last totlen len b st #pop-options [@CInline] let sha224_finish = finish #SHA2_224 #M32 let sha512_init = init #SHA2_512 #M32 [@CInline] let sha512_update = update #SHA2_512 #M32 [@CInline] let sha512_update_nblocks: update_nblocks_vec_t' SHA2_512 M32 = update_nblocks #SHA2_512 #M32 sha512_update [@CInline] let sha512_update_last = update_last #SHA2_512 #M32 sha512_update [@CInline] let sha512_finish = finish #SHA2_512 #M32 [@CInline] let sha384_init = init #SHA2_384 #M32 inline_for_extraction noextract val sha384_update: update_vec_t SHA2_384 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha384_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512 (as_seq_multi h0 b) (as_seq h0 st); sha512_update b st [@CInline]
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.SHA2.Scalar32.Lemmas.fst.checked", "Hacl.Impl.SHA2.Generic.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.SHA2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.MultiBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.SHA2.Generic.update_nblocks_vec_t' Spec.Hash.Definitions.SHA2_384 Hacl.Spec.SHA2.Vec.M32
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Lib.MultiBuffer.multibuf", "Hacl.Spec.SHA2.Vec.lanes", "Spec.Hash.Definitions.SHA2_384", "Hacl.Spec.SHA2.Vec.M32", "Hacl.Impl.SHA2.Core.state_t", "Hacl.SHA2.Scalar32.sha512_update_nblocks", "Prims.unit", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512", "Lib.MultiBuffer.as_seq_multi", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.SHA2.Vec.element_t", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
false
false
true
false
let sha384_update_nblocks len b st =
let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512 len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_nblocks len b st
false
Hacl.SHA2.Scalar32.fst
Hacl.SHA2.Scalar32.finish
val finish: #a:sha2_alg -> finish_vec_t a Hacl.Spec.SHA2.Vec.M32
val finish: #a:sha2_alg -> finish_vec_t a Hacl.Spec.SHA2.Vec.M32
let finish #a = match a with | SHA2_224 -> coerce sha224_finish | SHA2_256 -> coerce sha256_finish | SHA2_384 -> coerce sha384_finish | SHA2_512 -> coerce sha512_finish
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 138, "start_col": 0, "start_line": 133 }
module Hacl.SHA2.Scalar32 open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.NTuple open Lib.Buffer open Lib.MultiBuffer open Spec.Hash.Definitions open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec open Hacl.Impl.SHA2.Generic // This module only contains internal helpers that are in support of either the // full hash function, or the streaming functor. The top-level API is now // exposed in Hacl.Streaming.SHA2.fst [@CInline] let sha256_init = init #SHA2_256 #M32 [@CInline] let sha256_update = update #SHA2_256 #M32 [@CInline] let sha256_update_nblocks: update_nblocks_vec_t' SHA2_256 M32 = update_nblocks #SHA2_256 #M32 sha256_update [@CInline] let sha256_update_last = update_last #SHA2_256 #M32 sha256_update [@CInline] let sha256_finish = finish #SHA2_256 #M32 [@CInline] let sha224_init = init #SHA2_224 #M32 inline_for_extraction noextract val sha224_update: update_vec_t SHA2_224 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha224_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256 (as_seq_multi h0 b) (as_seq h0 st); sha256_update b st [@CInline] val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32 let sha224_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st val sha224_update_last: update_last_vec_t' SHA2_224 M32 let sha224_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_224_256 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_last totlen len b st #pop-options [@CInline] let sha224_finish = finish #SHA2_224 #M32 let sha512_init = init #SHA2_512 #M32 [@CInline] let sha512_update = update #SHA2_512 #M32 [@CInline] let sha512_update_nblocks: update_nblocks_vec_t' SHA2_512 M32 = update_nblocks #SHA2_512 #M32 sha512_update [@CInline] let sha512_update_last = update_last #SHA2_512 #M32 sha512_update [@CInline] let sha512_finish = finish #SHA2_512 #M32 [@CInline] let sha384_init = init #SHA2_384 #M32 inline_for_extraction noextract val sha384_update: update_vec_t SHA2_384 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha384_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512 (as_seq_multi h0 b) (as_seq h0 st); sha512_update b st [@CInline] val sha384_update_nblocks: update_nblocks_vec_t' SHA2_384 M32 let sha384_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512 len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_nblocks len b st val sha384_update_last: update_last_vec_t' SHA2_384 M32 let sha384_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_384_512 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_last totlen len b st #pop-options [@CInline] let sha384_finish = finish #SHA2_384 #M32 // Big up for Aymeric who dug this one to help me make the coercion work. unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x // Agility patterns for the streaming functor inline_for_extraction noextract val init: #a:sha2_alg -> init_vec_t a Hacl.Spec.SHA2.Vec.M32 let init #a = match a with | SHA2_224 -> coerce sha224_init | SHA2_256 -> coerce sha256_init | SHA2_384 -> coerce sha384_init | SHA2_512 -> coerce sha512_init inline_for_extraction noextract val update_nblocks: #a:sha2_alg -> update_nblocks_vec_t' a Hacl.Spec.SHA2.Vec.M32 let update_nblocks #a = match a with | SHA2_224 -> coerce sha224_update_nblocks | SHA2_256 -> coerce sha256_update_nblocks | SHA2_384 -> coerce sha384_update_nblocks | SHA2_512 -> coerce sha512_update_nblocks inline_for_extraction noextract val update_last: #a:sha2_alg -> update_last_vec_t' a Hacl.Spec.SHA2.Vec.M32 let update_last #a = match a with | SHA2_224 -> coerce sha224_update_last | SHA2_256 -> coerce sha256_update_last | SHA2_384 -> coerce sha384_update_last | SHA2_512 -> coerce sha512_update_last inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.SHA2.Scalar32.Lemmas.fst.checked", "Hacl.Impl.SHA2.Generic.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.SHA2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.MultiBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.SHA2.Generic.finish_vec_t a Hacl.Spec.SHA2.Vec.M32
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.SHA2.Scalar32.coerce", "Hacl.Impl.SHA2.Generic.finish_vec_t", "Hacl.Spec.SHA2.Vec.M32", "Spec.Hash.Definitions.SHA2_224", "Hacl.SHA2.Scalar32.sha224_finish", "Spec.Hash.Definitions.SHA2_256", "Hacl.SHA2.Scalar32.sha256_finish", "Spec.Hash.Definitions.SHA2_384", "Hacl.SHA2.Scalar32.sha384_finish", "Spec.Hash.Definitions.SHA2_512", "Hacl.SHA2.Scalar32.sha512_finish" ]
[]
false
false
false
false
false
let finish #a =
match a with | SHA2_224 -> coerce sha224_finish | SHA2_256 -> coerce sha256_finish | SHA2_384 -> coerce sha384_finish | SHA2_512 -> coerce sha512_finish
false
Hacl.SHA2.Scalar32.fst
Hacl.SHA2.Scalar32.update_last
val update_last: #a:sha2_alg -> update_last_vec_t' a Hacl.Spec.SHA2.Vec.M32
val update_last: #a:sha2_alg -> update_last_vec_t' a Hacl.Spec.SHA2.Vec.M32
let update_last #a = match a with | SHA2_224 -> coerce sha224_update_last | SHA2_256 -> coerce sha256_update_last | SHA2_384 -> coerce sha384_update_last | SHA2_512 -> coerce sha512_update_last
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 129, "start_col": 0, "start_line": 124 }
module Hacl.SHA2.Scalar32 open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.NTuple open Lib.Buffer open Lib.MultiBuffer open Spec.Hash.Definitions open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec open Hacl.Impl.SHA2.Generic // This module only contains internal helpers that are in support of either the // full hash function, or the streaming functor. The top-level API is now // exposed in Hacl.Streaming.SHA2.fst [@CInline] let sha256_init = init #SHA2_256 #M32 [@CInline] let sha256_update = update #SHA2_256 #M32 [@CInline] let sha256_update_nblocks: update_nblocks_vec_t' SHA2_256 M32 = update_nblocks #SHA2_256 #M32 sha256_update [@CInline] let sha256_update_last = update_last #SHA2_256 #M32 sha256_update [@CInline] let sha256_finish = finish #SHA2_256 #M32 [@CInline] let sha224_init = init #SHA2_224 #M32 inline_for_extraction noextract val sha224_update: update_vec_t SHA2_224 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha224_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256 (as_seq_multi h0 b) (as_seq h0 st); sha256_update b st [@CInline] val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32 let sha224_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st val sha224_update_last: update_last_vec_t' SHA2_224 M32 let sha224_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_224_256 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_last totlen len b st #pop-options [@CInline] let sha224_finish = finish #SHA2_224 #M32 let sha512_init = init #SHA2_512 #M32 [@CInline] let sha512_update = update #SHA2_512 #M32 [@CInline] let sha512_update_nblocks: update_nblocks_vec_t' SHA2_512 M32 = update_nblocks #SHA2_512 #M32 sha512_update [@CInline] let sha512_update_last = update_last #SHA2_512 #M32 sha512_update [@CInline] let sha512_finish = finish #SHA2_512 #M32 [@CInline] let sha384_init = init #SHA2_384 #M32 inline_for_extraction noextract val sha384_update: update_vec_t SHA2_384 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha384_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512 (as_seq_multi h0 b) (as_seq h0 st); sha512_update b st [@CInline] val sha384_update_nblocks: update_nblocks_vec_t' SHA2_384 M32 let sha384_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512 len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_nblocks len b st val sha384_update_last: update_last_vec_t' SHA2_384 M32 let sha384_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_384_512 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_last totlen len b st #pop-options [@CInline] let sha384_finish = finish #SHA2_384 #M32 // Big up for Aymeric who dug this one to help me make the coercion work. unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x // Agility patterns for the streaming functor inline_for_extraction noextract val init: #a:sha2_alg -> init_vec_t a Hacl.Spec.SHA2.Vec.M32 let init #a = match a with | SHA2_224 -> coerce sha224_init | SHA2_256 -> coerce sha256_init | SHA2_384 -> coerce sha384_init | SHA2_512 -> coerce sha512_init inline_for_extraction noextract val update_nblocks: #a:sha2_alg -> update_nblocks_vec_t' a Hacl.Spec.SHA2.Vec.M32 let update_nblocks #a = match a with | SHA2_224 -> coerce sha224_update_nblocks | SHA2_256 -> coerce sha256_update_nblocks | SHA2_384 -> coerce sha384_update_nblocks | SHA2_512 -> coerce sha512_update_nblocks inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.SHA2.Scalar32.Lemmas.fst.checked", "Hacl.Impl.SHA2.Generic.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.SHA2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.MultiBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.SHA2.Generic.update_last_vec_t' a Hacl.Spec.SHA2.Vec.M32
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.sha2_alg", "Hacl.SHA2.Scalar32.coerce", "Hacl.Impl.SHA2.Generic.update_last_vec_t'", "Hacl.Spec.SHA2.Vec.M32", "Spec.Hash.Definitions.SHA2_224", "Hacl.SHA2.Scalar32.sha224_update_last", "Spec.Hash.Definitions.SHA2_256", "Hacl.SHA2.Scalar32.sha256_update_last", "Spec.Hash.Definitions.SHA2_384", "Hacl.SHA2.Scalar32.sha384_update_last", "Spec.Hash.Definitions.SHA2_512", "Hacl.SHA2.Scalar32.sha512_update_last" ]
[]
false
false
false
false
false
let update_last #a =
match a with | SHA2_224 -> coerce sha224_update_last | SHA2_256 -> coerce sha256_update_last | SHA2_384 -> coerce sha384_update_last | SHA2_512 -> coerce sha512_update_last
false
Hacl.SHA2.Scalar32.fst
Hacl.SHA2.Scalar32.sha384_update
val sha384_update: update_vec_t SHA2_384 M32
val sha384_update: update_vec_t SHA2_384 M32
let sha384_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512 (as_seq_multi h0 b) (as_seq h0 st); sha512_update b st
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 78, "start_col": 0, "start_line": 74 }
module Hacl.SHA2.Scalar32 open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.NTuple open Lib.Buffer open Lib.MultiBuffer open Spec.Hash.Definitions open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec open Hacl.Impl.SHA2.Generic // This module only contains internal helpers that are in support of either the // full hash function, or the streaming functor. The top-level API is now // exposed in Hacl.Streaming.SHA2.fst [@CInline] let sha256_init = init #SHA2_256 #M32 [@CInline] let sha256_update = update #SHA2_256 #M32 [@CInline] let sha256_update_nblocks: update_nblocks_vec_t' SHA2_256 M32 = update_nblocks #SHA2_256 #M32 sha256_update [@CInline] let sha256_update_last = update_last #SHA2_256 #M32 sha256_update [@CInline] let sha256_finish = finish #SHA2_256 #M32 [@CInline] let sha224_init = init #SHA2_224 #M32 inline_for_extraction noextract val sha224_update: update_vec_t SHA2_224 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha224_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256 (as_seq_multi h0 b) (as_seq h0 st); sha256_update b st [@CInline] val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32 let sha224_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st val sha224_update_last: update_last_vec_t' SHA2_224 M32 let sha224_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_224_256 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_last totlen len b st #pop-options [@CInline] let sha224_finish = finish #SHA2_224 #M32 let sha512_init = init #SHA2_512 #M32 [@CInline] let sha512_update = update #SHA2_512 #M32 [@CInline] let sha512_update_nblocks: update_nblocks_vec_t' SHA2_512 M32 = update_nblocks #SHA2_512 #M32 sha512_update [@CInline] let sha512_update_last = update_last #SHA2_512 #M32 sha512_update [@CInline] let sha512_finish = finish #SHA2_512 #M32 [@CInline] let sha384_init = init #SHA2_384 #M32 inline_for_extraction noextract val sha384_update: update_vec_t SHA2_384 M32
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.SHA2.Scalar32.Lemmas.fst.checked", "Hacl.Impl.SHA2.Generic.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.SHA2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.MultiBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.SHA2.Generic.update_vec_t Spec.Hash.Definitions.SHA2_384 Hacl.Spec.SHA2.Vec.M32
Prims.Tot
[ "total" ]
[]
[ "Lib.MultiBuffer.multibuf", "Hacl.Spec.SHA2.Vec.lanes", "Spec.Hash.Definitions.SHA2_384", "Hacl.Spec.SHA2.Vec.M32", "Hacl.Hash.Definitions.block_len", "Hacl.Impl.SHA2.Core.state_t", "Hacl.SHA2.Scalar32.sha512_update", "Prims.unit", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512", "Lib.MultiBuffer.as_seq_multi", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.SHA2.Vec.element_t", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
false
false
true
false
let sha384_update b st =
let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512 (as_seq_multi h0 b) (as_seq h0 st); sha512_update b st
false
Hacl.SHA2.Scalar32.fst
Hacl.SHA2.Scalar32.sha384_update_last
val sha384_update_last: update_last_vec_t' SHA2_384 M32
val sha384_update_last: update_last_vec_t' SHA2_384 M32
let sha384_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_384_512 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_last totlen len b st
{ "file_name": "code/sha2-mb/Hacl.SHA2.Scalar32.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 94, "start_col": 0, "start_line": 89 }
module Hacl.SHA2.Scalar32 open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.NTuple open Lib.Buffer open Lib.MultiBuffer open Spec.Hash.Definitions open Spec.Agile.Hash open Hacl.Spec.SHA2.Vec module SpecVec = Hacl.Spec.SHA2.Vec open Hacl.Impl.SHA2.Generic // This module only contains internal helpers that are in support of either the // full hash function, or the streaming functor. The top-level API is now // exposed in Hacl.Streaming.SHA2.fst [@CInline] let sha256_init = init #SHA2_256 #M32 [@CInline] let sha256_update = update #SHA2_256 #M32 [@CInline] let sha256_update_nblocks: update_nblocks_vec_t' SHA2_256 M32 = update_nblocks #SHA2_256 #M32 sha256_update [@CInline] let sha256_update_last = update_last #SHA2_256 #M32 sha256_update [@CInline] let sha256_finish = finish #SHA2_256 #M32 [@CInline] let sha224_init = init #SHA2_224 #M32 inline_for_extraction noextract val sha224_update: update_vec_t SHA2_224 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha224_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_224_256 (as_seq_multi h0 b) (as_seq h0 st); sha256_update b st [@CInline] val sha224_update_nblocks: update_nblocks_vec_t' SHA2_224 M32 let sha224_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_224_256 len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_nblocks len b st val sha224_update_last: update_last_vec_t' SHA2_224 M32 let sha224_update_last totlen len b st = let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_224_256 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha256_update_last totlen len b st #pop-options [@CInline] let sha224_finish = finish #SHA2_224 #M32 let sha512_init = init #SHA2_512 #M32 [@CInline] let sha512_update = update #SHA2_512 #M32 [@CInline] let sha512_update_nblocks: update_nblocks_vec_t' SHA2_512 M32 = update_nblocks #SHA2_512 #M32 sha512_update [@CInline] let sha512_update_last = update_last #SHA2_512 #M32 sha512_update [@CInline] let sha512_finish = finish #SHA2_512 #M32 [@CInline] let sha384_init = init #SHA2_384 #M32 inline_for_extraction noextract val sha384_update: update_vec_t SHA2_384 M32 #push-options "--fuel 0 --ifuel 0 --z3rlimit 20" let sha384_update b st = let open Hacl.SHA2.Scalar32.Lemmas in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_vec_384_512 (as_seq_multi h0 b) (as_seq h0 st); sha512_update b st [@CInline] val sha384_update_nblocks: update_nblocks_vec_t' SHA2_384 M32 let sha384_update_nblocks len b st = let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_nblocks_vec_384_512 len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_nblocks len b st val sha384_update_last: update_last_vec_t' SHA2_384 M32
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.NTuple.fsti.checked", "Lib.MultiBuffer.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.SHA2.Vec.fst.checked", "Hacl.SHA2.Scalar32.Lemmas.fst.checked", "Hacl.Impl.SHA2.Generic.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked" ], "interface_file": false, "source_file": "Hacl.SHA2.Scalar32.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.SHA2.Generic", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": "SpecVec" }, { "abbrev": false, "full_module": "Hacl.Spec.SHA2.Vec", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile.Hash", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.MultiBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.NTuple", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.SHA2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.SHA2.Generic.update_last_vec_t' Spec.Hash.Definitions.SHA2_384 Hacl.Spec.SHA2.Vec.M32
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.len_t", "Spec.Hash.Definitions.SHA2_384", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Hash.Definitions.block_length", "Lib.MultiBuffer.multibuf", "Hacl.Spec.SHA2.Vec.lanes", "Hacl.Spec.SHA2.Vec.M32", "Hacl.Impl.SHA2.Core.state_t", "Hacl.SHA2.Scalar32.sha512_update_last", "Prims.unit", "Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_384_512", "Lib.MultiBuffer.as_seq_multi", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Spec.SHA2.Vec.element_t", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
false
false
true
false
let sha384_update_last totlen len b st =
let open Lib.Sequence in let h0 = ST.get () in Hacl.SHA2.Scalar32.Lemmas.lemma_spec_update_last_vec_384_512 totlen len (as_seq_multi h0 b) (as_seq h0 st); sha512_update_last totlen len b st
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.bn_eval_sub
val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t))))
val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t))))
let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen)
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 92, "start_col": 0, "start_line": 82 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t))))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_pos{1 < modBits} -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v m < Prims.pow2 (8 * Hacl.Spec.Bignum.Definitions.blocks (modBits - 1) 8)) (ensures Hacl.Spec.Bignum.Definitions.bn_v m == Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.sub m 0 (Hacl.Spec.Bignum.Definitions.blocks (Hacl.Spec.Bignum.Definitions.blocks (modBits - 1 ) 8) (Lib.IntTypes.numbytes t))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "FStar.Math.Lemmas.pow2_le_compat", "FStar.Mul.op_Star", "Prims.unit", "Prims._assert", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Prims.op_Subtraction", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Multiply", "Lib.IntTypes.numbytes" ]
[]
true
false
true
false
false
let bn_eval_sub #t modBits m =
let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_pre
val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0
val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0
let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 238, "start_col": 0, "start_line": 235 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> sLen: Lib.IntTypes.size_nat -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.nat", "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.eq2", "Lib.Sequence.length", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.max_size_t", "Hacl.Spec.RSAPSS.less_than_max_input_length" ]
[]
false
false
false
false
true
let rsapss_verify_pre a sLen msgLen msg =
sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_post
val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0
val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0
let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg)
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 66, "end_line": 263, "start_col": 0, "start_line": 253 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> verify: Prims.bool -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_verify_pre", "Hacl.Spec.RSAPSS.rsapss_pkey_pre", "Spec.RSAPSS.rsapss_verify_", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.Mk_rsapss_pkey", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int" ]
[]
false
false
false
false
true
let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify =
rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys:S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_post1
val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0
val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0
let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg)
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 67, "end_line": 288, "start_col": 0, "start_line": 279 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> k: Lib.IntTypes.size_nat -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 k -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> verify: Prims.bool -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_pkey_pre", "Spec.RSAPSS.rsapss_verify", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.Mk_rsapss_pkey", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int" ]
[]
false
false
false
false
true
let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify =
rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys:S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_post1
val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0
val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0
let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s)
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 226, "start_col": 0, "start_line": 213 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> eq_m: Prims.bool -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_skey_pre", "FStar.Pervasives.Native.uu___is_Some", "Lib.ByteSequence.lbytes", "Spec.RSAPSS.blocks", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.uu___is_None", "Prims.logical", "FStar.Pervasives.Native.option", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.RSAPSS.rsapss_sign", "Spec.RSAPSS.rsapss_skey", "Spec.RSAPSS.Mk_rsapss_skey", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.Mk_rsapss_pkey", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int" ]
[]
false
false
false
false
true
let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt =
rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys:S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys:S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.bn_lt_pow2_lemma
val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8)))
val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8)))
let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 75, "start_col": 0, "start_line": 61 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8)))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_pos{1 < modBits} -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v m < Prims.pow2 modBits) (ensures Hacl.Spec.RSAPSS.bn_lt_pow2 modBits m == (Hacl.Spec.Bignum.Definitions.bn_v m < Prims.pow2 (8 * Hacl.Spec.Bignum.Definitions.blocks (modBits - 1) 8)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.op_disEquality", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_le_compat", "FStar.Mul.op_Star", "Prims.bool", "Hacl.Spec.Bignum.bn_get_ith_bit_lemma", "Prims.unit", "Hacl.Spec.RSAPSS.bn_eval_lt_pow2_modBits", "Prims._assert", "Prims.eq2", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i", "Prims.l_or", "Prims.op_LessThanOrEqual", "Lib.IntTypes.numbytes", "Prims.pos", "Prims.pow2", "Prims.op_Multiply" ]
[]
false
false
true
false
false
let bn_lt_pow2_lemma #t modBits m =
let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else (assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1))
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_pkey_pre
val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0
val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0
let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 127, "start_col": 0, "start_line": 116 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.l_and", "Prims.eq2", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n", "Prims.op_Subtraction", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.op_LessThan", "Prims.pow2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.pos", "Prims.op_LessThanOrEqual" ]
[]
false
false
false
false
true
let rsapss_pkey_pre #t modBits eBits pkey =
let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.bn_eval_lt_pow2_modBits
val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1))
val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1))
let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); }
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 54, "start_col": 0, "start_line": 43 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_pos{1 < modBits} -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v m < Prims.pow2 modBits) (ensures Hacl.Spec.Bignum.Definitions.bn_v m == (Hacl.Spec.Bignum.Definitions.bn_v m / Prims.pow2 (modBits - 1) % 2) * Prims.pow2 (modBits - 1) + Hacl.Spec.Bignum.Definitions.bn_v m % Prims.pow2 (modBits - 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "FStar.Calc.calc_finish", "Prims.nat", "Prims.eq2", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.small_division_lemma_1" ]
[]
false
false
true
false
false
let bn_eval_lt_pow2_modBits #t modBits m =
calc ( == ) { bn_v m; ( == ) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } (bn_v m / pow2 (modBits - 1)) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); ( == ) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } ((bn_v m / pow2 (modBits - 1) / 2) * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); ( == ) { (Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1) } ((bn_v m / pow2 modBits) * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); ( == ) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); }
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igsub_inj
val igsub_inj : b1: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> b2: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i1: FStar.UInt32.t -> i2: FStar.UInt32.t -> len1: FStar.UInt32.t -> len2: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i1 + FStar.UInt32.v len1 <= LowStar.Monotonic.Buffer.length b1 /\ FStar.UInt32.v i2 + FStar.UInt32.v len2 <= LowStar.Monotonic.Buffer.length b2 /\ LowStar.Monotonic.Buffer.mgsub (LowStar.ImmutableBuffer.immutable_preorder a) b1 i1 len1 === LowStar.Monotonic.Buffer.mgsub (LowStar.ImmutableBuffer.immutable_preorder a) b2 i2 len2) (ensures len1 == len2 /\ (b1 == b2 ==> i1 == i2) /\ (i1 == i2 /\ LowStar.Monotonic.Buffer.length b1 == LowStar.Monotonic.Buffer.length b2 ==> b1 == b2))
let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 140, "end_line": 36, "start_col": 7, "start_line": 36 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> b2: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i1: FStar.UInt32.t -> i2: FStar.UInt32.t -> len1: FStar.UInt32.t -> len2: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i1 + FStar.UInt32.v len1 <= LowStar.Monotonic.Buffer.length b1 /\ FStar.UInt32.v i2 + FStar.UInt32.v len2 <= LowStar.Monotonic.Buffer.length b2 /\ LowStar.Monotonic.Buffer.mgsub (LowStar.ImmutableBuffer.immutable_preorder a) b1 i1 len1 === LowStar.Monotonic.Buffer.mgsub (LowStar.ImmutableBuffer.immutable_preorder a) b2 i2 len2) (ensures len1 == len2 /\ (b1 == b2 ==> i1 == i2) /\ (i1 == i2 /\ LowStar.Monotonic.Buffer.length b1 == LowStar.Monotonic.Buffer.length b2 ==> b1 == b2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Monotonic.Buffer.mgsub_inj", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "Prims.op_Equals_Equals_Equals", "LowStar.Monotonic.Buffer.mgsub", "Prims.squash", "Prims.eq2", "Prims.l_imp", "Prims.nat", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let igsub_inj (#a: Type0) =
mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_post
val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0
val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0
let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s)
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 196, "start_col": 0, "start_line": 182 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> eq_m: Prims.bool -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_sign_pre", "Hacl.Spec.RSAPSS.rsapss_skey_pre", "Lib.ByteSequence.lbytes", "Spec.RSAPSS.blocks", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.logical", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Spec.RSAPSS.rsapss_sign_", "Spec.RSAPSS.rsapss_skey", "Spec.RSAPSS.Mk_rsapss_skey", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.Mk_rsapss_pkey", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int" ]
[]
false
false
false
false
true
let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt =
rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys:S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys:S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s)
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.inull
val inull (#a: Type0) : ibuffer a
val inull (#a: Type0) : ibuffer a
let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 97, "end_line": 32, "start_col": 7, "start_line": 32 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowStar.ImmutableBuffer.ibuffer a
Prims.Tot
[ "total" ]
[]
[ "LowStar.Monotonic.Buffer.mnull", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.ibuffer" ]
[]
false
false
false
true
false
let inull (#a: Type0) : ibuffer a =
mnull #a #(immutable_preorder a) #(immutable_preorder a)
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igsub
val igsub : b: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> Prims.Ghost (LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a))
let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 109, "end_line": 34, "start_col": 7, "start_line": 34 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> Prims.Ghost (LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a))
Prims.Ghost
[]
[]
[ "LowStar.Monotonic.Buffer.mgsub", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "Prims.l_True" ]
[]
false
false
false
false
false
let igsub (#a: Type0) =
mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.ref
val ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0
val ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0
let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 26, "start_col": 0, "start_line": 24 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> p: FStar.Preorder.preorder a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "Steel.MonotonicReference.ref" ]
[]
false
false
false
true
true
let ref (a: Type u#0) (p: Preorder.preorder a) : Type u#0 =
MR.ref a p
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.isub
val isub : b: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i: FStar.UInt32.t -> len: FStar.Ghost.erased FStar.UInt32.t -> FStar.HyperStack.ST.Stack (LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a))
let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 122, "end_line": 44, "start_col": 22, "start_line": 44 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i: FStar.UInt32.t -> len: FStar.Ghost.erased FStar.UInt32.t -> FStar.HyperStack.ST.Stack (LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a))
FStar.HyperStack.ST.Stack
[]
[]
[ "LowStar.Monotonic.Buffer.msub", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Ghost.erased", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.UInt32.v", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.length", "Prims.l_Forall", "FStar.Seq.Base.seq", "Prims.l_imp", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "Prims.int", "Prims.op_Subtraction", "FStar.Seq.Properties.replace_subseq", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.mgsub" ]
[]
false
true
false
false
false
let isub (#a: Type0) =
msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.witnessed
val witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0
val witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0
let witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0 = MR.witnessed r fact
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 23, "end_line": 55, "start_col": 0, "start_line": 50 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.MonotonicReference.ref a p -> fact: Steel.ST.MonotonicReference.property a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "Steel.ST.MonotonicReference.ref", "Steel.ST.MonotonicReference.property", "Steel.MonotonicReference.witnessed" ]
[]
false
false
false
false
true
let witnessed (#a: Type u#0) (#p: Preorder.preorder a) (r: ref a p) (fact: property a) : Type0 =
MR.witnessed r fact
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.pts_to
val pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop
val pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop
let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 26, "end_line": 34, "start_col": 0, "start_line": 28 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.MonotonicReference.ref a p -> f: Steel.FractionalPermission.perm -> v: a -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "FStar.Preorder.preorder", "Steel.ST.MonotonicReference.ref", "Steel.FractionalPermission.perm", "Steel.MonotonicReference.pts_to", "Steel.Effect.Common.vprop" ]
[]
false
false
false
false
false
let pts_to (#a: Type) (#p: Preorder.preorder a) (r: ref a p) ([@@@ smt_fallback]f: perm) ([@@@ smt_fallback]v: a) : vprop =
MR.pts_to #a #p r f v
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.ioffset
val ioffset : b: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i: FStar.UInt32.t -> FStar.HyperStack.ST.Stack (LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a))
let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 128, "end_line": 46, "start_col": 22, "start_line": 46 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) -> i: FStar.UInt32.t -> FStar.HyperStack.ST.Stack (LowStar.Monotonic.Buffer.mbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a))
FStar.HyperStack.ST.Stack
[]
[]
[ "LowStar.Monotonic.Buffer.moffset", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "Prims.l_Forall", "FStar.Seq.Base.seq", "Prims.l_imp", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "Prims.op_Addition", "FStar.UInt32.sub", "LowStar.Monotonic.Buffer.len", "Prims.int", "Prims.op_Subtraction", "FStar.Seq.Properties.replace_subseq", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.mgsub" ]
[]
false
true
false
false
false
let ioffset (#a: Type0) =
moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_check_exponent
val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))}
val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))}
let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 780, "start_col": 0, "start_line": 773 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))}
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eBits: Lib.IntTypes.size_pos -> e: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> res: Hacl.Spec.Bignum.Definitions.limb t { Lib.IntTypes.v res == (match 0 < Hacl.Spec.Bignum.Definitions.bn_v e && Hacl.Spec.Bignum.Definitions.bn_v e < Prims.pow2 eBits with | true -> Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC) | _ -> Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) }
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.unit", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.SEC", "Lib.IntTypes.lognot", "Lib.IntTypes.lognot_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.ones", "Prims.bool", "Lib.IntTypes.zeros", "Hacl.Spec.RSAPSS.bn_check_num_bits", "Hacl.Spec.Bignum.bn_is_zero_mask_lemma", "Hacl.Spec.Bignum.bn_is_zero_mask", "Lib.IntTypes.range_t", "Prims.op_AmpAmp" ]
[]
false
false
false
false
false
let rsapss_check_exponent #t eBits e =
let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.seq_eq
val seq_eq (s: Ghost.erased (Seq.seq 'a)) : spred 'a
val seq_eq (s: Ghost.erased (Seq.seq 'a)) : spred 'a
let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 58, "start_col": 0, "start_line": 57 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Ghost.erased (FStar.Seq.Base.seq 'a) -> LowStar.Monotonic.Buffer.spred 'a
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.Seq.Base.equal", "FStar.Ghost.reveal", "LowStar.Monotonic.Buffer.spred" ]
[]
false
false
false
true
false
let seq_eq (s: Ghost.erased (Seq.seq 'a)) : spred 'a =
fun s' -> s' `Seq.equal` (Ghost.reveal s)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_compute_msg
val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True)
val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True)
let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 606, "start_col": 0, "start_line": 593 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> Prims.Pure (Prims.bool * Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.RSAPSS.rsapss_verify_bn", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.IntTypes.SEC", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.bn_from_bytes_be", "Prims.unit", "Prims._assert", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_pos", "Prims.l_or", "Hacl.Spec.RSAPSS.blocks_numb_lemma", "Hacl.Spec.RSAPSS.blocks_bits_lemma", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int", "FStar.Pervasives.Native.tuple2", "Prims.bool" ]
[]
false
false
false
false
false
let rsapss_verify_compute_msg #t modBits eBits pkey sgnt =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.bn_check_num_bits
val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))}
val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))}
let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 748, "start_col": 0, "start_line": 738 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))}
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: Lib.IntTypes.size_pos -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks bs (Lib.IntTypes.bits t)) -> res: Hacl.Spec.Bignum.Definitions.limb t { Lib.IntTypes.v res == (match Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 bs with | true -> Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC) | _ -> Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) }
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.ones", "Prims.bool", "Lib.IntTypes.zeros", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "FStar.Math.Lemmas.pow2_le_compat", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Hacl.Spec.Bignum.bn_lt_pow2_mask_lemma", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.bn_lt_pow2_mask", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pos", "Prims.op_Subtraction", "Prims.op_Multiply" ]
[]
false
false
false
false
false
let bn_check_num_bits #t bs b =
let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m:limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then (bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs) else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.cpred
val cpred (#a: Type0) (s: Seq.seq a) : spred a
val cpred (#a: Type0) (s: Seq.seq a) : spred a
let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 55, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> LowStar.Monotonic.Buffer.spred a
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.equal", "LowStar.Monotonic.Buffer.spred" ]
[]
false
false
false
true
false
let cpred (#a: Type0) (s: Seq.seq a) : spred a =
fun s1 -> Seq.equal s s1
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_skey_pre
val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0
val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0
let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 147, "start_col": 0, "start_line": 137 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_pkey_pre", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.int", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction" ]
[]
false
false
false
false
true
let rsapss_skey_pre #t modBits eBits dBits skey =
let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.value_is
val value_is : b: LowStar.ImmutableBuffer.ibuffer a -> s: FStar.Ghost.erased (FStar.Seq.Base.seq a) -> Type0
let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 61, "start_col": 0, "start_line": 60 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.ImmutableBuffer.ibuffer a -> s: FStar.Ghost.erased (FStar.Seq.Base.seq a) -> Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.witnessed", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.seq_eq" ]
[]
false
false
false
true
true
let value_is #a (b: ibuffer a) (s: Ghost.erased (Seq.seq a)) =
witnessed b (seq_eq s)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_
val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True)
val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True)
let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 9, "end_line": 630, "start_col": 0, "start_line": 625 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Hacl.Spec.RSAPSS.rsapss_verify_bn_to_msg", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.RSAPSS.rsapss_verify_compute_msg" ]
[]
false
false
false
false
false
let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg =
let b, m = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.libuffer
val libuffer : a: Type0 -> len: Prims.nat -> s: FStar.Seq.Base.seq a -> Type0
let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)}
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 76, "start_col": 7, "start_line": 75 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> len: Prims.nat -> s: FStar.Seq.Base.seq a -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.lmbuffer", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.witnessed", "LowStar.ImmutableBuffer.cpred" ]
[]
false
false
false
true
true
let libuffer (a: Type0) (len: nat) (s: Seq.seq a) =
b: lmbuffer a (immutable_preorder a) (immutable_preorder a) len {witnessed b (cpred s)}
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.libuffer_or_null
val libuffer_or_null : a: Type0 -> len: Prims.nat -> r: FStar.Monotonic.HyperHeap.rid -> s: FStar.Seq.Base.seq a -> Type0
let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)}
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 97, "end_line": 80, "start_col": 7, "start_line": 78 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> len: Prims.nat -> r: FStar.Monotonic.HyperHeap.rid -> s: FStar.Seq.Base.seq a -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Monotonic.HyperHeap.rid", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.lmbuffer_or_null", "LowStar.ImmutableBuffer.immutable_preorder", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.witnessed", "LowStar.ImmutableBuffer.cpred" ]
[]
false
false
false
true
true
let libuffer_or_null (a: Type0) (len: nat) (r: HS.rid) (s: Seq.seq a) =
b: lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r {(not (g_is_null b)) ==> witnessed b (cpred s)}
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_bn_to_msg
val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True)
val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True)
let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 580, "start_col": 0, "start_line": 565 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat{1 < modBits} -> sLen: Lib.IntTypes.size_nat -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Prims.nat", "Lib.Sequence.seq", "Lib.IntTypes.uint8", "Prims.eq2", "Lib.Sequence.length", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Spec.RSAPSS.pss_verify", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.bn_to_bytes_be", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.unit", "Prims._assert", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_pos", "Hacl.Spec.RSAPSS.blocks_numb_lemma", "Hacl.Spec.RSAPSS.blocks_bits_lemma", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int", "Lib.IntTypes.numbytes", "Prims.bool" ]
[]
false
false
false
false
false
let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em
false
Steel.ST.GenElim1.fst
Steel.ST.GenElim1.compute_gen_elim_nondep_correct5
val compute_gen_elim_nondep_correct5 (i0: gen_elim_i) (t1 t2 t3 t4 t5: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5])
val compute_gen_elim_nondep_correct5 (i0: gen_elim_i) (t1 t2 t3 t4 t5: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5])
let compute_gen_elim_nondep_correct5 (i0: gen_elim_i) (t1 t2 t3 t4 t5: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> q x1 x2 x3 x4 x5 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 x5 (U.raise_val ())))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let res = Mktuple5 x1 x2 x3 x4 x5 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res
{ "file_name": "lib/steel/Steel.ST.GenElim1.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 7, "end_line": 559, "start_col": 0, "start_line": 544 }
module Steel.ST.GenElim1 let gen_elim_f (p: vprop) (a: Type) (q: (a -> vprop)) (post: (a -> prop)) : Tot Type = ((opened: inames) -> STGhost a opened p q True post) module U = FStar.Universe let gen_unit_elim_t (i: gen_unit_elim_i) : Tot Type = gen_elim_f (compute_gen_unit_elim_p i) (U.raise_t u#_ u#1 unit) (fun _ -> compute_gen_unit_elim_q i) (fun _ -> compute_gen_unit_elim_post i) let compute_gen_unit_elim_f_id (v: vprop) : Tot (gen_unit_elim_t (GUEId v)) = fun _ -> noop (); U.raise_val () let compute_gen_unit_elim_f_pure (p: prop) : Tot (gen_unit_elim_t (GUEPure p)) = fun _ -> rewrite (compute_gen_unit_elim_p (GUEPure p)) (pure p); elim_pure p; U.raise_val () let compute_gen_unit_elim_f_star (i1 i2: gen_unit_elim_i) (f1: gen_unit_elim_t i1) (f2: gen_unit_elim_t i2) : Tot (gen_unit_elim_t (GUEStar i1 i2)) = fun _ -> rewrite (compute_gen_unit_elim_p (GUEStar i1 i2)) (compute_gen_unit_elim_p i1 `star` compute_gen_unit_elim_p i2); let _ = f1 _ in let _ = f2 _ in rewrite (compute_gen_unit_elim_q i1 `star` compute_gen_unit_elim_q i2) (compute_gen_unit_elim_q (GUEStar i1 i2)); U.raise_val () let rec compute_gen_unit_elim_f (i: gen_unit_elim_i) : GTot (gen_unit_elim_t i) = match i returns (gen_unit_elim_t i) with | GUEId v -> compute_gen_unit_elim_f_id v | GUEPure p -> compute_gen_unit_elim_f_pure p | GUEStar i1 i2 -> compute_gen_unit_elim_f_star i1 i2 (compute_gen_unit_elim_f i1) (compute_gen_unit_elim_f i2) let gen_elim_t (i: gen_elim_i) : Tot Type = gen_elim_f (compute_gen_elim_p i) (compute_gen_elim_a i) (compute_gen_elim_q i) (compute_gen_elim_post i) let compute_gen_elim_f_unit (i: gen_unit_elim_i) : GTot (gen_elim_t (GEUnit i)) = compute_gen_unit_elim_f i let compute_gen_elim_f_star_l (i1: gen_elim_i) (f1: gen_elim_t i1) (i2: gen_unit_elim_i) : GTot (gen_elim_t (GEStarL i1 i2)) = let f2 = compute_gen_unit_elim_f i2 in fun _ -> rewrite (compute_gen_elim_p (GEStarL i1 i2)) (compute_gen_elim_p i1 `star` compute_gen_unit_elim_p i2); let res = f1 _ in let _ = f2 _ in let res' : compute_gen_elim_a (GEStarL i1 i2) = coerce_with_trefl res in rewrite (compute_gen_elim_q i1 res `star` compute_gen_unit_elim_q i2) (compute_gen_elim_q (GEStarL i1 i2) res'); res' let compute_gen_elim_f_star_r (i1: gen_unit_elim_i) (i2: gen_elim_i) (f2: gen_elim_t i2) : GTot (gen_elim_t (GEStarR i1 i2)) = let f1 = compute_gen_unit_elim_f i1 in fun _ -> rewrite (compute_gen_elim_p (GEStarR i1 i2)) (compute_gen_unit_elim_p i1 `star` compute_gen_elim_p i2); let _ = f1 _ in let res = f2 _ in let res' : compute_gen_elim_a (GEStarR i1 i2) = coerce_with_trefl res in rewrite (compute_gen_unit_elim_q i1 `star` compute_gen_elim_q i2 res) (compute_gen_elim_q (GEStarR i1 i2) res'); res' let compute_gen_elim_f_star (i1: gen_elim_i) (f1: gen_elim_t i1) (i2: gen_elim_i) (f2: gen_elim_t i2) : GTot (gen_elim_t (GEStar i1 i2)) = fun _ -> rewrite (compute_gen_elim_p (GEStar i1 i2)) (compute_gen_elim_p i1 `star` compute_gen_elim_p i2); let res1 = f1 _ in let res2 = f2 _ in let res : compute_gen_elim_a (GEStar i1 i2) = coerce_with_trefl (res1, res2) in rewrite (compute_gen_elim_q i1 res1 `star` compute_gen_elim_q i2 res2) (compute_gen_elim_q (GEStar i1 i2) res); res let compute_gen_elim_f_exists_no_abs0 (a: Type0) (body: (a -> vprop)) : GTot (gen_elim_t (GEExistsNoAbs0 body)) = fun _ -> rewrite (compute_gen_elim_p (GEExistsNoAbs0 body)) (exists_ body); let gres = elim_exists () in let res : compute_gen_elim_a (GEExistsNoAbs0 body) = U.raise_val (Ghost.reveal gres) in // coerce_with_trefl (Ghost.reveal gres) in rewrite (body gres) (compute_gen_elim_q (GEExistsNoAbs0 body) res); res let rewrite_with_trefl (#opened:_) (p q:vprop) : STGhost unit opened p (fun _ -> q) (requires T.with_tactic T.trefl (p == q)) (ensures fun _ -> True) = rewrite p q let compute_gen_elim_f_exists_unit0 (a: Type0) (body: a -> gen_unit_elim_i) : Tot (gen_elim_t (GEExistsUnit0 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExistsUnit0 body)) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let gres = elim_exists () in let _ = compute_gen_unit_elim_f (body gres) _ in let res : compute_gen_elim_a (GEExistsUnit0 body) = U.raise_val (Ghost.reveal gres) in // coerce_with_trefl (Ghost.reveal gres) in rewrite (compute_gen_unit_elim_q (body gres)) (compute_gen_elim_q (GEExistsUnit0 body) res); res let compute_gen_elim_f_exists0 (a: Type0) (body: a -> gen_elim_i) (f: (x: a) -> GTot (gen_elim_t (body x))) : Tot (gen_elim_t (GEExists0 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExists0 body)) (exists_ (fun x -> compute_gen_elim_p (body x))); let gres1 = elim_exists () in let gres2 = f gres1 _ in let res : compute_gen_elim_a (GEExists0 body) = coerce_with_trefl (Mkdtuple2 #a #(fun x -> compute_gen_elim_a (body x)) (Ghost.reveal gres1) (Ghost.reveal gres2)) in rewrite (compute_gen_elim_q (body gres1) gres2) (compute_gen_elim_q (GEExists0 body) res); res let compute_gen_elim_f_exists_no_abs1 (a: Type) (body: (a -> vprop)) : GTot (gen_elim_t (GEExistsNoAbs1 body)) = fun _ -> rewrite (compute_gen_elim_p (GEExistsNoAbs1 body)) (exists_ body); let gres = elim_exists () in let res : compute_gen_elim_a (GEExistsNoAbs1 body) = coerce_with_trefl (Ghost.reveal gres) in rewrite (body gres) (compute_gen_elim_q (GEExistsNoAbs1 body) res); res let compute_gen_elim_f_exists_unit1 (a: Type) (body: a -> gen_unit_elim_i) : Tot (gen_elim_t (GEExistsUnit1 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExistsUnit1 body)) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let gres = elim_exists () in let _ = compute_gen_unit_elim_f (body gres) _ in let res : compute_gen_elim_a (GEExistsUnit1 body) = coerce_with_trefl (Ghost.reveal gres) in rewrite (compute_gen_unit_elim_q (body gres)) (compute_gen_elim_q (GEExistsUnit1 body) res); res let compute_gen_elim_f_exists1 (a: Type) (body: a -> gen_elim_i) (f: (x: a) -> GTot (gen_elim_t (body x))) : Tot (gen_elim_t (GEExists1 body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p (GEExists1 body)) (exists_ (fun x -> compute_gen_elim_p (body x))); let gres1 = elim_exists () in let gres2 = f gres1 _ in let res : compute_gen_elim_a (GEExists1 body) = coerce_with_trefl (Mkdtuple2 #a #(fun x -> compute_gen_elim_a (body x)) (Ghost.reveal gres1) (Ghost.reveal gres2)) in rewrite (compute_gen_elim_q (body gres1) gres2) (compute_gen_elim_q (GEExists1 body) res); res let rec compute_gen_elim_f (i: gen_elim_i) : GTot (gen_elim_t i) = match i returns (gen_elim_t i) with | GEUnit i -> compute_gen_elim_f_unit i | GEStarL i1 i2 -> compute_gen_elim_f_star_l i1 (compute_gen_elim_f i1) i2 | GEStarR i1 i2 -> compute_gen_elim_f_star_r i1 i2 (compute_gen_elim_f i2) | GEStar i1 i2 -> compute_gen_elim_f_star i1 (compute_gen_elim_f i1) i2 (compute_gen_elim_f i2) | GEExistsNoAbs0 body -> compute_gen_elim_f_exists_no_abs0 _ body | GEExistsUnit0 body -> compute_gen_elim_f_exists_unit0 _ body | GEExists0 body -> compute_gen_elim_f_exists0 _ body (fun x -> compute_gen_elim_f (body x)) | GEExistsNoAbs1 body -> compute_gen_elim_f_exists_no_abs1 _ body | GEExistsUnit1 body -> compute_gen_elim_f_exists_unit1 _ body | GEExists1 body -> compute_gen_elim_f_exists1 _ body (fun x -> compute_gen_elim_f (body x)) let rec tele_p (x: gen_elim_tele) : Tot vprop = match x with | TRet v p -> v `star` pure p | TExists ty body -> exists_ (fun x -> tele_p (body x)) let elim_exists' (#a:Type) (#opened_invariants:_) (#p:a -> vprop) (_:unit) : STGhostT (a) opened_invariants (exists_ p) (fun x -> p x) = let gx = elim_exists () in let x = Ghost.reveal gx in rewrite (p gx) (p x); x let vprop_rewrite (from to: vprop) : Tot Type = gen_elim_f from unit (fun _ -> to) (fun _ -> True) let tele_star_vprop_correct_ret (v': vprop) (p': prop) (v: vprop) (p: prop) : Tot (vprop_rewrite (tele_p (TRet v' p') `star` v `star` pure p) (tele_p (tele_star_vprop (TRet v' p') v p))) = fun _ -> elim_pure p; rewrite (tele_p _) (v' `star` pure p'); elim_pure p'; intro_pure (p /\ p'); rewrite ((v `star` v') `star` pure (p /\ p')) (tele_p _) let tele_star_vprop_correct_exists (v: vprop) (p: prop) (ty: _) (body: ty -> gen_elim_tele) (ih: (x: ty) -> GTot (vprop_rewrite (tele_p (body x) `star` v `star` pure p) (tele_p (tele_star_vprop (body x) v p)))) : Tot (vprop_rewrite (tele_p (TExists ty body) `star` v `star` pure p) (tele_p (tele_star_vprop (TExists ty body) v p))) = fun _ -> rewrite_with_trefl (tele_p _) (exists_ (fun x -> tele_p (body x))); let x = elim_exists' () in ih x _; intro_exists x (fun x -> tele_p (tele_star_vprop (body x) v p)); rewrite_with_trefl (exists_ (fun x -> tele_p (tele_star_vprop (body x) v p))) (tele_p _) let rec tele_star_vprop_correct (i: gen_elim_tele) (v: vprop) (p: prop) : GTot (vprop_rewrite (tele_p i `star` v `star` pure p) (tele_p (tele_star_vprop i v p)) ) = match i returns vprop_rewrite (tele_p i `star` v `star` pure p) (tele_p (tele_star_vprop i v p)) with | TRet v' p' -> tele_star_vprop_correct_ret v' p' v p | TExists ty body -> tele_star_vprop_correct_exists v p ty body (fun x -> tele_star_vprop_correct (body x) v p) let tele_star_correct_ret_l (v1: vprop) (p1: prop) (i2: gen_elim_tele) : Tot (vprop_rewrite (tele_p (TRet v1 p1) `star` tele_p i2) (tele_p (TRet v1 p1 `tele_star` i2))) = fun _ -> rewrite (tele_p (TRet v1 p1)) (v1 `star` pure p1); tele_star_vprop_correct i2 v1 p1 _; rewrite (tele_p _) (tele_p _) let tele_star_correct_ret_r (i1: gen_elim_tele { ~ (TRet? i1) }) (v2: vprop) (p2: prop) : Tot (vprop_rewrite (tele_p i1 `star` tele_p (TRet v2 p2)) (tele_p (i1 `tele_star` TRet v2 p2))) = fun _ -> rewrite (tele_p (TRet v2 p2)) (v2 `star` pure p2); tele_star_vprop_correct i1 v2 p2 _; rewrite (tele_p _) (tele_p (i1 `tele_star` TRet v2 p2)) let tele_star_correct_exists (ty1: _) (f1: ty1 -> gen_elim_tele) (ty2: _) (f2: ty2 -> gen_elim_tele) (ih: (x1: ty1) -> (x2: ty2) -> GTot (vprop_rewrite (tele_p (f1 x1) `star` tele_p (f2 x2)) (tele_p (f1 x1 `tele_star` f2 x2)))) : Tot (vprop_rewrite (tele_p (TExists ty1 f1) `star` tele_p (TExists ty2 f2)) (tele_p (tele_star (TExists ty1 f1) (TExists ty2 f2)))) = fun _ -> rewrite_with_trefl (tele_p (TExists ty1 f1)) (exists_ (fun x1 -> tele_p (f1 x1))); let x1 = elim_exists' () in rewrite_with_trefl (tele_p (TExists ty2 f2)) (exists_ (fun x2 -> tele_p (f2 x2))); let x2 = elim_exists' () in ih x1 x2 _; intro_exists x2 (fun x2 -> tele_p (tele_star (f1 x1) (f2 x2))); intro_exists x1 (fun x1 -> exists_ (fun x2 -> tele_p (tele_star (f1 x1) (f2 x2)))); rewrite_with_trefl (exists_ _) (tele_p _) let rec tele_star_correct (i1 i2: gen_elim_tele) : GTot (vprop_rewrite (tele_p i1 `star` tele_p i2) (tele_p (i1 `tele_star` i2))) = match i1 returns vprop_rewrite (tele_p i1 `star` tele_p i2) (tele_p (i1 `tele_star` i2)) with | TRet v1 p1 -> tele_star_correct_ret_l v1 p1 i2 | TExists ty1 f1 -> begin match i2 returns vprop_rewrite (tele_p (TExists ty1 f1) `star` tele_p i2) (tele_p (TExists ty1 f1 `tele_star` i2)) with | TRet v2 p2 -> tele_star_correct_ret_r (TExists ty1 f1) v2 p2 | TExists ty2 f2 -> tele_star_correct_exists ty1 f1 ty2 f2 (fun x1 x2 -> tele_star_correct (f1 x1) (f2 x2)) end [@@noextract_to "Plugin" ] let ge_to_tele_t (i: gen_elim_i) : Tot Type = vprop_rewrite (compute_gen_elim_p i) (tele_p (compute_gen_elim_tele i)) let compute_gen_elim_tele_correct_unit (v: gen_unit_elim_i) : Tot (ge_to_tele_t (GEUnit v)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_unit_elim_p v); let _ = compute_gen_unit_elim_f v _ in intro_pure (compute_gen_unit_elim_post v); rewrite_with_trefl (compute_gen_unit_elim_q v `star` pure _) (tele_p _) let compute_gen_elim_tele_correct_star_l (l: gen_elim_i) (ihl: ge_to_tele_t l) (ru: gen_unit_elim_i) : Tot (ge_to_tele_t (GEStarL l ru)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_elim_p l `star` compute_gen_unit_elim_p ru); ihl _; let _ = compute_gen_unit_elim_f ru _ in intro_pure (compute_gen_unit_elim_post ru); tele_star_vprop_correct _ _ _ _; rewrite_with_trefl (tele_p _) (tele_p _) let compute_gen_elim_tele_correct_star_r (lu: gen_unit_elim_i) (r: gen_elim_i) (ihr: ge_to_tele_t r) : Tot (ge_to_tele_t (GEStarR lu r)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_unit_elim_p lu `star` compute_gen_elim_p r); ihr _; let _ = compute_gen_unit_elim_f lu _ in intro_pure (compute_gen_unit_elim_post lu); tele_star_vprop_correct _ _ _ _; rewrite_with_trefl (tele_p _) (tele_p _) let compute_gen_elim_tele_correct_star (l: gen_elim_i) (ihl: ge_to_tele_t l) (r: gen_elim_i) (ihr: ge_to_tele_t r) : Tot (ge_to_tele_t (GEStar l r)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (compute_gen_elim_p l `star` compute_gen_elim_p r); ihl _; ihr _; tele_star_correct (compute_gen_elim_tele l) (compute_gen_elim_tele r) _; rewrite_with_trefl (tele_p _) (tele_p _) let compute_gen_elim_tele_correct_exists_no_abs0 (ty: _) (body: ty -> vprop) : Tot (ge_to_tele_t (GEExistsNoAbs0 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ body); let x = elim_exists' () in intro_pure True; rewrite (body x) (body (U.downgrade_val (U.raise_val x))); intro_exists (U.raise_val u#0 u#1 x) (fun x -> body (U.downgrade_val x) `star` pure True); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists_unit0 (ty: _) (body: ty -> gen_unit_elim_i) : Tot (ge_to_tele_t (GEExistsUnit0 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let x = elim_exists' () in let _ = compute_gen_unit_elim_f (body x) _ in intro_pure (compute_gen_unit_elim_post (body (U.downgrade_val (U.raise_val u#0 u#1 x)))); rewrite (compute_gen_unit_elim_q (body x)) (compute_gen_unit_elim_q (body (U.downgrade_val (U.raise_val x)))); intro_exists (U.raise_val u#0 u#1 x) (fun x -> compute_gen_unit_elim_q (body (U.downgrade_val x)) `star` pure (compute_gen_unit_elim_post (body (U.downgrade_val x)))); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists0 (ty: _) (body: ty -> gen_elim_i) (ih: (x: ty) -> GTot (ge_to_tele_t (body x))) : Tot (ge_to_tele_t (GEExists0 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_elim_p (body x))); let x = elim_exists' () in ih x _; rewrite (tele_p (compute_gen_elim_tele (body x))) (tele_p (compute_gen_elim_tele (body (U.downgrade_val (U.raise_val u#0 u#1 x))))); intro_exists (U.raise_val u#0 u#1 x) (fun x -> tele_p (compute_gen_elim_tele (body (U.downgrade_val u#0 u#1 x)))); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists_no_abs1 (ty: _) (body: ty -> vprop) : Tot (ge_to_tele_t (GEExistsNoAbs1 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ body); let x = elim_exists' () in intro_pure True; intro_exists x (fun x -> body x `star` pure True); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists_unit1 (ty: _) (body: ty -> gen_unit_elim_i) : Tot (ge_to_tele_t (GEExistsUnit1 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_unit_elim_p (body x))); let x = elim_exists' () in let _ = compute_gen_unit_elim_f (body x) _ in intro_pure (compute_gen_unit_elim_post (body x)); intro_exists x (fun x -> compute_gen_unit_elim_q (body x) `star` pure (compute_gen_unit_elim_post (body x))); rewrite_with_trefl (exists_ _) (tele_p _) let compute_gen_elim_tele_correct_exists1 (ty: _) (body: ty -> gen_elim_i) (ih: (x: ty) -> GTot (ge_to_tele_t (body x))) : Tot (ge_to_tele_t (GEExists1 #ty body)) = fun _ -> rewrite_with_trefl (compute_gen_elim_p _) (exists_ (fun x -> compute_gen_elim_p (body x))); let x = elim_exists' () in ih x _; intro_exists x (fun x -> tele_p (compute_gen_elim_tele (body x))); rewrite_with_trefl (exists_ _) (tele_p _) let rec compute_gen_elim_tele_correct (x: gen_elim_i) : GTot (ge_to_tele_t x) = match x returns ge_to_tele_t x with | GEUnit v -> compute_gen_elim_tele_correct_unit v | GEStarL l ru -> compute_gen_elim_tele_correct_star_l l (compute_gen_elim_tele_correct l) ru | GEStarR lu r -> compute_gen_elim_tele_correct_star_r lu r (compute_gen_elim_tele_correct r) | GEStar l r -> compute_gen_elim_tele_correct_star l (compute_gen_elim_tele_correct l) r (compute_gen_elim_tele_correct r) | GEExistsNoAbs0 #ty body -> compute_gen_elim_tele_correct_exists_no_abs0 ty body | GEExistsUnit0 #ty body -> compute_gen_elim_tele_correct_exists_unit0 ty body | GEExists0 #ty body -> compute_gen_elim_tele_correct_exists0 ty body (fun x -> compute_gen_elim_tele_correct (body x)) | GEExistsNoAbs1 #ty body -> compute_gen_elim_tele_correct_exists_no_abs1 ty body | GEExistsUnit1 #ty body -> compute_gen_elim_tele_correct_exists_unit1 ty body | GEExists1 #ty body -> compute_gen_elim_tele_correct_exists1 ty body (fun x -> compute_gen_elim_tele_correct (body x)) let rec gen_elim_nondep_p (ty: list (Type u#a)) : Tot (curried_function_type ty (U.raise_t u#_ u#(max 2 a) unit -> vprop) -> curried_function_type ty (U.raise_t u#_ u#(max 2 a) unit -> prop) -> Tot vprop) = match ty as ty' returns curried_function_type ty' (U.raise_t u#_ u#(max 2 a) unit -> vprop) -> curried_function_type ty' (U.raise_t u#_ u#(max 2 a) unit -> prop) -> Tot vprop with | [] -> fun q post -> q (U.raise_val ()) `star` pure (post (U.raise_val ())) | t :: tq -> fun q post -> exists_ (fun x -> gen_elim_nondep_p tq (q x) (post x)) let rec gen_elim_nondep_sem_correct (ty: list (Type u#a)) : Tot ((q: curried_function_type ty _) -> (post: curried_function_type ty _) -> Lemma (tele_p (gen_elim_nondep_sem ty q post) `equiv` gen_elim_nondep_p ty q post) ) = match ty returns ((q: curried_function_type ty _) -> (post: curried_function_type ty _) -> Lemma (tele_p (gen_elim_nondep_sem ty q post) `equiv` gen_elim_nondep_p ty q post) ) with | [] -> fun q post -> equiv_refl (q (U.raise_val ()) `star` pure (post (U.raise_val ()))) | ta :: tq -> fun q post -> let phi (x: ta) : Lemma (tele_p (gen_elim_nondep_sem tq (q x) (post x)) `equiv` gen_elim_nondep_p tq (q x) (post x)) = gen_elim_nondep_sem_correct tq (q x) (post x) in Classical.forall_intro phi; let prf () : Lemma (exists_ (fun x -> tele_p (gen_elim_nondep_sem tq (q x) (post x))) `equiv` exists_ (fun x -> gen_elim_nondep_p tq (q x) (post x))) = exists_equiv (fun x -> tele_p (gen_elim_nondep_sem tq (q x) (post x))) (fun x -> gen_elim_nondep_p tq (q x) (post x)) in assert_norm (tele_p (gen_elim_nondep_sem (ta :: tq) q post) == exists_ (fun x -> tele_p (gen_elim_nondep_sem tq (q x) (post x)))); assert_norm (gen_elim_nondep_p (ta :: tq) q post == exists_ (fun x -> gen_elim_nondep_p tq (q x) (post x))); prf () let compute_gen_elim_nondep_correct_t (i0: gen_elim_i) (ty: list (Type u#1)) : Tot Type = (q: _) -> (post: _) -> (intro: vprop_rewrite (compute_gen_elim_p i0) (gen_elim_nondep_p ty q post)) -> GTot (gen_elim_f (compute_gen_elim_p i0) (compute_gen_elim_nondep_a' ty) (fun x -> compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) ty q x (U.raise_val ())) (fun x -> compute_uncurry _ (fun _ -> True) ty post x (U.raise_val ())) ) let compute_gen_elim_nondep_correct0 (i0: gen_elim_i) : Tot (compute_gen_elim_nondep_correct_t i0 []) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (q (U.raise_val ()) `star` pure (post (U.raise_val ()))); let res = U.raise_val () in elim_pure _; rewrite_with_trefl (q (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct1 (i0: gen_elim_i) (t1: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> q x1 (U.raise_val ()) `star` pure (post x1 (U.raise_val ())))); let res = elim_exists' () in elim_pure _; rewrite_with_trefl (q _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct2 (i0: gen_elim_i) (t1 t2: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> q x1 x2 (U.raise_val ()) `star` pure (post x1 x2 (U.raise_val ()))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let res = Mktuple2 x1 x2 in elim_pure _; rewrite_with_trefl (q _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct3 (i0: gen_elim_i) (t1 t2 t3: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> q x1 x2 x3 (U.raise_val ()) `star` pure (post x1 x2 x3 (U.raise_val ())))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let res = Mktuple3 x1 x2 x3 in elim_pure _; rewrite_with_trefl (q _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res let compute_gen_elim_nondep_correct4 (i0: gen_elim_i) (t1 t2 t3 t4: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4]) = fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> q x1 x2 x3 x4 (U.raise_val ()) `star` pure (post x1 x2 x3 x4 (U.raise_val ()))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let res = Mktuple4 x1 x2 x3 x4 in elim_pure _; rewrite_with_trefl (q _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.GenElim1.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.ST.GenElim1.Base", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i0: Steel.ST.GenElim1.Base.gen_elim_i -> t1: Type -> t2: Type -> t3: Type -> t4: Type -> t5: Type -> Steel.ST.GenElim1.compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5]
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.GenElim1.Base.gen_elim_i", "Steel.ST.GenElim1.Base.curried_function_type", "Prims.Cons", "Prims.Nil", "FStar.Universe.raise_t", "Prims.unit", "Steel.Effect.Common.vprop", "Prims.prop", "Steel.ST.GenElim1.vprop_rewrite", "Steel.ST.GenElim1.Base.compute_gen_elim_p", "Steel.ST.GenElim1.gen_elim_nondep_p", "Steel.Memory.inames", "Steel.ST.GenElim1.Base.compute_gen_elim_nondep_a'", "Steel.ST.GenElim1.rewrite_with_trefl", "FStar.Universe.raise_val", "Steel.ST.GenElim1.Base.compute_uncurry", "Steel.ST.GenElim1.Base.compute_gen_elim_p'", "Steel.ST.Util.elim_pure", "FStar.Pervasives.Native.tuple5", "FStar.Pervasives.Native.Mktuple5", "Steel.ST.GenElim1.elim_exists'", "Steel.Effect.Common.VStar", "Steel.ST.Util.pure", "Steel.ST.Util.exists_", "Steel.Effect.Common.star", "Steel.ST.GenElim1.compute_gen_elim_nondep_correct_t" ]
[]
false
false
false
false
false
let compute_gen_elim_nondep_correct5 (i0: gen_elim_i) (t1 t2 t3 t4 t5: Type) : Tot (compute_gen_elim_nondep_correct_t i0 [t1; t2; t3; t4; t5]) =
fun q post intro _ -> intro _; rewrite_with_trefl (gen_elim_nondep_p _ _ _) (exists_ (fun x1 -> exists_ (fun x2 -> exists_ (fun x3 -> exists_ (fun x4 -> exists_ (fun x5 -> (q x1 x2 x3 x4 x5 (U.raise_val ())) `star` (pure (post x1 x2 x3 x4 x5 (U.raise_val ()))))))))); let x1 = elim_exists' () in let x2 = elim_exists' () in let x3 = elim_exists' () in let x4 = elim_exists' () in let x5 = elim_exists' () in let res = Mktuple5 x1 x2 x3 x4 x5 in elim_pure _; rewrite_with_trefl (q _ _ _ _ _ (U.raise_val ())) (compute_uncurry _ (fun _ -> compute_gen_elim_p' i0) _ _ res (U.raise_val ())); res
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify
val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r)
val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r)
let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 9, "end_line": 731, "start_col": 0, "start_line": 715 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> k: Lib.IntTypes.size_nat -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 k -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Hacl.Spec.RSAPSS.rsapss_verify_", "Prims.unit", "Hacl.Spec.RSAPSS.rsapss_verify_lemma", "Prims.bool", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Spec.RSAPSS.less_than_max_input_length", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.max_size_t", "Prims.op_GreaterThan", "Prims._assert", "Prims.op_LessThan", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.pow2", "Spec.Hash.Definitions.hash_length" ]
[]
false
false
false
false
false
let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg =
let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then (rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg) else false
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign
val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt)
val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt)
let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 516, "start_col": 0, "start_line": 502 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> Prims.Pure (Prims.bool * Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Hacl.Spec.RSAPSS.rsapss_sign_", "Prims.unit", "Hacl.Spec.RSAPSS.rsapss_sign_lemma", "Prims.bool", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Spec.RSAPSS.less_than_max_input_length", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.pow2", "Prims.op_GreaterThan", "Spec.Hash.Definitions.hash_length" ]
[]
false
false
false
false
false
let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt =
let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then (rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg) else false, sgnt
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.immutable_preorder
val immutable_preorder (a: Type0) : srel a
val immutable_preorder (a: Type0) : srel a
let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 28, "start_col": 0, "start_line": 28 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> LowStar.Monotonic.Buffer.srel a
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.equal", "Prims.prop", "LowStar.Monotonic.Buffer.srel" ]
[]
false
false
false
true
false
let immutable_preorder (a: Type0) : srel a =
fun s1 s2 -> Seq.equal s1 s2
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_load_pkey_post
val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0
val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0
let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s)
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 804, "start_col": 0, "start_line": 791 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_pkey_pre", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Spec.RSAPSS.rsapss_pkey", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.bn_v", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__n", "FStar.Pervasives.Native.__proj__Some__item__v", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__e", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_Forall", "Prims.nat", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.pos", "Prims.op_LessThanOrEqual", "FStar.Pervasives.Native.option", "Spec.RSAPSS.rsapss_load_pkey" ]
[]
false
false
false
false
true
let rsapss_load_pkey_post #t modBits eBits nb eb pkey =
let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_check_modulus
val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))}
val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))}
let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 767, "start_col": 0, "start_line": 754 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))}
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_pos -> n: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> res: Hacl.Spec.Bignum.Definitions.limb t { Lib.IntTypes.v res == (match Hacl.Spec.Bignum.Definitions.bn_v n % 2 = 1 && Prims.pow2 (modBits - 1) < Hacl.Spec.Bignum.Definitions.bn_v n && Hacl.Spec.Bignum.Definitions.bn_v n < Prims.pow2 modBits with | true -> Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC) | _ -> Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) }
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.unit", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.int_t", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.ones", "Prims.bool", "Lib.IntTypes.zeros", "Hacl.Spec.RSAPSS.bn_check_num_bits", "Hacl.Spec.Bignum.bn_gt_pow2_mask_lemma", "Prims.op_Subtraction", "Hacl.Spec.Bignum.bn_gt_pow2_mask", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.uint", "Prims._assert", "Prims.op_Modulus", "Hacl.Spec.Bignum.bn_is_odd_lemma", "Hacl.Spec.Bignum.bn_is_odd", "Lib.IntTypes.range_t", "Prims.op_AmpAmp", "Prims.op_Equality" ]
[]
false
false
false
false
false
let rsapss_check_modulus #t modBits n =
let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_
val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True)
val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True)
let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 412, "start_col": 0, "start_line": 410 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> Prims.Pure (Prims.bool * Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Hacl.Spec.RSAPSS.rsapss_sign_compute_sgnt", "Hacl.Spec.RSAPSS.rsapss_sign_msg_to_bn", "FStar.Pervasives.Native.tuple2", "Prims.bool" ]
[]
false
false
false
false
false
let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg =
let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_msg_to_bn
val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1))
val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1))
let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 359, "start_col": 0, "start_line": 339 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat{1 < modBits} -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> Prims.Pure (Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.unit", "Spec.RSAPSS.os2ip_lemma", "Hacl.Spec.Bignum.bn_from_bytes_be_lemma", "Prims._assert", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.bn_eval_update_sub", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.IntTypes.SEC", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.uint", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.bn_from_bytes_be", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_pos", "Hacl.Spec.RSAPSS.blocks_numb_lemma", "Hacl.Spec.RSAPSS.blocks_bits_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Spec.RSAPSS.blocks", "Spec.RSAPSS.pss_encode", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int", "Lib.IntTypes.bits" ]
[]
false
false
false
false
false
let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_load_skey
val rsapss_load_skey: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)))
val rsapss_load_skey: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)))
let rsapss_load_skey #t modBits eBits dBits nb eb db = let b, pkey = rsapss_load_pkey modBits eBits nb eb in let d = bn_from_bytes_be #t (blocks dBits 8) db in let skey = pkey @| d in let m0 = rsapss_check_exponent dBits d in let b1 = b && BB.unsafe_bool_of_limb m0 in b1, skey
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 911, "start_col": 0, "start_line": 904 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s)) val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t))) let rsapss_load_pkey #t modBits eBits nb eb = let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s)) let rsapss_load_pkey_lemma #t modBits eBits nb eb = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_from_bytes_be #t nbLen nb in bn_from_bytes_be_lemma #t nbLen nb; let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be #t ebLen eb in bn_from_bytes_be_lemma #t ebLen eb; let pkey = (n @| r2) @| e in eq_intro (sub pkey 0 nLen) n; eq_intro (sub pkey nLen nLen) r2; eq_intro (sub pkey (nLen + nLen) eLen) e; let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in logand_lemma m0 m1 val rsapss_load_skey: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks dBits 8) -> Prims.bool * Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Prims.bool", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "FStar.Pervasives.Native.Mktuple2", "Prims.op_AmpAmp", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.ones", "Lib.IntTypes.zeros", "Hacl.Spec.RSAPSS.rsapss_check_exponent", "Prims.op_Multiply", "Lib.IntTypes.numbytes", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.op_At_Bar", "Hacl.Spec.Bignum.bn_from_bytes_be", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.RSAPSS.rsapss_load_pkey" ]
[]
false
false
false
false
false
let rsapss_load_skey #t modBits eBits dBits nb eb db =
let b, pkey = rsapss_load_pkey modBits eBits nb eb in let d = bn_from_bytes_be #t (blocks dBits 8) db in let skey = pkey @| d in let m0 = rsapss_check_exponent dBits d in let b1 = b && BB.unsafe_bool_of_limb m0 in b1, skey
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_bn
val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True)
val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True)
let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 550, "start_col": 0, "start_line": 530 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> m_def: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> s: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> Prims.Pure (Prims.bool * Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Hacl.Spec.RSAPSS.bn_lt_pow2", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_vartime_precompr2", "Prims.unit", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n_lemma", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_le_compat", "Hacl.Spec.Bignum.bn_lt_mask_lemma", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.bn_lt_mask", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.int", "Lib.IntTypes.numbytes" ]
[]
false
false
false
false
false
let rsapss_verify_bn #t modBits eBits pkey m_def s =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then (Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m) else false, m_def
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_compute_sgnt
val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True)
val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True)
let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 12, "end_line": 389, "start_col": 0, "start_line": 377 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> Prims.Pure (Prims.bool * Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Prims.bool", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.bn_to_bytes_be", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Prims.eq2", "Lib.IntTypes.size_pos", "Prims.l_or", "Hacl.Spec.RSAPSS.blocks_numb_lemma", "Hacl.Spec.RSAPSS.blocks_bits_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.RSAPSS.rsapss_sign_bn", "Prims.pos", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Prims.int", "Lib.IntTypes.numbytes" ]
[]
false
false
false
false
false
let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.sub_ptr_value_is
val sub_ptr_value_is (#a: _) (b0 b1: ibuffer a) (h: HS.mem) (i len: U32.t) (v: Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len)))
val sub_ptr_value_is (#a: _) (b0 b1: ibuffer a) (h: HS.mem) (i len: U32.t) (v: Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len)))
let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v))
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 73, "start_col": 0, "start_line": 63 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b0: LowStar.ImmutableBuffer.ibuffer a -> b1: LowStar.ImmutableBuffer.ibuffer a -> h: FStar.Monotonic.HyperStack.mem -> i: FStar.UInt32.t -> len: FStar.UInt32.t -> v: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.UInt32.v i + FStar.UInt32.v len <= LowStar.Monotonic.Buffer.length b1 /\ b0 == LowStar.Monotonic.Buffer.mgsub (LowStar.ImmutableBuffer.immutable_preorder a) b1 i len /\ LowStar.ImmutableBuffer.value_is b1 (FStar.Ghost.hide v) /\ FStar.Seq.Base.length v == LowStar.Monotonic.Buffer.length b1) (ensures LowStar.ImmutableBuffer.value_is b0 (FStar.Ghost.hide (FStar.Seq.Base.slice v (FStar.UInt32.v i) (FStar.UInt32.v i + FStar.UInt32.v len))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "FStar.Monotonic.HyperStack.mem", "FStar.UInt32.t", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.witnessed_functorial", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.seq_eq", "FStar.Ghost.hide", "FStar.Seq.Base.slice", "FStar.UInt32.v", "Prims.op_Addition", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.length", "Prims.eq2", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.mgsub", "LowStar.ImmutableBuffer.value_is", "Prims.nat", "FStar.Seq.Base.length", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let sub_ptr_value_is (#a: _) (b0 b1: ibuffer a) (h: HS.mem) (i len: U32.t) (v: Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) =
let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v))
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.ialloca
val ialloca (#a: Type0) (init: a) (len: U32.t) : HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0))
val ialloca (#a: Type0) (init: a) (len: U32.t) : HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0))
let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 155, "start_col": 0, "start_line": 148 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.StackInline (LowStar.ImmutableBuffer.libuffer a (FStar.UInt32.v len) (FStar.Seq.Base.create (FStar.UInt32.v len) init))
FStar.HyperStack.ST.StackInline
[]
[]
[ "FStar.UInt32.t", "LowStar.ImmutableBuffer.libuffer", "FStar.UInt32.v", "FStar.Seq.Base.create", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.cpred", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.malloca", "LowStar.Monotonic.Buffer.lmbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.alloca_pre", "LowStar.Monotonic.Buffer.alloc_post_mem_common", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "FStar.Monotonic.HyperStack.get_tip" ]
[]
false
true
false
false
false
let ialloca (#a: Type0) (init: a) (len: U32.t) : HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) =
let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igcmalloc
val igcmalloc (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer a (U32.v len) (Seq.create (U32.v len) init) {frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
val igcmalloc (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer a (U32.v len) (Seq.create (U32.v len) init) {frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 88, "start_col": 0, "start_line": 82 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.ImmutableBuffer.libuffer a (FStar.UInt32.v len) (FStar.Seq.Base.create (FStar.UInt32.v len) init) {LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.recallable b})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.UInt32.t", "LowStar.ImmutableBuffer.libuffer", "FStar.UInt32.v", "FStar.Seq.Base.create", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.recallable", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.cpred", "LowStar.Monotonic.Buffer.mbuffer", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.mgcmalloc", "LowStar.Monotonic.Buffer.lmbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.alloc_post_mem_common" ]
[]
false
true
false
false
false
let igcmalloc (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer a (U32.v len) (Seq.create (U32.v len) init) {frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) =
let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igcmalloc_partial
val igcmalloc_partial (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init) {recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
val igcmalloc_partial (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init) {recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 116, "start_col": 0, "start_line": 112 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.ImmutableBuffer.libuffer_or_null a (FStar.UInt32.v len) r (FStar.Seq.Base.create (FStar.UInt32.v len) init) {LowStar.Monotonic.Buffer.recallable b})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.UInt32.t", "LowStar.ImmutableBuffer.igcmalloc", "LowStar.ImmutableBuffer.libuffer", "FStar.UInt32.v", "FStar.Seq.Base.create", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.recallable", "LowStar.ImmutableBuffer.libuffer_or_null", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.alloc_partial_post_mem_common" ]
[]
false
true
false
false
false
let igcmalloc_partial (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init) {recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) =
igcmalloc r init len
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_load_pkey
val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)))
val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)))
let rsapss_load_pkey #t modBits eBits nb eb = let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 854, "start_col": 0, "start_line": 845 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s)) val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> Prims.bool * Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_AmpAmp", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Lib.IntTypes.ones", "Lib.IntTypes.zeros", "Hacl.Spec.RSAPSS.rsapss_check_exponent", "Prims.op_Equality", "Prims.op_Modulus", "Prims.op_Subtraction", "Hacl.Spec.RSAPSS.rsapss_check_modulus", "Lib.IntTypes.numbytes", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.op_At_Bar", "Hacl.Spec.Bignum.bn_from_bytes_be", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let rsapss_load_pkey #t modBits eBits nb eb =
let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_skey_sign
val rsapss_skey_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires True) (ensures fun (b, sgnt) -> (let sgnt_s = S.rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg in if b then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s))
val rsapss_skey_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires True) (ensures fun (b, sgnt) -> (let sgnt_s = S.rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg in if b then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s))
let rsapss_skey_sign #t a modBits eBits dBits nb eb db sLen salt msgLen msg sgnt = let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in rsapss_load_skey_lemma #t modBits eBits dBits nb eb db; if b then rsapss_sign a modBits eBits dBits skey sLen salt msgLen msg sgnt else false, sgnt
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 975, "start_col": 0, "start_line": 968 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s)) val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t))) let rsapss_load_pkey #t modBits eBits nb eb = let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s)) let rsapss_load_pkey_lemma #t modBits eBits nb eb = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_from_bytes_be #t nbLen nb in bn_from_bytes_be_lemma #t nbLen nb; let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be #t ebLen eb in bn_from_bytes_be_lemma #t ebLen eb; let pkey = (n @| r2) @| e in eq_intro (sub pkey 0 nLen) n; eq_intro (sub pkey nLen nLen) r2; eq_intro (sub pkey (nLen + nLen) eLen) e; let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in logand_lemma m0 m1 val rsapss_load_skey: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t))) let rsapss_load_skey #t modBits eBits dBits nb eb db = let b, pkey = rsapss_load_pkey modBits eBits nb eb in let d = bn_from_bytes_be #t (blocks dBits 8) db in let skey = pkey @| d in let m0 = rsapss_check_exponent dBits d in let b1 = b && BB.unsafe_bool_of_limb m0 in b1, skey val rsapss_load_skey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> Lemma (let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in (if b then rsapss_load_skey_post modBits eBits dBits nb eb db skey else None? skey_s)) let rsapss_load_skey_lemma #t modBits eBits dBits nb eb db = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let dbLen = blocks dBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in rsapss_load_pkey_lemma #t modBits eBits nb eb; let d = bn_from_bytes_be #t (blocks dBits 8) db in bn_from_bytes_be_lemma #t (blocks dBits 8) db; let skey = pkey @| d in eq_intro (sub skey 0 (nLen + nLen + eLen)) pkey; eq_intro (sub skey (nLen + nLen + eLen) dLen) d val rsapss_skey_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires True) (ensures fun (b, sgnt) -> (let sgnt_s = S.rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg in if b then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks dBits 8) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> Prims.Pure (Prims.bool * Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.RSAPSS.rsapss_sign", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "Prims.unit", "Hacl.Spec.RSAPSS.rsapss_load_skey_lemma", "Prims.op_Multiply", "Hacl.Spec.RSAPSS.rsapss_load_skey" ]
[]
false
false
false
false
false
let rsapss_skey_sign #t a modBits eBits dBits nb eb db sLen salt msgLen msg sgnt =
let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in rsapss_load_skey_lemma #t modBits eBits dBits nb eb db; if b then rsapss_sign a modBits eBits dBits skey sLen salt msgLen msg sgnt else false, sgnt
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.imalloc
val imalloc (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer a (U32.v len) (Seq.create (U32.v len) init) {frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
val imalloc (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer a (U32.v len) (Seq.create (U32.v len) init) {frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 124, "start_col": 0, "start_line": 118 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.ImmutableBuffer.libuffer a (FStar.UInt32.v len) (FStar.Seq.Base.create (FStar.UInt32.v len) init) {LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.freeable b})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.UInt32.t", "LowStar.ImmutableBuffer.libuffer", "FStar.UInt32.v", "FStar.Seq.Base.create", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.freeable", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.cpred", "LowStar.Monotonic.Buffer.mbuffer", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.mmalloc", "LowStar.Monotonic.Buffer.lmbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.alloc_post_mem_common" ]
[]
false
true
false
false
false
let imalloc (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer a (U32.v len) (Seq.create (U32.v len) init) {frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) =
let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_pkey_verify
val rsapss_pkey_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires True) (ensures fun r -> r == S.rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg)
val rsapss_pkey_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires True) (ensures fun r -> r == S.rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg)
let rsapss_pkey_verify #t a modBits eBits nb eb sLen k sgnt msgLen msg = let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in rsapss_load_pkey_lemma #t modBits eBits nb eb; if b then rsapss_verify a modBits eBits pkey sLen k sgnt msgLen msg else false
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 9, "end_line": 1002, "start_col": 0, "start_line": 995 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s)) val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t))) let rsapss_load_pkey #t modBits eBits nb eb = let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s)) let rsapss_load_pkey_lemma #t modBits eBits nb eb = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_from_bytes_be #t nbLen nb in bn_from_bytes_be_lemma #t nbLen nb; let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be #t ebLen eb in bn_from_bytes_be_lemma #t ebLen eb; let pkey = (n @| r2) @| e in eq_intro (sub pkey 0 nLen) n; eq_intro (sub pkey nLen nLen) r2; eq_intro (sub pkey (nLen + nLen) eLen) e; let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in logand_lemma m0 m1 val rsapss_load_skey: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t))) let rsapss_load_skey #t modBits eBits dBits nb eb db = let b, pkey = rsapss_load_pkey modBits eBits nb eb in let d = bn_from_bytes_be #t (blocks dBits 8) db in let skey = pkey @| d in let m0 = rsapss_check_exponent dBits d in let b1 = b && BB.unsafe_bool_of_limb m0 in b1, skey val rsapss_load_skey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> Lemma (let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in (if b then rsapss_load_skey_post modBits eBits dBits nb eb db skey else None? skey_s)) let rsapss_load_skey_lemma #t modBits eBits dBits nb eb db = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let dbLen = blocks dBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in rsapss_load_pkey_lemma #t modBits eBits nb eb; let d = bn_from_bytes_be #t (blocks dBits 8) db in bn_from_bytes_be_lemma #t (blocks dBits 8) db; let skey = pkey @| d in eq_intro (sub skey 0 (nLen + nLen + eLen)) pkey; eq_intro (sub skey (nLen + nLen + eLen) dLen) d val rsapss_skey_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires True) (ensures fun (b, sgnt) -> (let sgnt_s = S.rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg in if b then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s)) let rsapss_skey_sign #t a modBits eBits dBits nb eb db sLen salt msgLen msg sgnt = let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in rsapss_load_skey_lemma #t modBits eBits dBits nb eb db; if b then rsapss_sign a modBits eBits dBits skey sLen salt msgLen msg sgnt else false, sgnt val rsapss_pkey_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires True) (ensures fun r -> r == S.rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> sLen: Lib.IntTypes.size_nat -> k: Lib.IntTypes.size_nat -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 k -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> Prims.Pure Prims.bool
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.bool", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.RSAPSS.rsapss_verify", "Prims.unit", "Hacl.Spec.RSAPSS.rsapss_load_pkey_lemma", "FStar.Pervasives.Native.tuple2", "Prims.op_Multiply", "Hacl.Spec.RSAPSS.rsapss_load_pkey" ]
[]
false
false
false
false
false
let rsapss_pkey_verify #t a modBits eBits nb eb sLen k sgnt msgLen msg =
let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in rsapss_load_pkey_lemma #t modBits eBits nb eb; if b then rsapss_verify a modBits eBits pkey sLen k sgnt msgLen msg else false
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igcmalloc_and_blit
val igcmalloc_and_blit (#a: Type0) (r: HS.rid) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.ST (b: lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len) {frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` (G.hide s))
val igcmalloc_and_blit (#a: Type0) (r: HS.rid) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.ST (b: lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len) {frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` (G.hide s))
let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 109, "start_col": 0, "start_line": 96 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rel1 -> id_src: FStar.UInt32.t -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.Monotonic.Buffer.lmbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) (FStar.UInt32.v len) {LowStar.Monotonic.Buffer.frameOf b == r})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.lmbuffer", "LowStar.ImmutableBuffer.immutable_preorder", "FStar.UInt32.v", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.seq_eq", "FStar.Ghost.hide", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.as_seq", "Prims.op_Addition", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.l_and", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.recallable", "LowStar.Monotonic.Buffer.mgcmalloc_and_blit", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.live", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.alloc_post_mem_common", "LowStar.ImmutableBuffer.value_is" ]
[]
false
true
false
false
false
let igcmalloc_and_blit (#a: Type0) (r: HS.rid) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.ST (b: lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len) {frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` (G.hide s)) =
let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.ialloca_of_list
val ialloca_of_list (#a: Type0) (init: list a) : HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0))
val ialloca_of_list (#a: Type0) (init: list a) : HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0))
let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 180, "start_col": 0, "start_line": 173 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
init: Prims.list a -> FStar.HyperStack.ST.StackInline (LowStar.ImmutableBuffer.libuffer a (FStar.Pervasives.normalize_term (FStar.List.Tot.Base.length init)) (FStar.Seq.Base.seq_of_list init))
FStar.HyperStack.ST.StackInline
[]
[]
[ "Prims.list", "LowStar.ImmutableBuffer.libuffer", "FStar.Pervasives.normalize_term", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Seq.Base.seq_of_list", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.cpred", "LowStar.Monotonic.Buffer.mbuffer", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.malloca_of_list", "LowStar.Monotonic.Buffer.lmbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.alloca_of_list_pre", "LowStar.Monotonic.Buffer.alloc_post_mem_common", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "FStar.Monotonic.HyperStack.get_tip" ]
[]
false
true
false
false
false
let ialloca_of_list (#a: Type0) (init: list a) : HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) =
let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.imalloc_and_blit
val imalloc_and_blit (#a: Type0) (r: HS.rid) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.ST (b: lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len) {frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` (G.hide s))
val imalloc_and_blit (#a: Type0) (r: HS.rid) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.ST (b: lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len) {frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` (G.hide s))
let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 139, "start_col": 0, "start_line": 126 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rel1 -> id_src: FStar.UInt32.t -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.Monotonic.Buffer.lmbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) (FStar.UInt32.v len) {LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.freeable b})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.lmbuffer", "LowStar.ImmutableBuffer.immutable_preorder", "FStar.UInt32.v", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.seq_eq", "FStar.Ghost.hide", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.as_seq", "Prims.op_Addition", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.mmalloc_and_blit", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.live", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.alloc_post_mem_common", "LowStar.ImmutableBuffer.value_is" ]
[]
false
true
false
false
false
let imalloc_and_blit (#a: Type0) (r: HS.rid) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.ST (b: lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len) {frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` (G.hide s)) =
let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.inhabited_immutable_buffer_is_distinct_from_buffer
val inhabited_immutable_buffer_is_distinct_from_buffer (#a: Type0) (x: a) (ib: ibuffer a) (b: LowStar.Buffer.buffer a) : Lemma (~(ib === b))
val inhabited_immutable_buffer_is_distinct_from_buffer (#a: Type0) (x: a) (ib: ibuffer a) (b: LowStar.Buffer.buffer a) : Lemma (~(ib === b))
let inhabited_immutable_buffer_is_distinct_from_buffer (#a:Type0) (x:a) (ib:ibuffer a) (b:LowStar.Buffer.buffer a) : Lemma (~ (ib === b)) = let aux () : Lemma (requires (ib === b)) (ensures False) = //use injectivity to prove that all sequences of type a are equal mbuffer_injectivity_in_first_preorder (); assert (immutable_preorder a == LowStar.Buffer.trivial_preorder a); assert (forall (s1 s2:Seq.seq a). (immutable_preorder a) s1 s2 == (LowStar.Buffer.trivial_preorder a) s1 s2); assert (forall (s1 s2:Seq.seq a). (immutable_preorder a) s1 s2 == Seq.equal s1 s2); assert (forall (s1 s2:Seq.seq a). (LowStar.Buffer.trivial_preorder a) s1 s2 == True); assert (forall (s1 s2:Seq.seq a). Seq.equal s1 s2); //now derive the contradiction let s1 = Seq.create 0 x in let s2 = Seq.create 1 x in Seq.lemma_eq_elim s1 s2; assert (s1 == s2); assert (Seq.length s1 == Seq.length s2) in (Classical.move_requires aux) ()
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 243, "start_col": 0, "start_line": 226 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b inline_for_extraction let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init let witness_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) = witness_p b (cpred s) let recall_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s)) = recall_p b (cpred s) let witness_value (#a:Type0) (b:ibuffer a) :HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b)))) = let h = HST.get () in let s = Ghost.hide (as_seq h b) in witness_p b (seq_eq s) let recall_value (#a:Type0) (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `value_is` s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h1 b /\ as_seq h1 b == Ghost.reveal s)) = recall_p b (seq_eq s) (* * Immutable buffers are distinct from (trivial) buffers * * The proof basically proves a contradiction assuming that the buffers are not distinct * Using injectivity of the base preorders, we get that trivial preorder is same as immutable preorder * After which it is easy to derive the contradiction, provided client has provided a witness for inhabitance
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> ib: LowStar.ImmutableBuffer.ibuffer a -> b: LowStar.Buffer.buffer a -> FStar.Pervasives.Lemma (ensures ~(ib === b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "LowStar.Buffer.buffer", "FStar.Classical.move_requires", "Prims.unit", "Prims.op_Equals_Equals_Equals", "Prims.l_False", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Base.seq", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.create", "Prims.l_Forall", "FStar.Seq.Base.equal", "LowStar.Buffer.trivial_preorder", "Prims.l_True", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer_injectivity_in_first_preorder", "Prims.l_not" ]
[]
false
false
true
false
false
let inhabited_immutable_buffer_is_distinct_from_buffer (#a: Type0) (x: a) (ib: ibuffer a) (b: LowStar.Buffer.buffer a) : Lemma (~(ib === b)) =
let aux () : Lemma (requires (ib === b)) (ensures False) = mbuffer_injectivity_in_first_preorder (); assert (immutable_preorder a == LowStar.Buffer.trivial_preorder a); assert (forall (s1: Seq.seq a) (s2: Seq.seq a). (immutable_preorder a) s1 s2 == (LowStar.Buffer.trivial_preorder a) s1 s2); assert (forall (s1: Seq.seq a) (s2: Seq.seq a). (immutable_preorder a) s1 s2 == Seq.equal s1 s2); assert (forall (s1: Seq.seq a) (s2: Seq.seq a). (LowStar.Buffer.trivial_preorder a) s1 s2 == True); assert (forall (s1: Seq.seq a) (s2: Seq.seq a). Seq.equal s1 s2); let s1 = Seq.create 0 x in let s2 = Seq.create 1 x in Seq.lemma_eq_elim s1 s2; assert (s1 == s2); assert (Seq.length s1 == Seq.length s2) in (Classical.move_requires aux) ()
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.witness_contents
val witness_contents (#a: Type0) (b: ibuffer a) (s: Seq.seq a) : HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s)))
val witness_contents (#a: Type0) (b: ibuffer a) (s: Seq.seq a) : HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s)))
let witness_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) = witness_p b (cpred s)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 200, "start_col": 0, "start_line": 197 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b inline_for_extraction let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.ImmutableBuffer.ibuffer a -> s: FStar.Seq.Base.seq a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.cpred", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.Seq.Base.equal", "LowStar.Monotonic.Buffer.as_seq", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.witnessed" ]
[]
false
true
false
false
false
let witness_contents (#a: Type0) (b: ibuffer a) (s: Seq.seq a) : HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) =
witness_p b (cpred s)
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.recall_contents
val recall_contents (#a: Type0) (b: ibuffer a) (s: Seq.seq a) : HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s))
val recall_contents (#a: Type0) (b: ibuffer a) (s: Seq.seq a) : HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s))
let recall_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s)) = recall_p b (cpred s)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 205, "start_col": 0, "start_line": 202 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b inline_for_extraction let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init let witness_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) = witness_p b (cpred s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.ImmutableBuffer.ibuffer a -> s: FStar.Seq.Base.seq a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.recall_p", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.cpred", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.l_or", "LowStar.Monotonic.Buffer.recallable", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.witnessed", "Prims.eq2", "LowStar.Monotonic.Buffer.as_seq" ]
[]
false
true
false
false
false
let recall_contents (#a: Type0) (b: ibuffer a) (s: Seq.seq a) : HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s)) =
recall_p b (cpred s)
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igcmalloc_of_list
val igcmalloc_of_list (#a: Type0) (r: HS.rid) (init: list a) : HST.ST (b: libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init) {frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init)))
val igcmalloc_of_list (#a: Type0) (r: HS.rid) (init: list a) : HST.ST (b: libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init) {frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init)))
let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 188, "start_col": 0, "start_line": 182 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> init: Prims.list a -> FStar.HyperStack.ST.ST (b: LowStar.ImmutableBuffer.libuffer a (FStar.Pervasives.normalize_term (FStar.List.Tot.Base.length init)) (FStar.Seq.Base.seq_of_list init) {LowStar.Monotonic.Buffer.frameOf b == r /\ LowStar.Monotonic.Buffer.recallable b})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.list", "LowStar.ImmutableBuffer.libuffer", "FStar.Pervasives.normalize_term", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Seq.Base.seq_of_list", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.recallable", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.cpred", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.mgcmalloc_of_list", "LowStar.Monotonic.Buffer.lmbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.gcmalloc_of_list_pre", "LowStar.Monotonic.Buffer.alloc_post_mem_common" ]
[]
false
true
false
false
false
let igcmalloc_of_list (#a: Type0) (r: HS.rid) (init: list a) : HST.ST (b: libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init) {frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) =
let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.imalloc_partial
val imalloc_partial (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init) {(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
val imalloc_partial (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init) {(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init)))
let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 146, "start_col": 0, "start_line": 142 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (b: LowStar.ImmutableBuffer.libuffer_or_null a (FStar.UInt32.v len) r (FStar.Seq.Base.create (FStar.UInt32.v len) init) { Prims.op_Negation (LowStar.Monotonic.Buffer.g_is_null b) ==> LowStar.Monotonic.Buffer.freeable b })
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.UInt32.t", "LowStar.ImmutableBuffer.imalloc", "LowStar.ImmutableBuffer.libuffer", "FStar.UInt32.v", "FStar.Seq.Base.create", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.freeable", "LowStar.ImmutableBuffer.libuffer_or_null", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.alloc_partial_post_mem_common" ]
[]
false
true
false
false
false
let imalloc_partial (#a: Type0) (r: HS.rid) (init: a) (len: U32.t) : HST.ST (b: libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init) {(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) =
imalloc r init len
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.witness_value
val witness_value (#a: Type0) (b: ibuffer a) : HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b))))
val witness_value (#a: Type0) (b: ibuffer a) : HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b))))
let witness_value (#a:Type0) (b:ibuffer a) :HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b)))) = let h = HST.get () in let s = Ghost.hide (as_seq h b) in witness_p b (seq_eq s)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 212, "start_col": 0, "start_line": 207 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b inline_for_extraction let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init let witness_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) = witness_p b (cpred s) let recall_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s)) = recall_p b (cpred s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.ImmutableBuffer.ibuffer a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.seq_eq", "Prims.unit", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.Ghost.hide", "LowStar.Monotonic.Buffer.as_seq", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.l_True", "Prims.l_and", "Prims.eq2", "LowStar.ImmutableBuffer.value_is" ]
[]
false
true
false
false
false
let witness_value (#a: Type0) (b: ibuffer a) : HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b)))) =
let h = HST.get () in let s = Ghost.hide (as_seq h b) in witness_p b (seq_eq s)
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.igcmalloc_of_list_partial
val igcmalloc_of_list_partial (#a: Type0) (r: HS.rid) (init: list a) : HST.ST (b: libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init) {recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init)))
val igcmalloc_of_list_partial (#a: Type0) (r: HS.rid) (init: list a) : HST.ST (b: libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init) {recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init)))
let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 195, "start_col": 0, "start_line": 191 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> init: Prims.list a -> FStar.HyperStack.ST.ST (b: LowStar.ImmutableBuffer.libuffer_or_null a (FStar.Pervasives.normalize_term (FStar.List.Tot.Base.length init)) r (FStar.Seq.Base.seq_of_list init) {LowStar.Monotonic.Buffer.recallable b})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.HyperHeap.rid", "Prims.list", "LowStar.ImmutableBuffer.igcmalloc_of_list", "LowStar.ImmutableBuffer.libuffer", "FStar.Pervasives.normalize_term", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Seq.Base.seq_of_list", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.frameOf", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.Monotonic.Buffer.recallable", "LowStar.ImmutableBuffer.libuffer_or_null", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.gcmalloc_of_list_pre", "LowStar.Monotonic.Buffer.alloc_partial_post_mem_common" ]
[]
false
true
false
false
false
let igcmalloc_of_list_partial (#a: Type0) (r: HS.rid) (init: list a) : HST.ST (b: libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init) {recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) =
igcmalloc_of_list r init
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.ialloca_and_blit
val ialloca_and_blit (#a: Type0) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` (G.hide s))
val ialloca_and_blit (#a: Type0) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` (G.hide s))
let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 171, "start_col": 0, "start_line": 157 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rel1 -> id_src: FStar.UInt32.t -> len: FStar.UInt32.t -> FStar.HyperStack.ST.StackInline (LowStar.Monotonic.Buffer.lmbuffer a (LowStar.ImmutableBuffer.immutable_preorder a) (LowStar.ImmutableBuffer.immutable_preorder a) (FStar.UInt32.v len))
FStar.HyperStack.ST.StackInline
[]
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.lmbuffer", "LowStar.ImmutableBuffer.immutable_preorder", "FStar.UInt32.v", "Prims.unit", "LowStar.Monotonic.Buffer.witness_p", "LowStar.ImmutableBuffer.seq_eq", "FStar.Ghost.hide", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.as_seq", "Prims.op_Addition", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.malloca_and_blit", "LowStar.Monotonic.Buffer.alloca_pre", "LowStar.Monotonic.Buffer.live", "Prims.op_LessThanOrEqual", "LowStar.Monotonic.Buffer.alloc_post_mem_common", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "FStar.Monotonic.HyperStack.get_tip", "LowStar.ImmutableBuffer.value_is" ]
[]
false
true
false
false
false
let ialloca_and_blit (#a: Type0) (#rrel1 #rel1: srel a) (src: mbuffer a rrel1 rel1) (id_src len: U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` (G.hide s)) =
let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_load_skey_post
val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0
val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0
let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s))
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 834, "start_col": 0, "start_line": 818 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks dBits 8) -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Prims.l_and", "Hacl.Spec.RSAPSS.rsapss_skey_pre", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Spec.RSAPSS.rsapss_skey", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "Hacl.Spec.Bignum.Definitions.bn_v", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__n", "Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__e", "Spec.RSAPSS.__proj__Mk_rsapss_skey__item__d", "FStar.Pervasives.Native.__proj__Some__item__v", "Spec.RSAPSS.rsapss_pkey", "Spec.RSAPSS.__proj__Mk_rsapss_skey__item__pkey", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.l_Forall", "Prims.nat", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.pos", "Prims.op_LessThanOrEqual", "FStar.Pervasives.Native.option", "Spec.RSAPSS.rsapss_load_skey" ]
[]
false
false
false
false
true
let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey =
let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s))
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.buffer_immutable_buffer_disjoint
val buffer_immutable_buffer_disjoint (#t #ti: Type) (b: LowStar.Buffer.buffer t) (bi: ibuffer ti) (h: HS.mem) : Lemma (requires (live h b /\ live h bi)) (ensures (disjoint b bi))
val buffer_immutable_buffer_disjoint (#t #ti: Type) (b: LowStar.Buffer.buffer t) (bi: ibuffer ti) (h: HS.mem) : Lemma (requires (live h b /\ live h bi)) (ensures (disjoint b bi))
let buffer_immutable_buffer_disjoint (#t: Type) (#ti: Type) (b: LowStar.Buffer.buffer t) (bi: ibuffer ti) (h: HS.mem) : Lemma (requires ( live h b /\ live h bi )) (ensures ( disjoint b bi )) = if length b = 0 then empty_disjoint b bi else if length bi = 0 then empty_disjoint bi b else begin let s = as_seq h b in assert (~ (LowStar.Buffer.trivial_preorder _ Seq.empty s <==> immutable_preorder _ Seq.empty s)); live_same_addresses_equal_types_and_preorders b bi h end
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 265, "start_col": 0, "start_line": 245 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b inline_for_extraction let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init let witness_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) = witness_p b (cpred s) let recall_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s)) = recall_p b (cpred s) let witness_value (#a:Type0) (b:ibuffer a) :HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b)))) = let h = HST.get () in let s = Ghost.hide (as_seq h b) in witness_p b (seq_eq s) let recall_value (#a:Type0) (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `value_is` s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h1 b /\ as_seq h1 b == Ghost.reveal s)) = recall_p b (seq_eq s) (* * Immutable buffers are distinct from (trivial) buffers * * The proof basically proves a contradiction assuming that the buffers are not distinct * Using injectivity of the base preorders, we get that trivial preorder is same as immutable preorder * After which it is easy to derive the contradiction, provided client has provided a witness for inhabitance *) let inhabited_immutable_buffer_is_distinct_from_buffer (#a:Type0) (x:a) (ib:ibuffer a) (b:LowStar.Buffer.buffer a) : Lemma (~ (ib === b)) = let aux () : Lemma (requires (ib === b)) (ensures False) = //use injectivity to prove that all sequences of type a are equal mbuffer_injectivity_in_first_preorder (); assert (immutable_preorder a == LowStar.Buffer.trivial_preorder a); assert (forall (s1 s2:Seq.seq a). (immutable_preorder a) s1 s2 == (LowStar.Buffer.trivial_preorder a) s1 s2); assert (forall (s1 s2:Seq.seq a). (immutable_preorder a) s1 s2 == Seq.equal s1 s2); assert (forall (s1 s2:Seq.seq a). (LowStar.Buffer.trivial_preorder a) s1 s2 == True); assert (forall (s1 s2:Seq.seq a). Seq.equal s1 s2); //now derive the contradiction let s1 = Seq.create 0 x in let s2 = Seq.create 1 x in Seq.lemma_eq_elim s1 s2; assert (s1 == s2); assert (Seq.length s1 == Seq.length s2) in (Classical.move_requires aux) ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Buffer.buffer t -> bi: LowStar.ImmutableBuffer.ibuffer ti -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.live h b /\ LowStar.Monotonic.Buffer.live h bi) (ensures LowStar.Monotonic.Buffer.disjoint b bi)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowStar.Buffer.buffer", "LowStar.ImmutableBuffer.ibuffer", "FStar.Monotonic.HyperStack.mem", "Prims.op_Equality", "Prims.int", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.empty_disjoint", "LowStar.ImmutableBuffer.immutable_preorder", "Prims.bool", "LowStar.Monotonic.Buffer.live_same_addresses_equal_types_and_preorders", "Prims.unit", "Prims._assert", "Prims.l_not", "Prims.l_iff", "FStar.Seq.Base.empty", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.as_seq", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Prims.squash", "LowStar.Monotonic.Buffer.disjoint", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let buffer_immutable_buffer_disjoint (#t #ti: Type) (b: LowStar.Buffer.buffer t) (bi: ibuffer ti) (h: HS.mem) : Lemma (requires (live h b /\ live h bi)) (ensures (disjoint b bi)) =
if length b = 0 then empty_disjoint b bi else if length bi = 0 then empty_disjoint bi b else let s = as_seq h b in assert (~(LowStar.Buffer.trivial_preorder _ Seq.empty s <==> immutable_preorder _ Seq.empty s)); live_same_addresses_equal_types_and_preorders b bi h
false
LowStar.ImmutableBuffer.fst
LowStar.ImmutableBuffer.recall_value
val recall_value (#a: Type0) (b: ibuffer a) (s: Ghost.erased (Seq.seq a)) : HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `value_is` s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h1 b /\ as_seq h1 b == Ghost.reveal s))
val recall_value (#a: Type0) (b: ibuffer a) (s: Ghost.erased (Seq.seq a)) : HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `value_is` s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h1 b /\ as_seq h1 b == Ghost.reveal s))
let recall_value (#a:Type0) (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `value_is` s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h1 b /\ as_seq h1 b == Ghost.reveal s)) = recall_p b (seq_eq s)
{ "file_name": "ulib/LowStar.ImmutableBuffer.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 217, "start_col": 0, "start_line": 214 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.ImmutableBuffer include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST let immutable_preorder (a:Type0) :srel a = fun s1 s2 -> Seq.equal s1 s2 type ibuffer (a:Type0) = mbuffer a (immutable_preorder a) (immutable_preorder a) unfold let inull (#a:Type0) :ibuffer a = mnull #a #(immutable_preorder a) #(immutable_preorder a) unfold let igsub (#a:Type0) = mgsub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) unfold let igsub_inj (#a:Type0) = mgsub_inj #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (immutable_preorder a) inline_for_extraction type ipointer (a:Type0) = b:ibuffer a{length b == 1} inline_for_extraction type ipointer_or_null (a:Type0) = b:ibuffer a{if g_is_null b then True else length b == 1} inline_for_extraction let isub (#a:Type0) = msub #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) inline_for_extraction let ioffset (#a:Type0) = moffset #a #(immutable_preorder a) #(immutable_preorder a) (immutable_preorder a) (* * It's a bit sub-optimal that we have both cpred and seq_eq * Ideally it should only be the erased version seq_eq * * However, Lib.Buffer in hacl is already using cpred, so keeping it for now * But it should be cleaned up when that dependency is gone *) let cpred (#a:Type0) (s:Seq.seq a) :spred a = fun s1 -> Seq.equal s s1 let seq_eq (s:Ghost.erased (Seq.seq 'a)) : spred 'a = fun s' -> s' `Seq.equal` Ghost.reveal s let value_is #a (b:ibuffer a) (s:Ghost.erased (Seq.seq a)) = witnessed b (seq_eq s) let sub_ptr_value_is (#a:_) (b0 b1:ibuffer a) (h:HS.mem) (i len:U32.t) (v:Seq.seq a) : Lemma (requires U32.v i + U32.v len <= length b1 /\ b0 == mgsub (immutable_preorder a) b1 i len /\ value_is b1 v /\ Seq.length v == length b1) (ensures value_is b0 (Seq.slice v (U32.v i) (U32.v i + U32.v len))) = let sub_v = Seq.slice v (U32.v i) (U32.v i + U32.v len) in witnessed_functorial b1 b0 i len (seq_eq (Ghost.hide v)) (seq_eq (Ghost.hide sub_v)) unfold let libuffer (a:Type0) (len:nat) (s:Seq.seq a) = b:lmbuffer a (immutable_preorder a) (immutable_preorder a) len{witnessed b (cpred s)} unfold let libuffer_or_null (a:Type0) (len:nat) (r:HS.rid) (s:Seq.seq a) = b:lmbuffer_or_null a (immutable_preorder a) (immutable_preorder a) len r{(not (g_is_null b)) ==> witnessed b (cpred s)} let igcmalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mgcmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b (* * Unlike other allocation functions in this module, * this function (and other flavors of alloc_and_blit) don't provide the witnessed contents * as the refinement of the return type * This is because the contents depend on the input memory (== the contents of src) *) let igcmalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mgcmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let igcmalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){recallable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = igcmalloc r init len let imalloc (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer a (U32.v len) (Seq.create (U32.v len) init){frameOf b == r /\ freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = let b = mmalloc r init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let imalloc_and_blit (#a:Type0) (r:HS.rid) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.ST (b:lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len){frameOf b == r /\ freeable b}) (requires fun h0 -> malloc_pre r len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ b `value_is` G.hide s) = let b = mmalloc_and_blit r src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b inline_for_extraction let imalloc_partial (#a:Type0) (r:HS.rid) (init:a) (len:U32.t) :HST.ST (b:libuffer_or_null a (U32.v len) r (Seq.create (U32.v len) init){(not (g_is_null b)) ==> freeable b}) (requires (fun _ -> malloc_pre r len)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.create (U32.v len) init))) = imalloc r init len let ialloca (#a:Type0) (init:a) (len:U32.t) :HST.StackInline (libuffer a (U32.v len) (Seq.create (U32.v len) init)) (requires (fun _ -> alloca_pre len)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ frameOf b == HS.get_tip h0)) = let b = malloca init len in witness_p b (cpred (Seq.create (U32.v len) init)); b let ialloca_and_blit (#a:Type0) (#rrel1 #rel1:srel a) (src:mbuffer a rrel1 rel1) (id_src:U32.t) (len:U32.t) : HST.StackInline (lmbuffer a (immutable_preorder a) (immutable_preorder a) (U32.v len)) (requires fun h0 -> alloca_pre len /\ live h0 src /\ U32.v id_src + U32.v len <= length src) (ensures fun h0 b h1 -> let s = Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len) in alloc_post_mem_common b h0 h1 s /\ frameOf b == HS.get_tip h0 /\ b `value_is` G.hide s) = let b = malloca_and_blit src id_src len in let h0 = HST.get () in witness_p b (seq_eq (G.hide (Seq.slice (as_seq h0 src) (U32.v id_src) (U32.v id_src + U32.v len)))); b let ialloca_of_list (#a:Type0) (init: list a) :HST.StackInline (libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init)) (requires (fun _ -> alloca_of_list_pre init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init) /\ frameOf b == HS.get_tip h0)) = let b = malloca_of_list init in witness_p b (cpred (Seq.seq_of_list init)); b let igcmalloc_of_list (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer a (normalize_term (List.Tot.length init)) (Seq.seq_of_list init){frameOf b == r /\ recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.seq_of_list init))) = let b = mgcmalloc_of_list r init in witness_p b (cpred (Seq.seq_of_list init)); b inline_for_extraction let igcmalloc_of_list_partial (#a:Type0) (r:HS.rid) (init:list a) :HST.ST (b:libuffer_or_null a (normalize_term (List.Tot.length init)) r (Seq.seq_of_list init){recallable b}) (requires (fun _ -> gcmalloc_of_list_pre r init)) (ensures (fun h0 b h1 -> alloc_partial_post_mem_common b h0 h1 (Seq.seq_of_list init))) = igcmalloc_of_list r init let witness_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> Seq.equal (as_seq h0 b) s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ witnessed b (cpred s))) = witness_p b (cpred s) let recall_contents (#a:Type0) (b:ibuffer a) (s:Seq.seq a) :HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ witnessed b (cpred s))) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h0 b /\ as_seq h0 b == s)) = recall_p b (cpred s) let witness_value (#a:Type0) (b:ibuffer a) :HST.ST unit (requires (fun h0 -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ b `value_is` (Ghost.hide (as_seq h1 b)))) = let h = HST.get () in let s = Ghost.hide (as_seq h b) in witness_p b (seq_eq s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowStar.ImmutableBuffer.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.ImmutableBuffer.ibuffer a -> s: FStar.Ghost.erased (FStar.Seq.Base.seq a) -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.recall_p", "LowStar.ImmutableBuffer.immutable_preorder", "LowStar.ImmutableBuffer.seq_eq", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.l_or", "LowStar.Monotonic.Buffer.recallable", "LowStar.Monotonic.Buffer.live", "LowStar.ImmutableBuffer.value_is", "Prims.eq2", "LowStar.Monotonic.Buffer.as_seq", "FStar.Ghost.reveal" ]
[]
false
true
false
false
false
let recall_value (#a: Type0) (b: ibuffer a) (s: Ghost.erased (Seq.seq a)) : HST.ST unit (requires (fun h0 -> (recallable b \/ live h0 b) /\ b `value_is` s)) (ensures (fun h0 _ h1 -> h0 == h1 /\ live h1 b /\ as_seq h1 b == Ghost.reveal s)) =
recall_p b (seq_eq s)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_load_pkey_lemma
val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s))
val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s))
let rsapss_load_pkey_lemma #t modBits eBits nb eb = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_from_bytes_be #t nbLen nb in bn_from_bytes_be_lemma #t nbLen nb; let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be #t ebLen eb in bn_from_bytes_be_lemma #t ebLen eb; let pkey = (n @| r2) @| e in eq_intro (sub pkey 0 nLen) n; eq_intro (sub pkey nLen nLen) r2; eq_intro (sub pkey (nLen + nLen) eLen) e; let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in logand_lemma m0 m1
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 891, "start_col": 0, "start_line": 868 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s)) val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t))) let rsapss_load_pkey #t modBits eBits nb eb = let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.RSAPSS.rsapss_load_pkey modBits eBits nb eb in (let FStar.Pervasives.Native.Mktuple2 #_ #_ b pkey = _ in let pkey_s = Spec.RSAPSS.rsapss_load_pkey modBits eBits nb eb in (match b with | true -> Hacl.Spec.RSAPSS.rsapss_load_pkey_post modBits eBits nb eb pkey | _ -> None? pkey_s) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.Bignum.Definitions.limb", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_AmpAmp", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.bits", "Prims.pow2", "Lib.IntTypes.ones", "Prims.bool", "Lib.IntTypes.zeros", "Hacl.Spec.RSAPSS.rsapss_check_exponent", "Prims.op_Equality", "Prims.op_Modulus", "Prims.op_Subtraction", "Hacl.Spec.RSAPSS.rsapss_check_modulus", "Prims.unit", "Lib.Sequence.eq_intro", "Lib.Sequence.sub", "Prims.op_Addition", "Lib.IntTypes.numbytes", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.op_At_Bar", "Hacl.Spec.Bignum.bn_from_bytes_be_lemma", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.bn_from_bytes_be", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Multiply" ]
[]
true
false
true
false
false
let rsapss_load_pkey_lemma #t modBits eBits nb eb =
let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_from_bytes_be #t nbLen nb in bn_from_bytes_be_lemma #t nbLen nb; let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be #t ebLen eb in bn_from_bytes_be_lemma #t ebLen eb; let pkey = (n @| r2) @| e in eq_intro (sub pkey 0 nLen) n; eq_intro (sub pkey nLen nLen) r2; eq_intro (sub pkey (nLen + nLen) eLen) e; let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in logand_lemma m0 m1
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.recall
val recall (#inames: _) (#a:Type u#0) (#q:perm) (#p:Preorder.preorder a) (fact:property a) (r:erased (ref a p)) (v:erased a) (w:witnessed r fact) : STAtomicU unit inames (pts_to r q v) (fun _ -> pts_to r q v) (requires True) (ensures fun _ -> fact v)
val recall (#inames: _) (#a:Type u#0) (#q:perm) (#p:Preorder.preorder a) (fact:property a) (r:erased (ref a p)) (v:erased a) (w:witnessed r fact) : STAtomicU unit inames (pts_to r q v) (fun _ -> pts_to r q v) (requires True) (ensures fun _ -> fact v)
let recall (#inames: _) (#a:Type u#0) (#q:perm) (#p:Preorder.preorder a) (fact:property a) (r:erased (ref a p)) (v:erased a) (w:witnessed r fact) = coerce_atomic (fun _ -> MR.recall #inames #a #q #p fact r v w)
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 66, "end_line": 89, "start_col": 0, "start_line": 81 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x) let witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0 = MR.witnessed r fact let witness' (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) (_:unit) : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) = MR.witness #inames #a #q #p r fact v pf let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) = coerce_atomic (witness' r fact v pf)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fact: Steel.ST.MonotonicReference.property a -> r: FStar.Ghost.erased (Steel.ST.MonotonicReference.ref a p) -> v: FStar.Ghost.erased a -> w: Steel.ST.MonotonicReference.witnessed (FStar.Ghost.reveal r) fact -> Steel.ST.Effect.Atomic.STAtomicU Prims.unit
Steel.ST.Effect.Atomic.STAtomicU
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Preorder.preorder", "Steel.ST.MonotonicReference.property", "FStar.Ghost.erased", "Steel.ST.MonotonicReference.ref", "Steel.ST.MonotonicReference.witnessed", "FStar.Ghost.reveal", "Steel.ST.Coercions.coerce_atomic", "Prims.unit", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.MonotonicReference.pts_to_sl", "Steel.MonotonicReference.ref", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.MonotonicReference.recall" ]
[]
false
true
false
false
false
let recall (#inames: _) (#a: Type u#0) (#q: perm) (#p: Preorder.preorder a) (fact: property a) (r: erased (ref a p)) (v: erased a) (w: witnessed r fact) =
coerce_atomic (fun _ -> MR.recall #inames #a #q #p fact r v w)
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.witness
val witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (_:squash (fact v)) : STAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v)
val witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (_:squash (fact v)) : STAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v)
let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) = coerce_atomic (witness' r fact v pf)
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 79, "start_col": 0, "start_line": 71 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x) let witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0 = MR.witnessed r fact let witness' (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) (_:unit) : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) = MR.witness #inames #a #q #p r fact v pf
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Ghost.erased (Steel.ST.MonotonicReference.ref a p) -> fact: Steel.ST.MonotonicReference.stable_property p -> v: FStar.Ghost.erased a -> pf: Prims.squash (fact (FStar.Ghost.reveal v)) -> Steel.ST.Effect.Atomic.STAtomicUT (Steel.ST.MonotonicReference.witnessed (FStar.Ghost.reveal r) fact)
Steel.ST.Effect.Atomic.STAtomicUT
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Preorder.preorder", "FStar.Ghost.erased", "Steel.ST.MonotonicReference.ref", "Steel.ST.MonotonicReference.stable_property", "Prims.squash", "FStar.Ghost.reveal", "Steel.ST.Coercions.coerce_atomic", "Steel.ST.MonotonicReference.witnessed", "Steel.Effect.Common.Unobservable", "Steel.ST.MonotonicReference.pts_to", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.ST.MonotonicReference.witness'" ]
[]
false
true
false
false
false
let witness (#inames: _) (#a: Type) (#q: perm) (#p: Preorder.preorder a) (r: erased (ref a p)) (fact: stable_property p) (v: erased a) (pf: squash (fact v)) =
coerce_atomic (witness' r fact v pf)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_bn
val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True)
val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True)
let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 324, "start_col": 0, "start_line": 306 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True)
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> m: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)) -> Prims.Pure (Prims.bool * Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t)))
Prims.Pure
[]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.logand", "Lib.IntTypes.SEC", "Lib.Sequence.map", "Hacl.Spec.Bignum.bn_eq_mask", "Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_vartime_precompr2", "Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_consttime_precompr2", "Prims.unit", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n_lemma", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_le_compat", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Multiply", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.sub", "Prims.int", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let rsapss_sign_bn #t modBits eBits dBits skey m =
let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_verify_lemma
val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg))
val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg))
let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in ()
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 697, "start_col": 0, "start_line": 650 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.pkey_len_pre t modBits eBits} -> pkey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> sgnt: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> FStar.Pervasives.Lemma (requires Hacl.Spec.RSAPSS.rsapss_verify_pre a sLen msgLen msg /\ Hacl.Spec.RSAPSS.rsapss_pkey_pre modBits eBits pkey) (ensures Hacl.Spec.RSAPSS.rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (Hacl.Spec.RSAPSS.rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.pkey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.unit", "Hacl.Spec.Bignum.Base.unsafe_bool_of_limb", "Prims.bool", "Hacl.Spec.RSAPSS.bn_lt_pow2", "Spec.RSAPSS.pss_verify", "Hacl.Spec.Bignum.bn_to_bytes_be_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.bn_to_bytes_be", "Prims._assert", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.RSAPSS.bn_eval_sub", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.pow2", "Hacl.Spec.RSAPSS.bn_lt_pow2_lemma", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_pos", "Hacl.Spec.RSAPSS.blocks_numb_lemma", "Hacl.Spec.RSAPSS.blocks_bits_lemma", "Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_vartime_precompr2", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n_lemma", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_le_compat", "Hacl.Spec.Bignum.bn_lt_mask_lemma", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.bn_lt_mask", "Hacl.Spec.Bignum.bn_from_bytes_be_lemma", "Hacl.Spec.Bignum.bn_from_bytes_be", "Prims.pos", "Prims.op_Multiply", "Prims.int" ]
[]
false
false
true
false
false
let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then (Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em else false in ()) in ()
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_load_skey_lemma
val rsapss_load_skey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> Lemma (let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in (if b then rsapss_load_skey_post modBits eBits dBits nb eb db skey else None? skey_s))
val rsapss_load_skey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> Lemma (let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in (if b then rsapss_load_skey_post modBits eBits dBits nb eb db skey else None? skey_s))
let rsapss_load_skey_lemma #t modBits eBits dBits nb eb db = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let dbLen = blocks dBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in rsapss_load_pkey_lemma #t modBits eBits nb eb; let d = bn_from_bytes_be #t (blocks dBits 8) db in bn_from_bytes_be_lemma #t (blocks dBits 8) db; let skey = pkey @| d in eq_intro (sub skey 0 (nLen + nLen + eLen)) pkey; eq_intro (sub skey (nLen + nLen + eLen) dLen) d
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 945, "start_col": 0, "start_line": 927 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s)) let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s' val rsapss_sign: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey) (ensures fun (b, sgnt) -> rsapss_sign_post1 a modBits eBits dBits skey sLen salt msgLen msg b sgnt) let rsapss_sign #t a modBits eBits dBits skey sLen salt msgLen msg sgnt = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && sLen + hLen + 2 <= blocks (modBits - 1) 8 in if b then begin rsapss_sign_lemma a modBits eBits dBits skey sLen salt msgLen msg; rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg end else false, sgnt val rsapss_verify_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> m_def:lbignum t (blocks modBits (bits t)) -> s:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_bn #t modBits eBits pkey m_def s = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in if bn_lt_pow2 modBits m then (true, m) else false, m end else false, m_def val rsapss_verify_bn_to_msg: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> m:lbignum t (blocks modBits (bits t)) -> Pure bool (requires rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_bn_to_msg #t a modBits sLen msgLen msg m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let m1 = sub m 0 (blocks emLen numb) in let em = bn_to_bytes_be emLen m1 in S.pss_verify a sLen msgLen msg emBits em val rsapss_verify_compute_msg: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sgnt:lseq uint8 (blocks modBits 8) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun res -> True) let rsapss_verify_compute_msg #t modBits eBits pkey sgnt = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in let m_def = create nLen (uint #t 0) in rsapss_verify_bn #t modBits eBits pkey m_def s val rsapss_verify_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey /\ rsapss_verify_pre a sLen msgLen msg) (ensures fun r -> True) let rsapss_verify_ #t a modBits eBits pkey sLen sgnt msgLen msg = let (b, m) = rsapss_verify_compute_msg #t modBits eBits pkey sgnt in if b then rsapss_verify_bn_to_msg a modBits sLen msgLen msg m else false val rsapss_verify_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey) (ensures rsapss_verify_post a modBits eBits pkey sLen sgnt msgLen msg (rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg)) let rsapss_verify_lemma #t a modBits eBits pkey sLen sgnt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let s = bn_from_bytes_be k sgnt in bn_from_bytes_be_lemma #t k sgnt; let mask = bn_lt_mask s n in bn_lt_mask_lemma s n; let res = if BB.unsafe_bool_of_limb mask then begin Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let m = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); bn_lt_pow2_lemma modBits m; assert (bn_lt_pow2 modBits m == (bn_v m < pow2 (emLen * 8))); let res = if bn_lt_pow2 modBits m then begin let m1 = sub m 0 (blocks emLen numb) in bn_eval_sub modBits m; assert (bn_v m1 == bn_v m); let em = bn_to_bytes_be emLen m1 in bn_to_bytes_be_lemma emLen m1; S.pss_verify a sLen msgLen msg emBits em end else false in () end in () val rsapss_verify: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure bool (requires rsapss_pkey_pre modBits eBits pkey) (ensures fun r -> rsapss_verify_post1 a modBits eBits pkey sLen k sgnt msgLen msg r) let rsapss_verify #t a modBits eBits pkey sLen k sgnt msgLen msg = let hLen = Hash.hash_length a in Math.Lemmas.pow2_lt_compat 61 32; Math.Lemmas.pow2_lt_compat 125 32; //assert (max_size_t < Hash.max_input_length a); assert (hLen + 8 < max_size_t); let b = sLen <= v (0xfffffffful) - hLen - 8 && msgLen `less_than_max_input_length` a && k = blocks modBits 8 in if b then begin rsapss_verify_lemma a modBits eBits pkey sLen sgnt msgLen msg; rsapss_verify_ a modBits eBits pkey sLen sgnt msgLen msg end else false val bn_check_num_bits: #t:limb_t -> bs:size_pos -> b:lbignum t (blocks bs (bits t)) -> res:limb t{v res == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))} let bn_check_num_bits #t bs b = let bLen = blocks bs (bits t) in assert (bs <= bits t * bLen); let m : limb t = if bs = bits t * bLen then ones t SEC else bn_lt_pow2_mask b bs in (if bs = bits t * bLen then begin bn_eval_bound b bLen; Math.Lemmas.pow2_le_compat (bits t * bLen) bs end else bn_lt_pow2_mask_lemma b bs); assert (v m == (if bn_v b < pow2 bs then v (ones t SEC) else v (zeros t SEC))); m val rsapss_check_modulus: #t:limb_t -> modBits:size_pos -> n:lbignum t (blocks modBits (bits t)) -> res:limb t{v res == (if (bn_v n % 2 = 1 && pow2 (modBits - 1) < bn_v n && bn_v n < pow2 modBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_modulus #t modBits n = let bit0 = bn_is_odd n in bn_is_odd_lemma n; assert (v bit0 == bn_v n % 2); let m0 = uint #t 0 -. bit0 in let m1 = bn_gt_pow2_mask n (modBits - 1) in bn_gt_pow2_mask_lemma n (modBits - 1); let m2 = bn_check_num_bits modBits n in let m = m0 &. (m1 &. m2) in logand_lemma m0 (m1 &. m2); logand_lemma m1 m2; m val rsapss_check_exponent: #t:limb_t -> eBits:size_pos -> e:lbignum t (blocks eBits (bits t)) -> res:limb t{v res == (if (0 < bn_v e && bn_v e < pow2 eBits) then v (ones t SEC) else v (zeros t SEC))} let rsapss_check_exponent #t eBits e = let m0 = bn_is_zero_mask e in bn_is_zero_mask_lemma e; let m1 = bn_check_num_bits eBits e in let m = (lognot m0) &. m1 in lognot_lemma m0; logand_lemma (lognot m0) m1; m val rsapss_load_pkey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_load_pkey_post #t modBits eBits nb eb pkey = let bits = bits t in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let e = sub pkey (nLen + nLen) eLen in rsapss_pkey_pre modBits eBits pkey /\ Some? pkey_s /\ bn_v n == S.Mk_rsapss_pkey?.n (Some?.v pkey_s) /\ bn_v e == S.Mk_rsapss_pkey?.e (Some?.v pkey_s) val rsapss_load_skey_post: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_load_skey_post #t modBits eBits dBits nb eb db skey = let bits = bits t in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in rsapss_skey_pre modBits eBits dBits skey /\ Some? skey_s /\ (let pkey_s = S.Mk_rsapss_skey?.pkey (Some?.v skey_s) in bn_v n == S.Mk_rsapss_pkey?.n pkey_s /\ bn_v e == S.Mk_rsapss_pkey?.e pkey_s /\ bn_v d == S.Mk_rsapss_skey?.d (Some?.v skey_s)) val rsapss_load_pkey: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t))) let rsapss_load_pkey #t modBits eBits nb eb = let n = bn_from_bytes_be (blocks modBits 8) nb in let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be (blocks eBits 8) eb in let pkey = (n @| r2) @| e in let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in BB.unsafe_bool_of_limb m, pkey val rsapss_load_pkey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> Lemma (let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in let pkey_s = S.rsapss_load_pkey modBits eBits nb eb in (if b then rsapss_load_pkey_post modBits eBits nb eb pkey else None? pkey_s)) let rsapss_load_pkey_lemma #t modBits eBits nb eb = let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_from_bytes_be #t nbLen nb in bn_from_bytes_be_lemma #t nbLen nb; let r2 = SM.bn_precomp_r2_mod_n (modBits - 1) n in let e = bn_from_bytes_be #t ebLen eb in bn_from_bytes_be_lemma #t ebLen eb; let pkey = (n @| r2) @| e in eq_intro (sub pkey 0 nLen) n; eq_intro (sub pkey nLen nLen) r2; eq_intro (sub pkey (nLen + nLen) eLen) e; let m0 = rsapss_check_modulus modBits n in let m1 = rsapss_check_exponent eBits e in let m = m0 &. m1 in logand_lemma m0 m1 val rsapss_load_skey: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> tuple2 bool (lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t))) let rsapss_load_skey #t modBits eBits dBits nb eb db = let b, pkey = rsapss_load_pkey modBits eBits nb eb in let d = bn_from_bytes_be #t (blocks dBits 8) db in let skey = pkey @| d in let m0 = rsapss_check_exponent dBits d in let b1 = b && BB.unsafe_bool_of_limb m0 in b1, skey val rsapss_load_skey_lemma: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> nb:lseq uint8 (blocks modBits 8) -> eb:lseq uint8 (blocks eBits 8) -> db:lseq uint8 (blocks dBits 8) -> Lemma (let b, skey = rsapss_load_skey #t modBits eBits dBits nb eb db in let skey_s = S.rsapss_load_skey modBits eBits dBits nb eb db in (if b then rsapss_load_skey_post modBits eBits dBits nb eb db skey else None? skey_s))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks modBits 8) -> eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks eBits 8) -> db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Hacl.Spec.Bignum.Definitions.blocks dBits 8) -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.RSAPSS.rsapss_load_skey modBits eBits dBits nb eb db in (let FStar.Pervasives.Native.Mktuple2 #_ #_ b skey = _ in let skey_s = Spec.RSAPSS.rsapss_load_skey modBits eBits dBits nb eb db in (match b with | true -> Hacl.Spec.RSAPSS.rsapss_load_skey_post modBits eBits dBits nb eb db skey | _ -> None? skey_s) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Definitions.blocks", "Prims.bool", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Lib.Sequence.eq_intro", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Sequence.sub", "Lib.IntTypes.numbytes", "Prims.unit", "Prims.op_Multiply", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.Sequence.op_At_Bar", "Hacl.Spec.Bignum.bn_from_bytes_be_lemma", "Hacl.Spec.Bignum.bn_from_bytes_be", "Hacl.Spec.RSAPSS.rsapss_load_pkey_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.RSAPSS.rsapss_load_pkey", "Prims.pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.int" ]
[]
false
false
true
false
false
let rsapss_load_skey_lemma #t modBits eBits dBits nb eb db =
let bits = bits t in let nbLen = blocks modBits 8 in let ebLen = blocks eBits 8 in let dbLen = blocks dBits 8 in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let b, pkey = rsapss_load_pkey #t modBits eBits nb eb in rsapss_load_pkey_lemma #t modBits eBits nb eb; let d = bn_from_bytes_be #t (blocks dBits 8) db in bn_from_bytes_be_lemma #t (blocks dBits 8) db; let skey = pkey @| d in eq_intro (sub skey 0 (nLen + nLen + eLen)) pkey; eq_intro (sub skey (nLen + nLen + eLen) dLen) d
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.write
val write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True)
val write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True)
let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x)
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 48, "start_col": 0, "start_line": 41 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.MonotonicReference.ref a p -> x: a -> Steel.ST.Effect.ST Prims.unit
Steel.ST.Effect.ST
[]
[]
[ "FStar.Preorder.preorder", "FStar.Ghost.erased", "Steel.ST.MonotonicReference.ref", "Steel.ST.Coercions.coerce_steel", "Prims.unit", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.MonotonicReference.pts_to_sl", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_and", "Prims.l_True", "Steel.MonotonicReference.write", "Steel.ST.MonotonicReference.pts_to" ]
[]
false
true
false
false
false
let write (#a: Type) (#p: Preorder.preorder a) (#v: erased a) (r: ref a p) (x: a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) =
coerce_steel (fun _ -> MR.write r x)
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_t
val validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r + 1))
val validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r + 1))
let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 69, "end_line": 47, "start_col": 0, "start_line": 36 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl from -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_key_type", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.BitSum.synth_bitsum'" ]
[]
false
false
false
false
true
let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r + 1)) =
u: (bitsum'_key_type b -> Tot (Type u#r)) -> f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (u x))) -> v: (x: bitsum'_key_type b -> Tot (validator (dsnd (f x)))) -> x: parse_filter_refine (filter_bitsum' b) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
false
Vale.PPC64LE.Regs.fst
Vale.PPC64LE.Regs.equal
val equal (regs1:t) (regs2:t) : prop0
val equal (regs1:t) (regs2:t) : prop0
let equal regs1 regs2 = feq regs1 regs2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Regs.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 5, "start_col": 0, "start_line": 5 }
module Vale.PPC64LE.Regs open Vale.PPC64LE.Machine_s open FStar.FunctionalExtensionality
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.Machine_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Regs.fst" }
[ { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
regs1: Vale.PPC64LE.Regs.t -> regs2: Vale.PPC64LE.Regs.t -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Regs.t", "FStar.FunctionalExtensionality.feq", "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Machine_s.nat64", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let equal regs1 regs2 =
feq regs1 regs2
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.share
val share (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v)
val share (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v)
let share (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v) = coerce_ghost (fun _ -> MR.share r f v)
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 100, "start_col": 0, "start_line": 91 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x) let witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0 = MR.witnessed r fact let witness' (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) (_:unit) : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) = MR.witness #inames #a #q #p r fact v pf let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) = coerce_atomic (witness' r fact v pf) let recall (#inames: _) (#a:Type u#0) (#q:perm) (#p:Preorder.preorder a) (fact:property a) (r:erased (ref a p)) (v:erased a) (w:witnessed r fact) = coerce_atomic (fun _ -> MR.recall #inames #a #q #p fact r v w)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.MonotonicReference.ref a p -> f: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Preorder.preorder", "Steel.ST.MonotonicReference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.MonotonicReference.pts_to_sl", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.FractionalPermission.half_perm", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.MonotonicReference.share", "Steel.ST.MonotonicReference.pts_to" ]
[]
false
true
false
false
false
let share (#inames: _) (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: Ghost.erased a) : STGhostT unit inames (pts_to r f v) (fun _ -> (pts_to r (half_perm f) v) `star` (pts_to r (half_perm f) v)) =
coerce_ghost (fun _ -> MR.share r f v)
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.gather
val gather (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f g:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v `star` pts_to r g v) (fun _ -> pts_to r (sum_perm f g) v)
val gather (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f g:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v `star` pts_to r g v) (fun _ -> pts_to r (sum_perm f g) v)
let gather (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f g:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v `star` pts_to r g v) (fun _ -> pts_to r (sum_perm f g) v) = coerce_ghost (fun _ -> MR.gather #inames #a #p r f g v)
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 59, "end_line": 111, "start_col": 0, "start_line": 102 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x) let witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0 = MR.witnessed r fact let witness' (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) (_:unit) : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) = MR.witness #inames #a #q #p r fact v pf let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) = coerce_atomic (witness' r fact v pf) let recall (#inames: _) (#a:Type u#0) (#q:perm) (#p:Preorder.preorder a) (fact:property a) (r:erased (ref a p)) (v:erased a) (w:witnessed r fact) = coerce_atomic (fun _ -> MR.recall #inames #a #q #p fact r v w) let share (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a) : STGhostT unit inames (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v) = coerce_ghost (fun _ -> MR.share r f v)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.MonotonicReference.ref a p -> f: Steel.FractionalPermission.perm -> g: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Preorder.preorder", "Steel.ST.MonotonicReference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "Steel.Effect.Common.star", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.MonotonicReference.pts_to_sl", "FStar.Ghost.reveal", "Steel.FractionalPermission.sum_perm", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.MonotonicReference.gather", "Steel.ST.MonotonicReference.pts_to" ]
[]
false
true
false
false
false
let gather (#inames: _) (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f g: perm) (v: Ghost.erased a) : STGhostT unit inames ((pts_to r f v) `star` (pts_to r g v)) (fun _ -> pts_to r (sum_perm f g) v) =
coerce_ghost (fun _ -> MR.gather #inames #a #p r f g v)
false
Hacl.Spec.RSAPSS.fst
Hacl.Spec.RSAPSS.rsapss_sign_lemma
val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s))
val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s))
let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s'
{ "file_name": "code/rsapss/Hacl.Spec.RSAPSS.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 482, "start_col": 0, "start_line": 433 }
module Hacl.Spec.RSAPSS open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions open Hacl.Spec.Bignum open Hacl.Spec.Bignum.Exponentiation module S = Spec.RSAPSS module BB = Hacl.Spec.Bignum.Base module SM = Hacl.Spec.Bignum.Montgomery module BSeq = Lib.ByteSequence module Hash = Spec.Agile.Hash #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" val blocks_bits_lemma: t:limb_t -> bs:size_pos -> Lemma (blocks (blocks bs 8) (numbytes t) == blocks bs (bits t)) let blocks_bits_lemma t bs = () val blocks_numb_lemma: t:limb_t -> bs:size_pos -> Lemma (numbytes t * blocks (blocks bs 8) (numbytes t) <= max_size_t) let blocks_numb_lemma t bs = () val bn_lt_pow2: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> bool let bn_lt_pow2 #t modBits m = if (modBits - 1) % 8 <> 0 then true else BB.unsafe_bool_of_limb0 (bn_get_ith_bit m (modBits - 1)) val bn_eval_lt_pow2_modBits: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_v m == (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1)) let bn_eval_lt_pow2_modBits #t modBits m = calc (==) { bn_v m; (==) { Math.Lemmas.euclidean_division_definition (bn_v m) (pow2 (modBits - 1)) } bn_v m / pow2 (modBits - 1) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.euclidean_division_definition (bn_v m / pow2 (modBits - 1)) 2 } (bn_v m / pow2 (modBits - 1) / 2 * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.division_multiplication_lemma (bn_v m) (pow2 (modBits - 1)) 2; Math.Lemmas.pow2_plus (modBits - 1) 1} (bn_v m / pow2 modBits * 2 + bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); (==) { Math.Lemmas.small_division_lemma_1 (bn_v m) (pow2 modBits) } (bn_v m / pow2 (modBits - 1) % 2) * pow2 (modBits - 1) + bn_v m % pow2 (modBits - 1); } val bn_lt_pow2_lemma: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 modBits) (ensures bn_lt_pow2 modBits m == (bn_v m < pow2 (8 * blocks (modBits - 1) 8))) let bn_lt_pow2_lemma #t modBits m = let k = blocks modBits 8 in let emLen = blocks (modBits - 1) 8 in let nLen = blocks k (numbytes t) in assert (nLen == blocks modBits (bits t)); if (modBits - 1) % 8 <> 0 then Math.Lemmas.pow2_le_compat (8 * emLen) modBits else begin assert (k == emLen + 1); bn_eval_unfold_i m nLen; assert (8 * k == modBits + 7); assert (8 * emLen == modBits - 1); bn_eval_lt_pow2_modBits modBits m; bn_get_ith_bit_lemma m (modBits - 1) end val bn_eval_sub: #t:limb_t -> modBits:size_pos{1 < modBits} -> m:lbignum t (blocks modBits (bits t)) -> Lemma (requires bn_v m < pow2 (8 * blocks (modBits - 1) 8)) (ensures bn_v m == bn_v (sub m 0 (blocks (blocks (modBits - 1) 8) (numbytes t)))) let bn_eval_sub #t modBits m = let emLen = blocks (modBits - 1) 8 in let mLen = blocks emLen (numbytes t) in let nLen = blocks modBits (bits t) in assert (bn_v m < pow2 (8 * emLen)); let m1 = sub m 0 mLen in bn_eval_split_i m mLen; assert (bn_v m == bn_v m1 + pow2 (bits t * mLen) * bn_v (slice m mLen nLen)); bn_eval_bound m1 mLen; assert (bn_v m1 < pow2 (bits t * mLen)); Math.Lemmas.pow2_le_compat (bits t * mLen) (8 * emLen) let pkey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) = let bits = bits t in 1 < modBits /\ 0 < eBits /\ 2 * bits * blocks modBits bits <= max_size_t /\ bits * blocks eBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits <= max_size_t let skey_len_pre (t:limb_t) (modBits:size_nat) (eBits:size_nat) (dBits:size_nat) = let bits = bits t in pkey_len_pre t modBits eBits /\ 0 < dBits /\ bits * blocks dBits bits <= max_size_t /\ 2 * blocks modBits bits + blocks eBits bits + blocks dBits bits <= max_size_t val rsapss_pkey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> Type0 let rsapss_pkey_pre #t modBits eBits pkey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = sub pkey 0 nLen in let r2 = sub pkey nLen nLen in let e = sub pkey (nLen + nLen) eLen in r2 == SM.bn_precomp_r2_mod_n (modBits - 1) n /\ bn_v n % 2 = 1 /\ pow2 (modBits - 1) < bn_v n /\ bn_v n < pow2 modBits /\ 0 < bn_v e /\ bn_v e < pow2 eBits val rsapss_skey_pre: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> Type0 let rsapss_skey_pre #t modBits eBits dBits skey = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let pkeyLen = nLen + nLen + eLen in let pkey = sub skey 0 pkeyLen in let d = sub skey pkeyLen dLen in rsapss_pkey_pre modBits eBits pkey /\ 0 < bn_v d /\ bn_v d < pow2 dBits val rsapss_sign_pre: a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 inline_for_extraction noextract let less_than_max_input_length = Spec.Hash.Definitions.less_than_max_input_length let rsapss_sign_pre a modBits sLen salt msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 /\ msgLen `less_than_max_input_length` a val rsapss_sign_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let eq_m_s, sgnt_s = S.rsapss_sign_ a modBits skeys sLen salt msgLen msg in eq_m_s == eq_m /\ sgnt == sgnt_s) val rsapss_sign_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> eq_m:bool -> sgnt:lseq uint8 (blocks modBits 8) -> Type0 let rsapss_sign_post1 #t a modBits eBits dBits skey sLen salt msgLen msg eq_m sgnt = rsapss_skey_pre modBits eBits dBits skey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = bn_v (sub skey 0 nLen) in let e = bn_v (sub skey (nLen + nLen) eLen) in let d = bn_v (sub skey (nLen + nLen + eLen) dLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in let skeys : S.rsapss_skey modBits = S.Mk_rsapss_skey pkeys d in let sgnt_s = S.rsapss_sign a modBits skeys sLen salt msgLen msg in if eq_m then Some? sgnt_s /\ sgnt == Some?.v sgnt_s else None? sgnt_s) val rsapss_verify_pre: a:Hash.hash_alg{S.hash_is_supported a} -> sLen:size_nat //saltLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Type0 let rsapss_verify_pre a sLen msgLen msg = sLen + Hash.hash_length a + 8 <= max_size_t /\ (sLen + Hash.hash_length a + 8) `less_than_max_input_length` a /\ msgLen `less_than_max_input_length` a val rsapss_verify_post: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> sgnt:lseq uint8 (blocks modBits 8) -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post #t a modBits eBits pkey sLen sgnt msgLen msg verify = rsapss_verify_pre a sLen msgLen msg /\ rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify_ a modBits pkeys sLen sgnt msgLen msg) val rsapss_verify_post1: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat{pkey_len_pre t modBits eBits} -> pkey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t)) -> sLen:size_nat //saltLen -> k:size_nat -> sgnt:lseq uint8 k -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> verify:bool -> Type0 let rsapss_verify_post1 #t a modBits eBits pkey sLen k sgnt msgLen msg verify = rsapss_pkey_pre modBits eBits pkey /\ (let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let n = bn_v (sub pkey 0 nLen) in let e = bn_v (sub pkey (nLen + nLen) eLen) in let pkeys : S.rsapss_pkey modBits = S.Mk_rsapss_pkey n e in verify == S.rsapss_verify a modBits pkeys sLen k sgnt msgLen msg) val rsapss_sign_bn: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lbignum t (blocks modBits (bits t)))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_bn #t modBits eBits dBits skey m = let bits = bits t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in let s = map (logand eq_m) s in BB.unsafe_bool_of_limb eq_m, s val rsapss_sign_msg_to_bn: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat{1 < modBits} -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (lbignum t (blocks modBits (bits t))) (requires rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> bn_v res < pow2 (modBits - 1)) let rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be #t emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; m val rsapss_sign_compute_sgnt: #t:limb_t -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> m:lbignum t (blocks modBits (bits t)) -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires (let nLen = blocks modBits (bits t) in let n = sub skey 0 nLen in rsapss_skey_pre modBits eBits dBits skey /\ bn_v m < bn_v n)) (ensures fun res -> True) let rsapss_sign_compute_sgnt #t modBits eBits dBits skey m = let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let k = blocks modBits 8 in let eq_b, s = rsapss_sign_bn #t modBits eBits dBits skey m in blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); let sgnt = bn_to_bytes_be k s in eq_b, sgnt val rsapss_sign_: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Pure (tuple2 bool (lseq uint8 (blocks modBits 8))) (requires rsapss_skey_pre modBits eBits dBits skey /\ rsapss_sign_pre a modBits sLen salt msgLen msg) (ensures fun res -> True) let rsapss_sign_ #t a modBits eBits dBits skey sLen salt msgLen msg = let m = rsapss_sign_msg_to_bn #t a modBits sLen salt msgLen msg in rsapss_sign_compute_sgnt #t modBits eBits dBits skey m val rsapss_sign_lemma: #t:limb_t -> a:Hash.hash_alg{S.hash_is_supported a} -> modBits:size_nat -> eBits:size_nat -> dBits:size_nat{skey_len_pre t modBits eBits dBits} -> skey:lbignum t (2 * blocks modBits (bits t) + blocks eBits (bits t) + blocks dBits (bits t)) -> sLen:size_nat -> salt:lseq uint8 sLen -> msgLen:nat -> msg:seq uint8{length msg == msgLen} -> Lemma (requires rsapss_sign_pre a modBits sLen salt msgLen msg /\ rsapss_skey_pre modBits eBits dBits skey) (ensures (let eq_m, s = rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s))
{ "checked_file": "/", "dependencies": [ "Spec.RSAPSS.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Exponentiation.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.RSAPSS.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Spec.RSAPSS", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Exponentiation", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} -> modBits: Lib.IntTypes.size_nat -> eBits: Lib.IntTypes.size_nat -> dBits: Lib.IntTypes.size_nat{Hacl.Spec.RSAPSS.skey_len_pre t modBits eBits dBits} -> skey: Hacl.Spec.Bignum.Definitions.lbignum t (2 * Hacl.Spec.Bignum.Definitions.blocks modBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks eBits (Lib.IntTypes.bits t) + Hacl.Spec.Bignum.Definitions.blocks dBits (Lib.IntTypes.bits t)) -> sLen: Lib.IntTypes.size_nat -> salt: Lib.Sequence.lseq Lib.IntTypes.uint8 sLen -> msgLen: Prims.nat -> msg: Lib.Sequence.seq Lib.IntTypes.uint8 {Lib.Sequence.length msg == msgLen} -> FStar.Pervasives.Lemma (requires Hacl.Spec.RSAPSS.rsapss_sign_pre a modBits sLen salt msgLen msg /\ Hacl.Spec.RSAPSS.rsapss_skey_pre modBits eBits dBits skey) (ensures (let _ = Hacl.Spec.RSAPSS.rsapss_sign_ a modBits eBits dBits skey sLen salt msgLen msg in (let FStar.Pervasives.Native.Mktuple2 #_ #_ eq_m s = _ in Hacl.Spec.RSAPSS.rsapss_sign_post a modBits eBits dBits skey sLen salt msgLen msg eq_m s ) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Spec.Hash.Definitions.hash_alg", "Prims.b2t", "Spec.RSAPSS.hash_is_supported", "Lib.IntTypes.size_nat", "Hacl.Spec.RSAPSS.skey_len_pre", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Prims.nat", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Hacl.Spec.Bignum.bn_to_bytes_be_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.bn_to_bytes_be", "Prims.unit", "Prims._assert", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "FStar.Math.Lemmas.pow2_le_compat", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Lib.IntTypes.size_pos", "Prims.l_or", "Hacl.Spec.RSAPSS.blocks_numb_lemma", "Hacl.Spec.RSAPSS.blocks_bits_lemma", "Hacl.Spec.Bignum.Definitions.bn_mask_lemma", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.IntTypes.logand", "Lib.Sequence.map", "Hacl.Spec.Bignum.bn_eq_mask_lemma", "Hacl.Spec.Bignum.bn_eq_mask", "Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_vartime_precompr2", "Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_consttime_precompr2", "Hacl.Spec.Bignum.Montgomery.bn_precomp_r2_mod_n_lemma", "Prims.op_Subtraction", "Spec.RSAPSS.os2ip_lemma", "Hacl.Spec.Bignum.bn_from_bytes_be_lemma", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.bn_eval_update_sub", "Prims.l_and", "Lib.Sequence.sub", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.Sequence.create", "Lib.IntTypes.uint", "Hacl.Spec.Bignum.bn_from_bytes_be", "Spec.RSAPSS.blocks", "Spec.RSAPSS.pss_encode", "Prims.pos", "Prims.op_Multiply", "Prims.int", "FStar.Seq.Base.slice" ]
[]
true
false
true
false
false
let rsapss_sign_lemma #t a modBits eBits dBits skey sLen salt msgLen msg =
let bits = bits t in let numb = numbytes t in let nLen = blocks modBits bits in let eLen = blocks eBits bits in let dLen = blocks dBits bits in let n = sub skey 0 nLen in let r2 = sub skey nLen nLen in let e = sub skey (nLen + nLen) eLen in let d = sub skey (nLen + nLen + eLen) dLen in let k = blocks modBits 8 in let emBits = modBits - 1 in let emLen = blocks emBits 8 in let em = S.pss_encode a sLen salt msgLen msg emBits in blocks_bits_lemma t emBits; blocks_numb_lemma t emBits; assert (blocks emLen numb == blocks emBits bits); assert (numb * blocks emLen numb <= max_size_t); let emNat = bn_from_bytes_be emLen em in let m = create nLen (uint #t 0) in let m = update_sub m 0 (blocks emLen numb) emNat in bn_eval_update_sub (blocks emLen numb) emNat nLen; assert (bn_v m == bn_v emNat); bn_from_bytes_be_lemma #t emLen em; S.os2ip_lemma emBits em; assert (bn_v m < bn_v n); Math.Lemmas.pow2_le_compat (bits * nLen) modBits; SM.bn_precomp_r2_mod_n_lemma (modBits - 1) n; let s = bn_mod_exp_consttime_precompr2 nLen n r2 m dBits d in let m' = bn_mod_exp_vartime_precompr2 nLen n r2 s eBits e in let eq_m = bn_eq_mask m m' in bn_eq_mask_lemma m m'; let s' = map (logand eq_m) s in bn_mask_lemma s eq_m; blocks_bits_lemma t modBits; blocks_numb_lemma t modBits; assert (blocks k numb == nLen); assert (numb * blocks k numb <= max_size_t); Math.Lemmas.pow2_le_compat (8 * k) modBits; assert (bn_v s' < pow2 (8 * k)); let sgnt = bn_to_bytes_be k s' in bn_to_bytes_be_lemma k s'
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.witness'
val witness': #inames: _ -> #a: Type -> #q: perm -> #p: Preorder.preorder a -> r: erased (ref a p) -> fact: stable_property p -> v: erased a -> pf: squash (fact v) -> unit -> Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v)
val witness': #inames: _ -> #a: Type -> #q: perm -> #p: Preorder.preorder a -> r: erased (ref a p) -> fact: stable_property p -> v: erased a -> pf: squash (fact v) -> unit -> Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v)
let witness' (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:erased (ref a p)) (fact:stable_property p) (v:erased a) (pf:squash (fact v)) (_:unit) : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) = MR.witness #inames #a #q #p r fact v pf
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 43, "end_line": 69, "start_col": 0, "start_line": 57 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x let write (#a:Type) (#p:Preorder.preorder a) (#v:erased a) (r:ref a p) (x:a) : ST unit (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires p v x) (ensures fun _ -> True) = coerce_steel (fun _ -> MR.write r x) let witnessed (#a:Type u#0) (#p:Preorder.preorder a) (r:ref a p) (fact:property a) : Type0 = MR.witnessed r fact
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Ghost.erased (Steel.ST.MonotonicReference.ref a p) -> fact: Steel.ST.MonotonicReference.stable_property p -> v: FStar.Ghost.erased a -> pf: Prims.squash (fact (FStar.Ghost.reveal v)) -> _: Prims.unit -> Steel.Effect.Atomic.SteelAtomicUT (Steel.ST.MonotonicReference.witnessed (FStar.Ghost.reveal r) fact)
Steel.Effect.Atomic.SteelAtomicUT
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Preorder.preorder", "FStar.Ghost.erased", "Steel.ST.MonotonicReference.ref", "Steel.ST.MonotonicReference.stable_property", "Prims.squash", "FStar.Ghost.reveal", "Prims.unit", "Steel.MonotonicReference.witness", "Steel.MonotonicReference.witnessed", "Steel.MonotonicReference.ref", "Steel.ST.MonotonicReference.witnessed", "Steel.ST.MonotonicReference.pts_to", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let witness' (#inames: _) (#a: Type) (#q: perm) (#p: Preorder.preorder a) (r: erased (ref a p)) (fact: stable_property p) (v: erased a) (pf: squash (fact v)) (_: unit) : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) =
MR.witness #inames #a #q #p r fact v pf
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitstop
val validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
val validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ()))
let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 56, "start_col": 0, "start_line": 50 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x)))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitStop ())
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitStop", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Low.BitSum.validate_bitsum_cases_t" ]
[]
false
false
false
false
false
let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) =
fun u f v x #rrel #rel sl pos -> v () sl pos
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitfield
val validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest))
val validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest))
let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 7, "end_line": 75, "start_col": 0, "start_line": 59 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> sz: Prims.nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot} -> rest: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - sz) -> phi: LowParse.Low.BitSum.validate_bitsum_cases_t rest -> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitField sz rest)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Low.BitSum.validate_bitsum_cases_t", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitField", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Spec.BitSum.coerce" ]
[]
false
false
false
false
false
let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat{sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot}) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) =
fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum'
val validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p))
val validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p))
let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) ()
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 30, "start_col": 0, "start_line": 11 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> v: LowParse.Low.Base.validator p -> r: LowParse.Low.Base.leaf_reader p -> phi: LowParse.Spec.BitSum.filter_bitsum'_t b -> LowParse.Low.Base.validator (LowParse.Spec.BitSum.parse_bitsum' b p)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "LowParse.Low.Base.leaf_reader", "LowParse.Spec.BitSum.filter_bitsum'_t", "LowParse.Low.Combinators.validate_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.Combinators.parse_filter", "LowParse.Low.Combinators.validate_filter", "Prims.bool", "Prims.eq2", "LowParse.Spec.BitSum.synth_bitsum'", "Prims.unit", "LowParse.Spec.BitSum.synth_bitsum'_injective", "LowParse.Spec.BitSum.parse_bitsum'" ]
[]
false
false
false
false
false
let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) =
synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) ()
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t
val validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (Type u#(r + 1))
val validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (Type u#(r + 1))
let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 131, "end_line": 123, "start_col": 0, "start_line": 106 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitSum'", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "Prims.l_not", "LowParse.Spec.Enum.list_mem", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.snd", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.BitSum.synth_bitsum'" ]
[]
false
false
false
false
true
let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) : Tot (Type u#(r + 1)) =
u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r)) -> f: (x: bitsum'_key_type (BitSum' key key_size e payload) -> Tot (k: parser_kind & parser k (u x)) ) -> v: (x: bitsum'_key_type (BitSum' key key_size e payload) -> Tot (validator (dsnd (f x)))) -> x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~(list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) } -> xr: t{xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size} -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_intro
val validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
val validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 25, "end_line": 139, "start_col": 0, "start_line": 126 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x)))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> phi: LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl bitsum'_size key key_size e payload [] e -> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitSum' key key_size e payload)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitSum'", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "LowParse.Low.BitSum.validate_bitsum_cases_t" ]
[]
false
false
false
false
false
let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) =
fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_nil
val validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
val validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e [])
let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *))
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 40, "end_line": 155, "start_col": 0, "start_line": 142 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> h: Prims.squash (e == e @ []) -> LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl bitsum'_size key key_size e payload e []
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.squash", "Prims.eq2", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.append", "Prims.Nil", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitSum'", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "Prims.l_not", "LowParse.Spec.Enum.list_mem", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.snd", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Low.ErrorCode.validator_error_generic", "Prims.unit", "Prims._assert", "Prims.l_False", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t" ]
[]
false
false
false
false
false
let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) =
(fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic)
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.mk_validate_bitsum_cases_t'
val mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b)
val mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b)
let rec mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b) = match b with | BitStop _ -> validate_bitsum_cases_bitstop cl | BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest) | BitSum' key key_size e payload -> validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size)))
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 229, "end_line": 258, "start_col": 0, "start_line": 246 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos inline_for_extraction let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *)) #push-options "--z3rlimit 32" inline_for_extraction let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u f v x xr #rrel #rel sl pos -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x sl pos else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) (mk_validate_bitsum_cases_t': (* universe-polymorphic mutually recursive functions must be "split off" cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544 *) (b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) -> Tot (validate_bitsum_cases_t u#r b) ) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_validate_bitsum_cases_t' (payload k)) (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t') [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl bitsum'_size -> Prims.Tot (LowParse.Low.BitSum.validate_bitsum_cases_t b)
Prims.Tot
[ "total", "" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "LowParse.Spec.BitSum.bitsum'", "Prims.squash", "Prims.eq2", "Prims.int", "LowParse.Low.BitSum.validate_bitsum_cases_bitstop", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "LowParse.Low.BitSum.validate_bitsum_cases_bitfield", "LowParse.Low.BitSum.mk_validate_bitsum_cases_t'", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_intro", "LowParse.Low.BitSum.mk_validate_bitsum_cases_bitsum'_t'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Low.BitSum.validate_bitsum_cases_t" ]
[ "recursion" ]
false
false
false
false
false
let rec mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b) =
match b with | BitStop _ -> validate_bitsum_cases_bitstop cl | BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest) | BitSum' key key_size e payload -> validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size)))
false
Steel.ST.MonotonicReference.fst
Steel.ST.MonotonicReference.alloc
val alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v)
val alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v)
let alloc (#a:Type) (p:Preorder.preorder a) (v:a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) = let x = coerce_steel (fun _ -> MR.alloc p v) in return x
{ "file_name": "lib/steel/Steel.ST.MonotonicReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 12, "end_line": 39, "start_col": 0, "start_line": 36 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.MonotonicReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module Preorder = FStar.Preorder module MR = Steel.MonotonicReference let ref (a:Type u#0) (p:Preorder.preorder a) : Type u#0 = MR.ref a p let pts_to (#a:Type) (#p:Preorder.preorder a) (r:ref a p) ([@@@smt_fallback]f:perm) ([@@@smt_fallback]v:a) : vprop = MR.pts_to #a #p r f v
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.MonotonicReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.MonotonicReference.fst" }
[ { "abbrev": true, "full_module": "Steel.MonotonicReference", "short_module": "MR" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.Preorder.preorder a -> v: a -> Steel.ST.Effect.STT (Steel.ST.MonotonicReference.ref a p)
Steel.ST.Effect.STT
[]
[]
[ "FStar.Preorder.preorder", "Steel.ST.Util.return", "Steel.ST.MonotonicReference.ref", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.MonotonicReference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop", "Steel.MonotonicReference.ref", "Steel.ST.Coercions.coerce_steel", "Steel.Effect.Common.emp", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.MonotonicReference.pts_to_sl", "Prims.l_True", "Prims.unit", "Steel.MonotonicReference.alloc" ]
[]
false
true
false
false
false
let alloc (#a: Type) (p: Preorder.preorder a) (v: a) : STT (ref a p) emp (fun r -> pts_to r full_perm v) =
let x = coerce_steel (fun _ -> MR.alloc p v) in return x
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.mk_validate_bitsum_cases_bitsum'_t'
val mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) (mk_validate_bitsum_cases_t': (b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload} -> Tot (validate_bitsum_cases_t u#r b))) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;l2])
val mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) (mk_validate_bitsum_cases_t': (b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload} -> Tot (validate_bitsum_cases_t u#r b))) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;l2])
let rec mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) (mk_validate_bitsum_cases_t': (* universe-polymorphic mutually recursive functions must be "split off" cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544 *) (b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) -> Tot (validate_bitsum_cases_t u#r b) ) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_validate_bitsum_cases_t' (payload k)) (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t')
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 137, "end_line": 242, "start_col": 0, "start_line": 208 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos inline_for_extraction let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *)) #push-options "--z3rlimit 32" inline_for_extraction let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u f v x xr #rrel #rel sl pos -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x sl pos else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos [@filter_bitsum'_t_attr]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) {e == l1 @ l2} -> mk_validate_bitsum_cases_t': ( b: LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) {b << LowParse.Spec.BitSum.BitSum' key key_size e payload} -> LowParse.Low.BitSum.validate_bitsum_cases_t b) -> Prims.Tot (LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl bitsum'_size key key_size e payload l1 l2)
Prims.Tot
[ "total", "" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.precedes", "LowParse.Spec.BitSum.BitSum'", "LowParse.Low.BitSum.validate_bitsum_cases_t", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_nil", "Prims.unit", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_cons", "LowParse.Low.BitSum.mk_validate_bitsum_cases_bitsum'_t'", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "FStar.List.Tot.Properties.append_assoc", "LowParse.Spec.Enum.enum_repr_of_key_append_cons", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t", "LowParse.Spec.BitSum.bitsum_wellfoundedness" ]
[ "recursion" ]
false
false
false
false
false
let rec mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) {e == l1 `L.append` l2}) (mk_validate_bitsum_cases_t': (b: bitsum' cl (bitsum'_size - key_size) {b << BitSum' key key_size e payload} -> Tot (validate_bitsum_cases_t u#r b))) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload;l2]) =
bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@@ inline_let ]let _ = L.append_l_nil l1 in validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@@ inline_let ]let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_validate_bitsum_cases_t' (payload k)) (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t')
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitsum_gen
val validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x}))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
val validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x}))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload))
let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 17, "end_line": 100, "start_col": 0, "start_line": 78 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> key_of: (x: LowParse.Spec.Enum.enum_repr e -> y: LowParse.Spec.Enum.enum_key e {y == LowParse.Spec.Enum.enum_key_of_repr e x}) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> destr_payload: (k: LowParse.Spec.Enum.enum_key e -> LowParse.Low.BitSum.validate_bitsum_cases_t (payload k)) -> LowParse.Low.BitSum.validate_bitsum_cases_t (LowParse.Spec.BitSum.BitSum' key key_size e payload)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_repr", "LowParse.Spec.Enum.enum_key", "Prims.eq2", "LowParse.Spec.Enum.enum_key_of_repr", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "LowParse.Low.BitSum.validate_bitsum_cases_t", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitSum'", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum'", "Prims.Mkdtuple2", "FStar.UInt.uint_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.get_bitfield", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield" ]
[]
false
false
false
false
false
let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (key_of: (x: enum_repr e -> Tot (y: enum_key e {y == enum_key_of_repr e x}))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: (k: enum_key e -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) =
fun u f v x_ #rrel #rel sl pos -> [@@ inline_let ]let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@@ inline_let ]let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.valid_bitsum_elim
val valid_bitsum_elim (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos)) (ensures (valid p h sl pos /\ (let x = contents p h sl pos in filter_bitsum' b x == true /\ (let tg = synth_bitsum' b x in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos p h sl pos in valid (dsnd (f k)) h sl pos1 /\ valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (get_valid_pos (dsnd (f k)) h sl pos1) /\ (let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x)))))
val valid_bitsum_elim (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos)) (ensures (valid p h sl pos /\ (let x = contents p h sl pos in filter_bitsum' b x == true /\ (let tg = synth_bitsum' b x in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos p h sl pos in valid (dsnd (f k)) h sl pos1 /\ valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (get_valid_pos (dsnd (f k)) h sl pos1) /\ (let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x)))))
let valid_bitsum_elim (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (h: HS.mem) (#rrel: _) (#rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos )) (ensures ( valid p h sl pos /\ ( let x = contents p h sl pos in filter_bitsum' b x == true /\ ( let tg = synth_bitsum' b x in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos p h sl pos in valid (dsnd (f k)) h sl pos1 /\ valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (get_valid_pos (dsnd (f k)) h sl pos1) /\ ( let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x ))))) = valid_bitsum_elim' b tag_of_data type_of_tag synth_case p f h sl pos; synth_bitsum'_injective b; assert (valid ((p `parse_filter` filter_bitsum' b) `parse_synth` synth_bitsum' b) h sl pos); valid_synth h (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) sl pos; valid_filter h p (filter_bitsum' b) sl pos; let tg = synth_bitsum' b (contents p h sl pos) in let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in assert (tg == tag_of_data x); assert (x == synth_case.f tg y); synth_case.f_g_eq tg x; synth_case.f_inj tg (synth_case.g tg x) y
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 43, "end_line": 442, "start_col": 0, "start_line": 392 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos inline_for_extraction let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *)) #push-options "--z3rlimit 32" inline_for_extraction let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u f v x xr #rrel #rel sl pos -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x sl pos else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) (mk_validate_bitsum_cases_t': (* universe-polymorphic mutually recursive functions must be "split off" cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544 *) (b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) -> Tot (validate_bitsum_cases_t u#r b) ) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_validate_bitsum_cases_t' (payload k)) (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t') [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b) = match b with | BitStop _ -> validate_bitsum_cases_bitstop cl | BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest) | BitSum' key key_size e payload -> validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size))) #push-options "--z3rlimit 64" #restart-solver inline_for_extraction let validate_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (vf: (x: bitsum'_key_type b) -> Tot (validator (dsnd (f x)))) (vs: validate_bitsum_cases_t b) : Tot (validator (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = fun #rrel #rel sl pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl (uint64_to_uint32 pos); parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts (parse_bitsum' b p) h sl (uint64_to_uint32 pos) in let pos1 = validate_bitsum' b v r phi sl pos in if is_error pos1 then pos1 else [@inline_let] let _ = synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos)); parse_filter_eq p (filter_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos) in let x = r sl (uint64_to_uint32 pos) in [@inline_let] let _ = let y = synth_bitsum' b x in let tg = bitsum'_key_of_t b y in parse_synth_eq (dsnd (f tg)) (synth_case.f y) (bytes_of_slice_from h sl (uint64_to_uint32 pos1)); valid_facts (dsnd (f tg)) h sl (uint64_to_uint32 pos1) in vs (type_of_tag) f vf x sl pos1 #pop-options let valid_bitsum_intro (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (h: HS.mem) (#rrel: _) (#rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid (parse_bitsum' b p) h sl pos /\ ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos) ))) (ensures ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) )) = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1 #pop-options let valid_bitsum_elim' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (h: HS.mem) (#rrel: _) (#rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos )) (ensures ( valid (parse_bitsum' b p) h sl pos /\ ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid (dsnd (f k)) h sl pos1 /\ ( let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) )))) = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1; valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sl pos
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> p: LowParse.Spec.Base.parser kt t -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos) (ensures LowParse.Low.Base.Spec.valid p h sl pos /\ (let x = LowParse.Low.Base.Spec.contents p h sl pos in LowParse.Spec.BitSum.filter_bitsum' b x == true /\ (let tg = LowParse.Spec.BitSum.synth_bitsum' b x in let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in let pos1 = LowParse.Low.Base.Spec.get_valid_pos p h sl pos in LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (f k)) h sl pos1 /\ LowParse.Low.Base.Spec.valid_pos (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (f k)) h sl pos1) /\ (let x = LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (f k)) h sl pos1 in tg == tag_of_data x /\ x == SynthCase?.f synth_case tg y /\ y == SynthCase?.g synth_case tg x))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "Prims.dtuple2", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Spec.BitSum.__proj__SynthCase__item__f_inj", "LowParse.Spec.BitSum.__proj__SynthCase__item__g", "Prims.unit", "LowParse.Spec.BitSum.__proj__SynthCase__item__f_g_eq", "Prims._assert", "Prims.eq2", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "LowParse.Low.Base.Spec.contents", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.BitSum.parse_bitsum_kind", "LowParse.Spec.BitSum.parse_bitsum", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BitSum.parse_bitsum'", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Spec.BitSum.synth_bitsum'", "LowParse.Low.Combinators.valid_filter", "LowParse.Spec.BitSum.filter_bitsum'", "LowParse.Low.Combinators.valid_synth", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Combinators.parse_filter", "LowParse.Low.Base.Spec.valid", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.BitSum.synth_bitsum'_injective", "LowParse.Low.BitSum.valid_bitsum_elim'", "Prims.squash", "Prims.l_and", "Prims.bool", "LowParse.Low.Base.Spec.valid_pos", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let valid_bitsum_elim (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos)) (ensures (valid p h sl pos /\ (let x = contents p h sl pos in filter_bitsum' b x == true /\ (let tg = synth_bitsum' b x in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos p h sl pos in valid (dsnd (f k)) h sl pos1 /\ valid_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (get_valid_pos (dsnd (f k)) h sl pos1) /\ (let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in tg == tag_of_data x /\ x == synth_case.f tg y /\ y == synth_case.g tg x))))) =
valid_bitsum_elim' b tag_of_data type_of_tag synth_case p f h sl pos; synth_bitsum'_injective b; assert (valid ((p `parse_filter` (filter_bitsum' b)) `parse_synth` (synth_bitsum' b)) h sl pos); valid_synth h (p `parse_filter` (filter_bitsum' b)) (synth_bitsum' b) sl pos; valid_filter h p (filter_bitsum' b) sl pos; let tg = synth_bitsum' b (contents p h sl pos) in let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let x = contents (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in assert (tg == tag_of_data x); assert (x == synth_case.f tg y); synth_case.f_g_eq tg x; synth_case.f_inj tg (synth_case.g tg x) y
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.valid_bitsum_elim'
val valid_bitsum_elim' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos)) (ensures (valid (parse_bitsum' b p) h sl pos /\ (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid (dsnd (f k)) h sl pos1 /\ (let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)))))
val valid_bitsum_elim' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos)) (ensures (valid (parse_bitsum' b p) h sl pos /\ (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid (dsnd (f k)) h sl pos1 /\ (let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)))))
let valid_bitsum_elim' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (h: HS.mem) (#rrel: _) (#rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos )) (ensures ( valid (parse_bitsum' b p) h sl pos /\ ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid (dsnd (f k)) h sl pos1 /\ ( let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) )))) = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1; valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sl pos
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 70, "end_line": 390, "start_col": 0, "start_line": 353 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos inline_for_extraction let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *)) #push-options "--z3rlimit 32" inline_for_extraction let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u f v x xr #rrel #rel sl pos -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x sl pos else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) (mk_validate_bitsum_cases_t': (* universe-polymorphic mutually recursive functions must be "split off" cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544 *) (b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) -> Tot (validate_bitsum_cases_t u#r b) ) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_validate_bitsum_cases_t' (payload k)) (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t') [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b) = match b with | BitStop _ -> validate_bitsum_cases_bitstop cl | BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest) | BitSum' key key_size e payload -> validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size))) #push-options "--z3rlimit 64" #restart-solver inline_for_extraction let validate_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (vf: (x: bitsum'_key_type b) -> Tot (validator (dsnd (f x)))) (vs: validate_bitsum_cases_t b) : Tot (validator (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = fun #rrel #rel sl pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl (uint64_to_uint32 pos); parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts (parse_bitsum' b p) h sl (uint64_to_uint32 pos) in let pos1 = validate_bitsum' b v r phi sl pos in if is_error pos1 then pos1 else [@inline_let] let _ = synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos)); parse_filter_eq p (filter_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos) in let x = r sl (uint64_to_uint32 pos) in [@inline_let] let _ = let y = synth_bitsum' b x in let tg = bitsum'_key_of_t b y in parse_synth_eq (dsnd (f tg)) (synth_case.f y) (bytes_of_slice_from h sl (uint64_to_uint32 pos1)); valid_facts (dsnd (f tg)) h sl (uint64_to_uint32 pos1) in vs (type_of_tag) f vf x sl pos1 #pop-options let valid_bitsum_intro (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (h: HS.mem) (#rrel: _) (#rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid (parse_bitsum' b p) h sl pos /\ ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos) ))) (ensures ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) )) = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1 #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> p: LowParse.Spec.Base.parser kt t -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos) (ensures LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos /\ (let tg = LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos in let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in let pos1 = LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos in LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (f k)) h sl pos1 /\ (let y = LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (f k)) h sl pos1 in LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (SynthCase?.f synth_case tg y) (LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (f k)) h sl pos1))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "Prims.dtuple2", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Low.BitSum.valid_bitsum_intro", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BitSum.parse_bitsum'", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Low.Base.Spec.contents", "LowParse.Spec.BitSum.parse_bitsum_eq", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.BitSum.parse_bitsum_kind", "LowParse.Spec.BitSum.parse_bitsum", "LowParse.Low.Base.Spec.valid", "Prims.squash", "Prims.l_and", "LowParse.Low.Base.Spec.valid_content_pos", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let valid_bitsum_elim' (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos)) (ensures (valid (parse_bitsum' b p) h sl pos /\ (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid (dsnd (f k)) h sl pos1 /\ (let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1))))) =
valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1; valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sl pos
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.valid_bitsum_intro
val valid_bitsum_intro (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum' b p) h sl pos /\ (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)))) (ensures (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)))
val valid_bitsum_intro (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum' b p) h sl pos /\ (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)))) (ensures (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1)))
let valid_bitsum_intro (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (h: HS.mem) (#rrel: _) (#rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires ( valid (parse_bitsum' b p) h sl pos /\ ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos) ))) (ensures ( let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1) )) = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 349, "start_col": 0, "start_line": 312 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos inline_for_extraction let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *)) #push-options "--z3rlimit 32" inline_for_extraction let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u f v x xr #rrel #rel sl pos -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x sl pos else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_bitsum'_t' (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) (mk_validate_bitsum_cases_t': (* universe-polymorphic mutually recursive functions must be "split off" cf. https://github.com/FStarLang/FStar/issues/1480#issuecomment-623260544 *) (b: bitsum' cl (bitsum'_size - key_size) { b << BitSum' key key_size e payload }) -> Tot (validate_bitsum_cases_t u#r b) ) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 l2) (decreases %[BitSum' key key_size e payload; l2]) = bitsum_wellfoundedness (BitSum' key key_size e payload); match l2 with | [] -> [@inline_let] let _ = L.append_l_nil l1 in validate_bitsum_cases_bitsum'_nil cl bitsum'_size key key_size e payload () | (k, r) :: q -> [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) q; L.append_assoc l1 [(k, r)] q in validate_bitsum_cases_bitsum'_cons cl bitsum'_size key key_size e payload l1 k r q (mk_validate_bitsum_cases_t' (payload k)) (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) q mk_validate_bitsum_cases_t') [@filter_bitsum'_t_attr] noextract let rec mk_validate_bitsum_cases_t' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#bitsum'_size: nat) (b: bitsum' cl bitsum'_size) : Tot (validate_bitsum_cases_t u#r b) (decreases b) = match b with | BitStop _ -> validate_bitsum_cases_bitstop cl | BitField sz rest -> validate_bitsum_cases_bitfield cl bitsum'_size sz rest (mk_validate_bitsum_cases_t' rest) | BitSum' key key_size e payload -> validate_bitsum_cases_bitsum'_intro cl bitsum'_size key key_size e payload (mk_validate_bitsum_cases_bitsum'_t' cl bitsum'_size key key_size e payload [] e (mk_validate_bitsum_cases_t' #tot #t #cl #(bitsum'_size - key_size))) #push-options "--z3rlimit 64" #restart-solver inline_for_extraction let validate_bitsum (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (#p: parser kt t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) (f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x))) (vf: (x: bitsum'_key_type b) -> Tot (validator (dsnd (f x)))) (vs: validate_bitsum_cases_t b) : Tot (validator (parse_bitsum b tag_of_data type_of_tag synth_case p f)) = fun #rrel #rel sl pos -> let h = HST.get () in [@inline_let] let _ = valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl (uint64_to_uint32 pos); parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts (parse_bitsum' b p) h sl (uint64_to_uint32 pos) in let pos1 = validate_bitsum' b v r phi sl pos in if is_error pos1 then pos1 else [@inline_let] let _ = synth_bitsum'_injective b; parse_synth_eq (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos)); parse_filter_eq p (filter_bitsum' b) (bytes_of_slice_from h sl (uint64_to_uint32 pos)); valid_facts p h sl (uint64_to_uint32 pos) in let x = r sl (uint64_to_uint32 pos) in [@inline_let] let _ = let y = synth_bitsum' b x in let tg = bitsum'_key_of_t b y in parse_synth_eq (dsnd (f tg)) (synth_case.f y) (bytes_of_slice_from h sl (uint64_to_uint32 pos1)); valid_facts (dsnd (f tg)) h sl (uint64_to_uint32 pos1) in vs (type_of_tag) f vf x sl pos1 #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Spec.BitSum.bitsum' cl tot -> tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) -> type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) -> synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag -> p: LowParse.Spec.Base.parser kt t -> f: (x: LowParse.Spec.BitSum.bitsum'_key_type b -> Prims.dtuple2 LowParse.Spec.Base.parser_kind (fun k -> LowParse.Spec.Base.parser k (type_of_tag x))) -> h: FStar.Monotonic.HyperStack.mem -> sl: LowParse.Slice.slice rrel rel -> pos: FStar.UInt32.t -> FStar.Pervasives.Lemma (requires LowParse.Low.Base.Spec.valid (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos /\ (let tg = LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos in let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in LowParse.Low.Base.Spec.valid (FStar.Pervasives.dsnd (f k)) h sl (LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos) )) (ensures (let tg = LowParse.Low.Base.Spec.contents (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos in let k = LowParse.Spec.BitSum.bitsum'_key_of_t b tg in let pos1 = LowParse.Low.Base.Spec.get_valid_pos (LowParse.Spec.BitSum.parse_bitsum' b p) h sl pos in let y = LowParse.Low.Base.Spec.contents (FStar.Pervasives.dsnd (f k)) h sl pos1 in LowParse.Low.Base.Spec.valid_content_pos (LowParse.Spec.BitSum.parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (SynthCase?.f synth_case tg y) (LowParse.Low.Base.Spec.get_valid_pos (FStar.Pervasives.dsnd (f k)) h sl pos1)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "LowParse.Spec.BitSum.bitsum'", "LowParse.Spec.BitSum.bitsum'_type", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.synth_case_t", "LowParse.Spec.Base.parser", "Prims.dtuple2", "FStar.Monotonic.HyperStack.mem", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt32.t", "LowParse.Low.Base.Spec.valid_facts", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Low.Base.Spec.get_valid_pos", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BitSum.parse_bitsum'", "LowParse.Spec.BitSum.bitsum'_key_of_t", "LowParse.Low.Base.Spec.contents", "Prims.unit", "LowParse.Spec.BitSum.parse_bitsum_eq", "LowParse.Slice.bytes_of_slice_from", "LowParse.Spec.BitSum.parse_bitsum_kind", "LowParse.Spec.BitSum.parse_bitsum", "Prims.l_and", "LowParse.Low.Base.Spec.valid", "Prims.squash", "LowParse.Low.Base.Spec.valid_content_pos", "LowParse.Spec.BitSum.__proj__SynthCase__item__f", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let valid_bitsum_intro (#kt: parser_kind) (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#data: Type) (tag_of_data: (data -> Tot (bitsum'_type b))) (type_of_tag: (bitsum'_key_type b -> Tot Type)) (synth_case: synth_case_t b data tag_of_data type_of_tag) (p: parser kt t) (f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x)))) (h: HS.mem) (#rrel #rel: _) (sl: slice rrel rel) (pos: U32.t) : Lemma (requires (valid (parse_bitsum' b p) h sl pos /\ (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in valid (dsnd (f k)) h sl (get_valid_pos (parse_bitsum' b p) h sl pos)))) (ensures (let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in let y = contents (dsnd (f k)) h sl pos1 in valid_content_pos (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos (synth_case.f tg y) (get_valid_pos (dsnd (f k)) h sl pos1))) =
valid_facts (parse_bitsum b tag_of_data type_of_tag synth_case p f) h sl pos; parse_bitsum_eq b tag_of_data type_of_tag synth_case p f (bytes_of_slice_from h sl pos); valid_facts (parse_bitsum' b p) h sl pos; let tg = contents (parse_bitsum' b p) h sl pos in let k = bitsum'_key_of_t b tg in let pos1 = get_valid_pos (parse_bitsum' b p) h sl pos in valid_facts (dsnd (f k)) h sl pos1
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.linv_ctx
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 25, "start_col": 0, "start_line": 25 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.l_True" ]
[]
false
false
false
false
true
let linv_ctx (a: LSeq.lseq uint64 0) : Type0 =
True
false
LowParse.Low.BitSum.fst
LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_cons
val validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
val validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2))
let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) = fun u f v x xr #rrel #rel sl pos -> // [@inline_let] let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@inline_let] let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@inline_let] let cond = (xr <: t) = yr in [@inline_let] let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x sl pos else [@inline_let] let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos
{ "file_name": "src/lowparse/LowParse.Low.BitSum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 41, "end_line": 204, "start_col": 0, "start_line": 160 }
module LowParse.Low.BitSum include LowParse.Low.Combinators include LowParse.Spec.BitSum module U32 = FStar.UInt32 module HS = FStar.HyperStack #push-options "--z3rlimit 16" inline_for_extraction let validate_bitsum' (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (b: bitsum' cl tot) (#k: parser_kind) (#p: parser k t) (v: validator p) (r: leaf_reader p) (phi: filter_bitsum'_t b) : Tot (validator (parse_bitsum' b p)) = synth_bitsum'_injective b; validate_synth (validate_filter v r (filter_bitsum' b) (fun x -> phi x)) (synth_bitsum' b) () module HST = FStar.HyperStack.ST inline_for_extraction noextract let validate_bitsum_cases_t (#tot: pos) (#t: eqtype) (#cl: uint_t tot t) (#from: nat) (b: bitsum' cl from) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type b -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type b) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' b)) -> Tot (validator (dsnd (f (bitsum'_key_of_t b (synth_bitsum' b x))))) inline_for_extraction let validate_bitsum_cases_bitstop (#tot: pos) (#t: eqtype) (cl: uint_t tot t) : Tot (validate_bitsum_cases_t u#r #tot #t #cl #0 (BitStop ())) = fun u f v x #rrel #rel sl pos -> v () sl pos inline_for_extraction let validate_bitsum_cases_bitfield (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (sz: nat { sz > 0 /\ sz <= bitsum'_size /\ bitsum'_size <= tot }) (rest: bitsum' cl (bitsum'_size - sz)) (phi: validate_bitsum_cases_t u#r rest) : Tot (validate_bitsum_cases_t u#r (BitField sz rest)) = fun u f v x #rrel #rel sl pos -> phi (fun x -> u (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> f (coerce (bitsum'_key_type (BitField sz rest)) x)) (fun x -> v (coerce (bitsum'_key_type (BitField sz rest)) x)) x sl pos inline_for_extraction let validate_bitsum_cases_bitsum_gen (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (key_of: ((x: enum_repr e) -> Tot (y: enum_key e { y == enum_key_of_repr e x }))) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (destr_payload: ((k: enum_key e) -> Tot (validate_bitsum_cases_t u#r (payload k)))) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x_ #rrel #rel sl pos -> [@inline_let] let r = cl.get_bitfield x_ (bitsum'_size - key_size) bitsum'_size in [@inline_let] let k = key_of r in destr_payload k (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) x_ sl pos module L = FStar.List.Tot inline_for_extraction noextract let validate_bitsum_cases_bitsum'_t (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` l2 } ) : Tot (Type u#(r+1)) = (u: (bitsum'_key_type (BitSum' key key_size e payload) -> Tot (Type u#r))) -> (f: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (k: parser_kind & parser k (u x)))) -> (v: ((x: bitsum'_key_type (BitSum' key key_size e payload)) -> Tot (validator (dsnd (f x))))) -> (x: parse_filter_refine (filter_bitsum' (BitSum' key key_size e payload)) { ~ (list_mem (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) (list_map snd l1)) }) -> (xr: t { xr == cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size }) -> Tot (validator (dsnd (f (bitsum'_key_of_t (BitSum' key key_size e payload) (synth_bitsum' (BitSum' key key_size e payload) x))))) inline_for_extraction let validate_bitsum_cases_bitsum'_intro (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (phi: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload [] e) : Tot (validate_bitsum_cases_t u#r (BitSum' key key_size e payload)) = fun u f v x #rrel #rel sl pos -> let xr = cl.bitfield_eq_lhs x (bitsum'_size - key_size) bitsum'_size in phi u f v x xr sl pos inline_for_extraction let validate_bitsum_cases_bitsum'_nil (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat { key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot }) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (h: squash (e == e `L.append` [])) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload e []) = (fun u f v x xr #rrel #rel sl pos -> assert False; validator_error_generic (* dummy *)) #push-options "--z3rlimit 32"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BitSum.fst.checked", "LowParse.Low.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "LowParse.Low.BitSum.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BitSum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Low", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> bitsum'_size: Prims.nat -> key: Prims.eqtype -> key_size: Prims.nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot} -> e: LowParse.Spec.Enum.enum key (LowParse.BitFields.bitfield cl key_size) -> payload: (_: LowParse.Spec.Enum.enum_key e -> LowParse.Spec.BitSum.bitsum' cl (bitsum'_size - key_size) ) -> l1: Prims.list (key * LowParse.BitFields.bitfield cl key_size) -> k: key -> r: LowParse.BitFields.bitfield cl key_size -> l2: Prims.list (key * LowParse.BitFields.bitfield cl key_size) { e == l1 @ (k, r) :: l2 /\ LowParse.Spec.Enum.list_mem k (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\ LowParse.Spec.Enum.enum_repr_of_key e k == r /\ e == (l1 @ [k, r]) @ l2 } -> destr_payload: LowParse.Low.BitSum.validate_bitsum_cases_t (payload k) -> destr_tail: LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl bitsum'_size key key_size e payload (l1 @ [k, r]) l2 -> LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.eqtype", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "LowParse.Spec.Enum.enum", "LowParse.BitFields.bitfield", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.BitSum.bitsum'", "Prims.op_Subtraction", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.Nil", "LowParse.Low.BitSum.validate_bitsum_cases_t", "LowParse.Low.BitSum.validate_bitsum_cases_bitsum'_t", "LowParse.Spec.BitSum.bitsum'_key_type", "LowParse.Spec.BitSum.BitSum'", "Prims.dtuple2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Low.Base.validator", "Prims.__proj__Mkdtuple2__item___1", "FStar.Pervasives.dsnd", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BitSum.filter_bitsum'", "Prims.l_not", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "FStar.Pervasives.Native.snd", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_lhs", "LowParse.Slice.srel", "LowParse.Bytes.byte", "LowParse.Slice.slice", "FStar.UInt64.t", "LowParse.Spec.BitSum.bitsum'_key_type_intro_BitSum'", "Prims.Mkdtuple2", "Prims.bool", "Prims.unit", "FStar.List.Tot.Properties.append_mem", "FStar.List.Tot.Base.map", "FStar.List.Tot.Properties.map_append", "FStar.List.Tot.Properties.append_assoc", "Prims._assert", "Prims.l_iff", "Prims.op_Equality", "LowParse.BitFields.__proj__Mkuint_t__item__bitfield_eq_rhs", "LowParse.Spec.Enum.enum_repr_of_key_append_cons" ]
[]
false
false
false
false
false
let validate_bitsum_cases_bitsum'_cons (#tot: pos) (#t: eqtype) (cl: uint_t tot t) (bitsum'_size: nat) (key: eqtype) (key_size: nat{key_size > 0 /\ key_size <= bitsum'_size /\ bitsum'_size <= tot}) (e: enum key (bitfield cl key_size)) (payload: (enum_key e -> Tot (bitsum' cl (bitsum'_size - key_size)))) (l1: list (key & bitfield cl key_size)) (k: key) (r: bitfield cl key_size) (l2: list (key & bitfield cl key_size) { e == l1 `L.append` ((k, r) :: l2) /\ list_mem k (list_map fst e) /\ enum_repr_of_key e k == r /\ e == (l1 `L.append` [(k, r)]) `L.append` l2 }) (destr_payload: validate_bitsum_cases_t u#r (payload k)) (destr_tail: validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload (l1 `L.append` [(k, r)]) l2) : Tot (validate_bitsum_cases_bitsum'_t u#r cl bitsum'_size key key_size e payload l1 ((k, r) :: l2)) =
fun u f v x xr #rrel #rel sl pos -> let _ = enum_repr_of_key_append_cons e l1 (k, r) l2 in [@@ inline_let ]let yr = cl.bitfield_eq_rhs x (bitsum'_size - key_size) bitsum'_size r in [@@ inline_let ]let cond = (xr <: t) = yr in [@@ inline_let ]let _ = assert (cond == true <==> (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) == r) in if cond then destr_payload (fun x -> u (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |))) (fun x -> f (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)) ) (fun x -> v (bitsum'_key_type_intro_BitSum' cl bitsum'_size key key_size e payload (| k, x |)) ) x sl pos else [@@ inline_let ]let _ = L.append_assoc l1 [(k, r)] l2; L.map_append snd l1 [(k, r)]; L.append_mem (L.map snd l1) (L.map snd [(k, r)]) (cl.get_bitfield x (bitsum'_size - key_size) bitsum'_size <: bitfield cl key_size) in destr_tail u f v (x <: t) xr sl pos
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid
val mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul
val mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul
let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; }
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 1, "end_line": 42, "start_col": 0, "start_line": 36 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.to_comm_monoid Lib.IntTypes.U64 (4ul <: FStar.UInt32.t) (0ul <: FStar.UInt32.t)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Exponentiation.Definitions.Mkto_comm_monoid", "Lib.IntTypes.U64", "FStar.UInt32.uint_to_t", "Spec.K256.PointOps.qelem", "Hacl.Spec.K256.Qinv.nat_mod_comm_monoid", "Hacl.Impl.K256.Qinv.linv_ctx", "Hacl.Impl.K256.Qinv.linv", "Hacl.Impl.K256.Qinv.refl" ]
[]
false
false
false
false
false
let mk_to_k256_scalar_comm_monoid:BE.to_comm_monoid U64 4ul 0ul =
{ BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl }
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.one_mod
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 47, "start_col": 0, "start_line": 47 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.lone_st Lib.IntTypes.U64 4ul 0ul Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.K256.Scalar.make_u64_4", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "Prims.unit" ]
[]
false
false
false
false
false
let one_mod ctx one =
make_u64_4 one (u64 1, u64 0, u64 0, u64 0)
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.mk_k256_scalar_concrete_ops
val mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul
val mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul
let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; }
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 1, "end_line": 66, "start_col": 0, "start_line": 61 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.concrete_ops Lib.IntTypes.U64 (4ul <: FStar.UInt32.t) (0ul <: FStar.UInt32.t)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Exponentiation.Definitions.Mkconcrete_ops", "Lib.IntTypes.U64", "FStar.UInt32.uint_to_t", "FStar.Ghost.hide", "Hacl.Impl.Exponentiation.Definitions.to_comm_monoid", "Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid", "Hacl.Impl.K256.Qinv.one_mod", "Hacl.Impl.K256.Qinv.mul_mod", "Hacl.Impl.K256.Qinv.sqr_mod" ]
[]
false
false
false
false
false
let mk_k256_scalar_concrete_ops:BE.concrete_ops U64 4ul 0ul =
{ BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod }
false