effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Pure
val maintained_of (new_flags:Flags.t) (flags:Flags.t) : Pure bool (requires True) (ensures fun b -> b <==> overflow new_flags == overflow flags /\ valid_of new_flags == valid_of flags)
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags
val maintained_of (new_flags:Flags.t) (flags:Flags.t) : Pure bool (requires True) (ensures fun b -> b <==> overflow new_flags == overflow flags /\ valid_of new_flags == valid_of flags) let maintained_of new_flags flags =
false
null
false
Lemmas.overflow new_flags = Lemmas.overflow flags
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Flags.t", "Prims.op_Equality", "Vale.X64.Flags.flag_val_t", "Vale.X64.Lemmas.overflow", "Prims.bool" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maintained_of (new_flags:Flags.t) (flags:Flags.t) : Pure bool (requires True) (ensures fun b -> b <==> overflow new_flags == overflow flags /\ valid_of new_flags == valid_of flags)
[]
Vale.X64.Decls.maintained_of
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
new_flags: Vale.X64.Flags.t -> flags: Vale.X64.Flags.t -> Prims.Pure Prims.bool
{ "end_col": 85, "end_line": 25, "start_col": 36, "start_line": 25 }
FStar.Pervasives.Lemma
val va_lemma_ifElseTrue_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total
val va_lemma_ifElseTrue_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM ) let va_lemma_ifElseTrue_total =
false
null
true
Lemmas.lemma_ifElseTrue_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "lemma" ]
[ "Vale.X64.Lemmas.lemma_ifElseTrue_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_ifElseTrue_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[]
Vale.X64.Decls.va_lemma_ifElseTrue_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ifb: Vale.X64.Decls.ocmp -> ct: Vale.X64.Decls.va_code -> cf: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> f0: Vale.X64.Decls.va_fuel -> sM: Vale.X64.Decls.va_state -> FStar.Pervasives.Lemma (requires Vale.X64.Decls.valid_ocmp ifb s0 /\ Vale.X64.Decls.eval_ocmp s0 ifb /\ Vale.X64.Decls.eval_code ct (Vale.X64.State.Mkvale_state (Mkvale_state?.vs_ok s0) (Mkvale_state?.vs_regs s0) Vale.X64.Decls.havoc_flags (Mkvale_state?.vs_heap s0) (Mkvale_state?.vs_stack s0) (Mkvale_state?.vs_stackTaint s0)) f0 sM) (ensures Vale.X64.Decls.eval_code (Vale.X64.Machine_s.IfElse ifb ct cf) s0 f0 sM)
{ "end_col": 61, "end_line": 137, "start_col": 32, "start_line": 137 }
Prims.Ghost
val va_lemma_empty_total (s0:va_state) (bN:va_codes) : Ghost (va_state & va_fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (va_Block []) s0 fM sM ))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_empty_total = Lemmas.lemma_empty_total
val va_lemma_empty_total (s0:va_state) (bN:va_codes) : Ghost (va_state & va_fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (va_Block []) s0 fM sM )) let va_lemma_empty_total =
false
null
false
Lemmas.lemma_empty_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Lemmas.lemma_empty_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_empty_total (s0:va_state) (bN:va_codes) : Ghost (va_state & va_fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (va_Block []) s0 fM sM ))
[]
Vale.X64.Decls.va_lemma_empty_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s0: Vale.X64.Decls.va_state -> bN: Vale.X64.Decls.va_codes -> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel)
{ "end_col": 51, "end_line": 135, "start_col": 27, "start_line": 135 }
FStar.Pervasives.Lemma
val va_ins_lemma (c0: va_code) (s0: va_state) : Lemma (requires True) (ensures (forall (i: ins) (s: BS.machine_state). {:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins
val va_ins_lemma (c0: va_code) (s0: va_state) : Lemma (requires True) (ensures (forall (i: ins) (s: BS.machine_state). {:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s)) let va_ins_lemma (c0: va_code) (s0: va_state) : Lemma (requires True) (ensures (forall (i: ins) (s: BS.machine_state). {:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s)) =
false
null
true
reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "lemma" ]
[ "Vale.X64.Decls.va_code", "Vale.X64.Decls.va_state", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Vale.X64.Decls.ins", "Prims.eq2", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins_def", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) )
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_ins_lemma (c0: va_code) (s0: va_state) : Lemma (requires True) (ensures (forall (i: ins) (s: BS.machine_state). {:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s))
[]
Vale.X64.Decls.va_ins_lemma
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c0: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> FStar.Pervasives.Lemma (ensures forall (i: Vale.X64.Decls.ins) (s: Vale.X64.Machine_Semantics_s.machine_state). {:pattern Vale.X64.Machine_Semantics_s.machine_eval_code_ins i s} Vale.X64.Machine_Semantics_s.machine_eval_code_ins i s == Vale.X64.Machine_Semantics_s.machine_eval_code_ins_def i s)
{ "end_col": 69, "end_line": 111, "start_col": 2, "start_line": 111 }
Prims.Tot
val va_cmp_lt (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_cmp_lt o1 o2 = BC.OLt o1 o2
val va_cmp_lt (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp let va_cmp_lt o1 o2 =
false
null
false
BC.OLt o1 o2
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "total" ]
[ "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "Vale.X64.Bytes_Code_s.OLt", "Vale.X64.Decls.ocmp" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_cmp_lt (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[]
Vale.X64.Decls.va_cmp_lt
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> Vale.X64.Decls.ocmp
{ "end_col": 34, "end_line": 98, "start_col": 22, "start_line": 98 }
Prims.Tot
val get_reason (p:va_pbool) : option string
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason
val get_reason (p:va_pbool) : option string let get_reason p =
false
null
false
match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "total" ]
[ "Vale.X64.Decls.va_pbool", "FStar.Pervasives.Native.None", "Prims.string", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.option" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y
false
true
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_reason (p:va_pbool) : option string
[]
Vale.X64.Decls.get_reason
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Vale.X64.Decls.va_pbool -> FStar.Pervasives.Native.option Prims.string
{ "end_col": 52, "end_line": 37, "start_col": 2, "start_line": 35 }
Prims.Ghost
val va_lemma_whileFalse_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ eval_code (While b c) s0 f1 s1 )
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total
val va_lemma_whileFalse_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ eval_code (While b c) s0 f1 s1 ) let va_lemma_whileFalse_total =
false
null
false
Lemmas.lemma_whileFalse_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Lemmas.lemma_whileFalse_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_whileFalse_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ eval_code (While b c) s0 f1 s1 )
[]
Vale.X64.Decls.va_lemma_whileFalse_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Decls.ocmp -> c: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> sW: Vale.X64.Decls.va_state -> fW: Vale.X64.Decls.va_fuel -> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel)
{ "end_col": 61, "end_line": 141, "start_col": 32, "start_line": 141 }
FStar.Pervasives.Lemma
val va_lemma_ifElseFalse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total
val va_lemma_ifElseFalse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM ) let va_lemma_ifElseFalse_total =
false
null
true
Lemmas.lemma_ifElseFalse_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "lemma" ]
[ "Vale.X64.Lemmas.lemma_ifElseFalse_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_ifElseFalse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[]
Vale.X64.Decls.va_lemma_ifElseFalse_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ifb: Vale.X64.Decls.ocmp -> ct: Vale.X64.Decls.va_code -> cf: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> f0: Vale.X64.Decls.va_fuel -> sM: Vale.X64.Decls.va_state -> FStar.Pervasives.Lemma (requires Vale.X64.Decls.valid_ocmp ifb s0 /\ Prims.op_Negation (Vale.X64.Decls.eval_ocmp s0 ifb) /\ Vale.X64.Decls.eval_code cf (Vale.X64.State.Mkvale_state (Mkvale_state?.vs_ok s0) (Mkvale_state?.vs_regs s0) Vale.X64.Decls.havoc_flags (Mkvale_state?.vs_heap s0) (Mkvale_state?.vs_stack s0) (Mkvale_state?.vs_stackTaint s0)) f0 sM) (ensures Vale.X64.Decls.eval_code (Vale.X64.Machine_s.IfElse ifb ct cf) s0 f0 sM)
{ "end_col": 63, "end_line": 138, "start_col": 33, "start_line": 138 }
Prims.Ghost
val va_lemma_whileTrue_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires eval_ocmp sW b /\ valid_ocmp b sW) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ f1 == fW)
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total
val va_lemma_whileTrue_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires eval_ocmp sW b /\ valid_ocmp b sW) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ f1 == fW) let va_lemma_whileTrue_total =
false
null
false
Lemmas.lemma_whileTrue_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Lemmas.lemma_whileTrue_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_whileTrue_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires eval_ocmp sW b /\ valid_ocmp b sW) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ f1 == fW)
[]
Vale.X64.Decls.va_lemma_whileTrue_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Decls.ocmp -> c: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> sW: Vale.X64.Decls.va_state -> fW: Vale.X64.Decls.va_fuel -> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel)
{ "end_col": 59, "end_line": 140, "start_col": 31, "start_line": 140 }
Prims.Tot
val va_cmp_ge (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_cmp_ge o1 o2 = BC.OGe o1 o2
val va_cmp_ge (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp let va_cmp_ge o1 o2 =
false
null
false
BC.OGe o1 o2
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "total" ]
[ "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "Vale.X64.Bytes_Code_s.OGe", "Vale.X64.Decls.ocmp" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_cmp_ge (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[]
Vale.X64.Decls.va_cmp_ge
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> Vale.X64.Decls.ocmp
{ "end_col": 34, "end_line": 97, "start_col": 22, "start_line": 97 }
Prims.Ghost
val va_lemma_ifElse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) : Ghost (bool & va_state & va_state & va_fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == {s0 with vs_flags = havoc_flags} ))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total
val va_lemma_ifElse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) : Ghost (bool & va_state & va_state & va_fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == {s0 with vs_flags = havoc_flags} )) let va_lemma_ifElse_total =
false
null
false
Lemmas.lemma_ifElse_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Lemmas.lemma_ifElse_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_ifElse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) : Ghost (bool & va_state & va_state & va_fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == {s0 with vs_flags = havoc_flags} ))
[]
Vale.X64.Decls.va_lemma_ifElse_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ifb: Vale.X64.Decls.ocmp -> ct: Vale.X64.Decls.va_code -> cf: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> Prims.Ghost (((Prims.bool * Vale.X64.Decls.va_state) * Vale.X64.Decls.va_state) * Vale.X64.Decls.va_fuel)
{ "end_col": 53, "end_line": 136, "start_col": 28, "start_line": 136 }
Prims.Tot
val va_cmp_eq (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_cmp_eq o1 o2 = BC.OEq o1 o2
val va_cmp_eq (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp let va_cmp_eq o1 o2 =
false
null
false
BC.OEq o1 o2
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "total" ]
[ "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "Vale.X64.Bytes_Code_s.OEq", "Vale.X64.Decls.ocmp" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_cmp_eq (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[]
Vale.X64.Decls.va_cmp_eq
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> Vale.X64.Decls.ocmp
{ "end_col": 34, "end_line": 94, "start_col": 22, "start_line": 94 }
Prims.Ghost
val va_lemma_merge_total (b0:va_codes) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (va_Block (Cons?.tl b0)) sM fM sN ) (ensures (fun fN -> fN == va_compute_merge_total f0 fM /\ eval_code (va_Block b0) s0 fN sN ))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM
val va_lemma_merge_total (b0:va_codes) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (va_Block (Cons?.tl b0)) sM fM sN ) (ensures (fun fN -> fN == va_compute_merge_total f0 fM /\ eval_code (va_Block b0) s0 fN sN )) let va_lemma_merge_total b0 s0 f0 sM fM sN =
false
null
false
Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Decls.va_codes", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "Vale.X64.Lemmas.compute_merge_total", "Prims.unit", "Vale.X64.Lemmas.lemma_merge_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = ()
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_merge_total (b0:va_codes) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (va_Block (Cons?.tl b0)) sM fM sN ) (ensures (fun fN -> fN == va_compute_merge_total f0 fM /\ eval_code (va_Block b0) s0 fN sN ))
[]
Vale.X64.Decls.va_lemma_merge_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b0: Vale.X64.Decls.va_codes -> s0: Vale.X64.Decls.va_state -> f0: Vale.X64.Decls.va_fuel -> sM: Vale.X64.Decls.va_state -> fM: Vale.X64.Decls.va_fuel -> sN: Vale.X64.Decls.va_state -> Prims.Ghost Vale.X64.Decls.va_fuel
{ "end_col": 121, "end_line": 134, "start_col": 45, "start_line": 134 }
FStar.Pervasives.Lemma
val lemma_opr_Mem128 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (t: taint) (b: M.buffer128) (index: int) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h
val lemma_opr_Mem128 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (t: taint) (b: M.buffer128) (index: int) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h)) let lemma_opr_Mem128 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (t: taint) (b: M.buffer128) (index: int) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h)) =
false
null
true
Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "lemma" ]
[ "Vale.X64.Decls.heaplet_id", "Vale.X64.Decls.va_state", "Vale.X64.Machine_s.operand64", "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Memory.buffer128", "Vale.X64.Machine_s.maddr", "Vale.X64.Memory.lemma_load_mem128", "Prims.unit", "Prims._assert", "Vale.X64.Decls.valid_buf_maddr128", "Vale.X64.State.eval_maddr", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.Machine_s.operand128", "Vale.X64.Memory.lemma_valid_mem128", "Vale.X64.Decls.va_opr_code_Mem128", "Vale.Arch.HeapImpl.vale_heap", "Vale.X64.Memory.get_vale_heap", "Vale.X64.Memory_Sems.low_lemma_load_mem128_full", "Prims.l_and", "Vale.X64.Memory.mem_inv", "Prims.b2t", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Decls.valid_src_addr", "Vale.X64.Memory.vuint128", "Vale.X64.Memory.valid_layout_buffer", "Vale.X64.Memory.valid_taint_buf128", "Vale.Arch.HeapImpl.full_heap_taint", "Prims.eq2", "Prims.op_Addition", "Vale.X64.State.eval_operand", "Vale.X64.Memory.buffer_addr", "FStar.Mul.op_Star", "Vale.Lib.Map16.sel", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Prims.squash", "Vale.X64.Decls.valid_operand128", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.X64.Memory.load_mem128", "Vale.X64.Memory.buffer_read", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h ))
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_opr_Mem128 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (t: taint) (b: M.buffer128) (index: int) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h))
[]
Vale.X64.Decls.lemma_opr_Mem128
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
id: Vale.X64.Decls.heaplet_id -> s: Vale.X64.Decls.va_state -> base: Vale.X64.Machine_s.operand64 -> offset: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> b: Vale.X64.Memory.buffer128 -> index: Prims.int -> FStar.Pervasives.Lemma (requires (let h = Vale.Lib.Map16.sel (Mkvale_full_heap?.vf_heaplets (Mkvale_state?.vs_heap s)) id in Vale.X64.Memory.mem_inv (Mkvale_state?.vs_heap s) /\ OReg? base /\ Vale.X64.Decls.valid_src_addr h b index /\ Vale.X64.Memory.valid_layout_buffer b (Mkvale_full_heap?.vf_layout (Mkvale_state?.vs_heap s)) h false /\ Vale.X64.Memory.valid_taint_buf128 b h (Vale.Arch.HeapImpl.full_heap_taint (Mkvale_state?.vs_heap s)) t /\ Vale.X64.State.eval_operand base s + offset == Vale.X64.Memory.buffer_addr b h + 16 * index)) (ensures (let h = Vale.Lib.Map16.sel (Mkvale_full_heap?.vf_heaplets (Mkvale_state?.vs_heap s)) id in Vale.X64.Decls.valid_operand128 (Vale.X64.Decls.va_opr_code_Mem128 id base offset t) s /\ Vale.X64.Memory.load_mem128 (Vale.X64.Memory.buffer_addr b h + 16 * index) (Vale.X64.Memory.get_vale_heap (Mkvale_state?.vs_heap s)) == Vale.X64.Memory.buffer_read b index h))
{ "end_col": 31, "end_line": 90, "start_col": 2, "start_line": 84 }
Prims.Tot
val va_cmp_ne (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_cmp_ne o1 o2 = BC.ONe o1 o2
val va_cmp_ne (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp let va_cmp_ne o1 o2 =
false
null
false
BC.ONe o1 o2
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "total" ]
[ "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "Vale.X64.Bytes_Code_s.ONe", "Vale.X64.Decls.ocmp" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_cmp_ne (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[]
Vale.X64.Decls.va_cmp_ne
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> Vale.X64.Decls.ocmp
{ "end_col": 34, "end_line": 95, "start_col": 22, "start_line": 95 }
Prims.Pure
val maintained_cf (new_flags:Flags.t) (flags:Flags.t) : Pure bool (requires True) (ensures fun b -> b <==> cf new_flags == cf flags /\ valid_cf new_flags == valid_cf flags)
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags
val maintained_cf (new_flags:Flags.t) (flags:Flags.t) : Pure bool (requires True) (ensures fun b -> b <==> cf new_flags == cf flags /\ valid_cf new_flags == valid_cf flags) let maintained_cf new_flags flags =
false
null
false
Lemmas.cf new_flags = Lemmas.cf flags
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Flags.t", "Prims.op_Equality", "Vale.X64.Flags.flag_val_t", "Vale.X64.Lemmas.cf", "Prims.bool" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maintained_cf (new_flags:Flags.t) (flags:Flags.t) : Pure bool (requires True) (ensures fun b -> b <==> cf new_flags == cf flags /\ valid_cf new_flags == valid_cf flags)
[]
Vale.X64.Decls.maintained_cf
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
new_flags: Vale.X64.Flags.t -> flags: Vale.X64.Flags.t -> Prims.Pure Prims.bool
{ "end_col": 73, "end_line": 24, "start_col": 36, "start_line": 24 }
Prims.Tot
val va_cmp_le (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_cmp_le o1 o2 = BC.OLe o1 o2
val va_cmp_le (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp let va_cmp_le o1 o2 =
false
null
false
BC.OLe o1 o2
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "total" ]
[ "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "Vale.X64.Bytes_Code_s.OLe", "Vale.X64.Decls.ocmp" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_cmp_le (o1:operand64{ not (OMem? o1 || OStack? o1) }) (o2:operand64{ not (OMem? o2 || OStack? o2) }) : ocmp
[]
Vale.X64.Decls.va_cmp_le
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> Vale.X64.Decls.ocmp
{ "end_col": 34, "end_line": 96, "start_col": 22, "start_line": 96 }
Prims.Ghost
val va_lemma_while_total (b:ocmp) (c:va_code) (s0:va_state) : Ghost (va_state & va_fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 )
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_while_total = Lemmas.lemma_while_total
val va_lemma_while_total (b:ocmp) (c:va_code) (s0:va_state) : Ghost (va_state & va_fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 ) let va_lemma_while_total =
false
null
false
Lemmas.lemma_while_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Lemmas.lemma_while_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_while_total (b:ocmp) (c:va_code) (s0:va_state) : Ghost (va_state & va_fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 )
[]
Vale.X64.Decls.va_lemma_while_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Decls.ocmp -> c: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel)
{ "end_col": 51, "end_line": 139, "start_col": 27, "start_line": 139 }
FStar.Pervasives.Lemma
val lemma_opr_Mem64 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (b: M.buffer64) (index: int) (t: taint) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h
val lemma_opr_Mem64 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (b: M.buffer64) (index: int) (t: taint) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h)) let lemma_opr_Mem64 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (b: M.buffer64) (index: int) (t: taint) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h)) =
false
null
true
Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[ "lemma" ]
[ "Vale.X64.Decls.heaplet_id", "Vale.X64.Decls.va_state", "Vale.X64.Machine_s.operand64", "Prims.int", "Vale.X64.Memory.buffer64", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Machine_s.maddr", "Vale.X64.Memory.lemma_load_mem64", "Prims.unit", "Prims._assert", "Vale.X64.Decls.valid_buf_maddr64", "Vale.X64.State.eval_maddr", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.Memory.lemma_valid_mem64", "Vale.X64.Decls.va_opr_code_Mem64", "Vale.Arch.HeapImpl.vale_heap", "Vale.X64.Memory.get_vale_heap", "Vale.X64.Memory_Sems.low_lemma_load_mem64_full", "Prims.l_and", "Vale.X64.Memory.mem_inv", "Prims.b2t", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Decls.valid_src_addr", "Vale.X64.Memory.vuint64", "Vale.X64.Memory.valid_layout_buffer", "Vale.X64.Memory.valid_taint_buf64", "Vale.Arch.HeapImpl.full_heap_taint", "Prims.eq2", "Prims.op_Addition", "Vale.X64.State.eval_operand", "Vale.X64.Memory.buffer_addr", "FStar.Mul.op_Star", "Vale.Lib.Map16.sel", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Prims.squash", "Vale.X64.Decls.valid_operand", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_64", "Vale.X64.Memory.load_mem64", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heap", "Vale.X64.Memory.buffer_read", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h ))
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_opr_Mem64 (id: heaplet_id) (s: va_state) (base: operand64) (offset: int) (b: M.buffer64) (index: int) (t: taint) : Lemma (requires (let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index)) (ensures (let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h))
[]
Vale.X64.Decls.lemma_opr_Mem64
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
id: Vale.X64.Decls.heaplet_id -> s: Vale.X64.Decls.va_state -> base: Vale.X64.Machine_s.operand64 -> offset: Prims.int -> b: Vale.X64.Memory.buffer64 -> index: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> FStar.Pervasives.Lemma (requires (let h = Vale.Lib.Map16.sel (Mkvale_full_heap?.vf_heaplets (Mkvale_state?.vs_heap s)) id in Vale.X64.Memory.mem_inv (Mkvale_state?.vs_heap s) /\ OReg? base /\ Vale.X64.Decls.valid_src_addr h b index /\ Vale.X64.Memory.valid_layout_buffer b (Mkvale_full_heap?.vf_layout (Mkvale_state?.vs_heap s)) h false /\ Vale.X64.Memory.valid_taint_buf64 b h (Vale.Arch.HeapImpl.full_heap_taint (Mkvale_state?.vs_heap s)) t /\ Vale.X64.State.eval_operand base s + offset == Vale.X64.Memory.buffer_addr b h + 8 * index )) (ensures (let h = Vale.Lib.Map16.sel (Mkvale_full_heap?.vf_heaplets (Mkvale_state?.vs_heap s)) id in Vale.X64.Decls.valid_operand (Vale.X64.Decls.va_opr_code_Mem64 id base offset t) s /\ Vale.X64.Memory.load_mem64 (Vale.X64.Memory.buffer_addr b h + 8 * index) (Mkvale_full_heap?.vf_heap (Mkvale_state?.vs_heap s)) == Vale.X64.Memory.buffer_read b index h))
{ "end_col": 30, "end_line": 66, "start_col": 2, "start_line": 60 }
Prims.Ghost
val va_lemma_whileMerge_total (c:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.vs_ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with vs_flags = havoc_flags}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN ))
[ { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": true, "full_module": "Vale.X64.Bytes_Code_s", "short_module": "BC" }, { "abbrev": true, "full_module": "Vale.X64.Print_s", "short_module": "P" }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "S" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total
val va_lemma_whileMerge_total (c:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.vs_ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with vs_flags = havoc_flags}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN )) let va_lemma_whileMerge_total =
false
null
false
Lemmas.lemma_whileMerge_total
{ "checked_file": "Vale.X64.Decls.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Print_s.fst.checked", "Vale.X64.Memory_Sems.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Lemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Map.fsti.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.X64.Decls.fst" }
[]
[ "Vale.X64.Lemmas.lemma_whileMerge_total" ]
[]
module Vale.X64.Decls open FStar.Mul open Vale.X64.Machine_s open Vale.X64 open Vale.X64.State open Vale.X64.StateLemmas open FStar.UInt module P = Vale.X64.Print_s module BC = Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s #reset-options "--max_fuel 0 --max_ifuel 0 --smtencoding.elim_box true --smtencoding.l_arith_repr boxwrap --smtencoding.nl_arith_repr boxwrap --z3cliopt smt.arith.nl=true --using_facts_from 'Prims FStar.UInt Vale.Def.Words_s FStar.UInt64'" let lemma_mul_in_bounds (x y:nat64) : Lemma (requires x * y < pow2_64) (ensures FStar.UInt.mul_mod #64 x y == x * y) = () #reset-options "--z3cliopt smt.arith.nl=true --using_facts_from Prims --using_facts_from FStar.Math" let lemma_mul_nat (x:nat) (y:nat) : Lemma (ensures 0 <= (x * y)) = () #reset-options "--initial_fuel 2 --max_fuel 2" let cf flags = match Lemmas.cf flags with | Some v -> v | None -> false let overflow flags = match Lemmas.overflow flags with | Some v -> v | None -> false let valid_cf flags = match Lemmas.cf flags with | Some v -> true | None -> false let valid_of flags = match Lemmas.overflow flags with | Some v -> true | None -> false let updated_cf new_flags new_cf = Lemmas.cf new_flags = Some new_cf let updated_of new_flags new_cf = Lemmas.overflow new_flags = Some new_cf let maintained_cf new_flags flags = Lemmas.cf new_flags = Lemmas.cf flags let maintained_of new_flags flags = Lemmas.overflow new_flags = Lemmas.overflow flags let ins = BS.ins type ocmp = BS.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let get_reason p = match p with | Vale.Def.PossiblyMonad.Ok () -> None | Vale.Def.PossiblyMonad.Err reason -> Some reason let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand (va_opr_code_Mem64 id base offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.vs_heap.vf_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem64_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem64 id base offset t in M.lemma_valid_mem64 b index h; let OMem (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem64 b index h let lemma_opr_Mem128 (id:heaplet_id) (s:va_state) (base:operand64) (offset:int) (t:taint) (b:M.buffer128) (index:int) : Lemma (requires ( let h = Map16.sel s.vs_heap.vf_heaplets id in M.mem_inv s.vs_heap /\ OReg? base /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.vs_heap.vf_layout) h false /\ M.valid_taint_buf128 b h (full_heap_taint s.vs_heap) t /\ eval_operand base s + offset == M.buffer_addr b h + 16 * index )) (ensures ( let h = Map16.sel s.vs_heap.vf_heaplets id in valid_operand128 (va_opr_code_Mem128 id base offset t) s /\ M.load_mem128 (M.buffer_addr b h + 16 * index) (M.get_vale_heap s.vs_heap) == M.buffer_read b index h )) = Vale.X64.Memory_Sems.low_lemma_load_mem128_full b index s.vs_heap t id; let h = M.get_vale_heap s.vs_heap in let t = va_opr_code_Mem128 id base offset t in M.lemma_valid_mem128 b index h; let OMem (m, t) = t in assert (valid_buf_maddr128 (eval_maddr m s) h s.vs_heap.vf_layout b index t); M.lemma_load_mem128 b index h let taint_at memTaint addr = Map.sel memTaint addr let va_cmp_eq o1 o2 = BC.OEq o1 o2 let va_cmp_ne o1 o2 = BC.ONe o1 o2 let va_cmp_le o1 o2 = BC.OLe o1 o2 let va_cmp_ge o1 o2 = BC.OGe o1 o2 let va_cmp_lt o1 o2 = BC.OLt o1 o2 let va_cmp_gt o1 o2 = BC.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma (c0:va_code) (s0:va_state) : Lemma (requires True) (ensures (forall (i:ins) (s:BS.machine_state).{:pattern (BS.machine_eval_code_ins i s)} BS.machine_eval_code_ins i s == BS.machine_eval_code_ins_def i s) ) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let havoc_flags = Lemmas.havoc_flags unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total
false
false
Vale.X64.Decls.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val va_lemma_whileMerge_total (c:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.vs_ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with vs_flags = havoc_flags}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN ))
[]
Vale.X64.Decls.va_lemma_whileMerge_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Decls.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Vale.X64.Decls.va_code -> s0: Vale.X64.Decls.va_state -> f0: Vale.X64.Decls.va_fuel -> sM: Vale.X64.Decls.va_state -> fM: Vale.X64.Decls.va_fuel -> sN: Vale.X64.Decls.va_state -> Prims.Ghost Vale.X64.Decls.va_fuel
{ "end_col": 61, "end_line": 142, "start_col": 32, "start_line": 142 }
Prims.GTot
val store_stack64 (ptr:int) (v:nat64) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_stack64 i v h = BS.update_stack64' i v h
val store_stack64 (ptr:int) (v:nat64) (h:vale_stack) : GTot vale_stack let store_stack64 i v h =
false
null
false
BS.update_stack64' i v h
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Memory.nat64", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.update_stack64'" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_stack64 (ptr:int) (v:nat64) (h:vale_stack) : GTot vale_stack
[]
Vale.PPC64LE.Stack_i.store_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.nat64 -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Vale.PPC64LE.Stack_i.vale_stack
{ "end_col": 50, "end_line": 10, "start_col": 26, "start_line": 10 }
Prims.GTot
val load_stack128 (ptr:int) (h:vale_stack) : GTot quad32
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_stack128 i st = BS.eval_stack128 i st
val load_stack128 (ptr:int) (h:vale_stack) : GTot quad32 let load_stack128 i st =
false
null
false
BS.eval_stack128 i st
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.eval_stack128", "Vale.PPC64LE.Memory.quad32" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_stack128 (ptr:int) (h:vale_stack) : GTot quad32
[]
Vale.PPC64LE.Stack_i.load_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Vale.PPC64LE.Memory.quad32
{ "end_col": 46, "end_line": 14, "start_col": 25, "start_line": 14 }
Prims.GTot
val load_stack64 (ptr:int) (h:vale_stack) : GTot nat64
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_stack64 i st = BS.eval_stack i st
val load_stack64 (ptr:int) (h:vale_stack) : GTot nat64 let load_stack64 i st =
false
null
false
BS.eval_stack i st
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.eval_stack", "Vale.PPC64LE.Memory.nat64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_stack64 (ptr:int) (h:vale_stack) : GTot nat64
[]
Vale.PPC64LE.Stack_i.load_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Vale.PPC64LE.Memory.nat64
{ "end_col": 42, "end_line": 9, "start_col": 24, "start_line": 9 }
Prims.Tot
val vale_stack : Type u#0
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vale_stack = machine_stack
val vale_stack : Type u#0 let vale_stack =
false
null
false
machine_stack
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "total" ]
[ "Vale.PPC64LE.Machine_s.machine_stack" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s
false
true
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vale_stack : Type u#0
[]
Vale.PPC64LE.Stack_i.vale_stack
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 30, "end_line": 6, "start_col": 17, "start_line": 6 }
Prims.GTot
val free_stack128 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_stack128 start finish h = BS.free_stack' start finish h
val free_stack128 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack let free_stack128 start finish h =
false
null
false
BS.free_stack' start finish h
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.free_stack'" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_stack128 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack
[]
Vale.PPC64LE.Stack_i.free_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Vale.PPC64LE.Stack_i.vale_stack
{ "end_col": 64, "end_line": 16, "start_col": 35, "start_line": 16 }
Prims.GTot
val valid_src_stack128 (ptr:int) (h:vale_stack) : GTot bool
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_src_stack128 i st = BS.valid_src_stack128 i st
val valid_src_stack128 (ptr:int) (h:vale_stack) : GTot bool let valid_src_stack128 i st =
false
null
false
BS.valid_src_stack128 i st
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.valid_src_stack128", "Prims.bool" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_src_stack128 (ptr:int) (h:vale_stack) : GTot bool
[]
Vale.PPC64LE.Stack_i.valid_src_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Prims.bool
{ "end_col": 56, "end_line": 13, "start_col": 30, "start_line": 13 }
Prims.GTot
val valid_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_taint_stack128 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t && Map.sel stackTaint (ptr + 8) = t && Map.sel stackTaint (ptr + 9) = t && Map.sel stackTaint (ptr + 10) = t && Map.sel stackTaint (ptr + 11) = t && Map.sel stackTaint (ptr + 12) = t && Map.sel stackTaint (ptr + 13) = t && Map.sel stackTaint (ptr + 14) = t && Map.sel stackTaint (ptr + 15) = t
val valid_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0 let valid_taint_stack128 ptr t stackTaint =
false
null
false
Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t && Map.sel stackTaint (ptr + 8) = t && Map.sel stackTaint (ptr + 9) = t && Map.sel stackTaint (ptr + 10) = t && Map.sel stackTaint (ptr + 11) = t && Map.sel stackTaint (ptr + 12) = t && Map.sel stackTaint (ptr + 13) = t && Map.sel stackTaint (ptr + 14) = t && Map.sel stackTaint (ptr + 15) = t
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Memory.memtaint", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.Map.sel", "Prims.op_Addition", "Vale.Def.Prop_s.prop0" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_r1_free_stack64 start finish h = () let lemma_same_init_r1_store_stack64 ptr v h = () let lemma_same_init_r1_free_stack128 start finish h = () let lemma_same_init_r1_store_stack128 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[]
Vale.PPC64LE.Stack_i.valid_taint_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.PPC64LE.Memory.memtaint -> Prims.GTot Vale.Def.Prop_s.prop0
{ "end_col": 35, "end_line": 138, "start_col": 2, "start_line": 123 }
Prims.GTot
val store_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_taint_stack64 ptr t stackTaint = BS.update_n ptr 8 stackTaint t
val store_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint let store_taint_stack64 ptr t stackTaint =
false
null
false
BS.update_n ptr 8 stackTaint t
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Memory.memtaint", "Vale.PPC64LE.Semantics_s.update_n" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_r1_free_stack64 start finish h = () let lemma_same_init_r1_store_stack64 ptr v h = () let lemma_same_init_r1_free_stack128 start finish h = () let lemma_same_init_r1_store_stack128 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t let valid_taint_stack128 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t && Map.sel stackTaint (ptr + 8) = t && Map.sel stackTaint (ptr + 9) = t && Map.sel stackTaint (ptr + 10) = t && Map.sel stackTaint (ptr + 11) = t && Map.sel stackTaint (ptr + 12) = t && Map.sel stackTaint (ptr + 13) = t && Map.sel stackTaint (ptr + 14) = t && Map.sel stackTaint (ptr + 15) = t
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint
[]
Vale.PPC64LE.Stack_i.store_taint_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.PPC64LE.Memory.memtaint -> Prims.GTot Vale.PPC64LE.Memory.memtaint
{ "end_col": 73, "end_line": 140, "start_col": 43, "start_line": 140 }
Prims.GTot
val valid_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t
val valid_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0 let valid_taint_stack64 ptr t stackTaint =
false
null
false
Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Memory.memtaint", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.Map.sel", "Prims.op_Addition", "Vale.Def.Prop_s.prop0" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_r1_free_stack64 start finish h = () let lemma_same_init_r1_store_stack64 ptr v h = () let lemma_same_init_r1_free_stack128 start finish h = () let lemma_same_init_r1_store_stack128 ptr v h = ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_taint_stack64 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot prop0
[]
Vale.PPC64LE.Stack_i.valid_taint_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.PPC64LE.Memory.memtaint -> Prims.GTot Vale.Def.Prop_s.prop0
{ "end_col": 34, "end_line": 120, "start_col": 2, "start_line": 113 }
Prims.GTot
val free_stack64 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_stack64 start finish h = BS.free_stack' start finish h
val free_stack64 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack let free_stack64 start finish h =
false
null
false
BS.free_stack' start finish h
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.free_stack'" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_stack64 (start:int) (finish:int) (h:vale_stack) : GTot vale_stack
[]
Vale.PPC64LE.Stack_i.free_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Vale.PPC64LE.Stack_i.vale_stack
{ "end_col": 63, "end_line": 11, "start_col": 34, "start_line": 11 }
Prims.GTot
val valid_src_stack64 (ptr:int) (h:vale_stack) : GTot bool
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let valid_src_stack64 i st = BS.valid_src_stack64 i st
val valid_src_stack64 (ptr:int) (h:vale_stack) : GTot bool let valid_src_stack64 i st =
false
null
false
BS.valid_src_stack64 i st
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.valid_src_stack64", "Prims.bool" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_src_stack64 (ptr:int) (h:vale_stack) : GTot bool
[]
Vale.PPC64LE.Stack_i.valid_src_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Prims.bool
{ "end_col": 54, "end_line": 8, "start_col": 29, "start_line": 8 }
Prims.Tot
val init_r1 (h:vale_stack) : (n:nat64{n >= 65536})
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let init_r1 h = h.initial_r1
val init_r1 (h:vale_stack) : (n:nat64{n >= 65536}) let init_r1 h =
false
null
false
h.initial_r1
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "total" ]
[ "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.__proj__Machine_stack__item__initial_r1", "Vale.PPC64LE.Memory.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val init_r1 (h:vale_stack) : (n:nat64{n >= 65536})
[]
Vale.PPC64LE.Stack_i.init_r1
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: Vale.PPC64LE.Stack_i.vale_stack -> n: Vale.PPC64LE.Memory.nat64{n >= 65536}
{ "end_col": 28, "end_line": 18, "start_col": 16, "start_line": 18 }
Prims.GTot
val store_stack128 (ptr:int) (v:quad32) (h:vale_stack) : GTot vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_stack128 i v h = BS.update_stack128' i v h
val store_stack128 (ptr:int) (v:quad32) (h:vale_stack) : GTot vale_stack let store_stack128 i v h =
false
null
false
BS.update_stack128' i v h
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Semantics_s.update_stack128'" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_stack128 (ptr:int) (v:quad32) (h:vale_stack) : GTot vale_stack
[]
Vale.PPC64LE.Stack_i.store_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> Prims.GTot Vale.PPC64LE.Stack_i.vale_stack
{ "end_col": 52, "end_line": 15, "start_col": 27, "start_line": 15 }
Prims.GTot
val store_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_taint_stack128 ptr t stackTaint = BS.update_n ptr 16 stackTaint t
val store_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint let store_taint_stack128 ptr t stackTaint =
false
null
false
BS.update_n ptr 16 stackTaint t
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "sometrivial" ]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Memory.memtaint", "Vale.PPC64LE.Semantics_s.update_n" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_r1_free_stack64 start finish h = () let lemma_same_init_r1_store_stack64 ptr v h = () let lemma_same_init_r1_free_stack128 start finish h = () let lemma_same_init_r1_store_stack128 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t let valid_taint_stack128 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t && Map.sel stackTaint (ptr + 8) = t && Map.sel stackTaint (ptr + 9) = t && Map.sel stackTaint (ptr + 10) = t && Map.sel stackTaint (ptr + 11) = t && Map.sel stackTaint (ptr + 12) = t && Map.sel stackTaint (ptr + 13) = t && Map.sel stackTaint (ptr + 14) = t && Map.sel stackTaint (ptr + 15) = t let store_taint_stack64 ptr t stackTaint = BS.update_n ptr 8 stackTaint t
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_taint_stack128 (ptr:int) (t:taint) (stackTaint:memtaint) : GTot memtaint
[]
Vale.PPC64LE.Stack_i.store_taint_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> stackTaint: Vale.PPC64LE.Memory.memtaint -> Prims.GTot Vale.PPC64LE.Memory.memtaint
{ "end_col": 75, "end_line": 142, "start_col": 44, "start_line": 142 }
FStar.Pervasives.Lemma
val lemma_free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures load_stack128 ptr h == load_stack128 ptr (free_stack128 start finish h)) [SMTPat (load_stack128 ptr (free_stack128 start finish h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal ()
val lemma_free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures load_stack128 ptr h == load_stack128 ptr (free_stack128 start finish h)) [SMTPat (load_stack128 ptr (free_stack128 start finish h))] let lemma_free_stack_same_load128 start finish ptr h =
false
null
true
reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val128_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.get_heap_val32_reveal", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "FStar.Set.set", "FStar.Map.domain", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr128" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_free_stack_same_load128 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures load_stack128 ptr h == load_stack128 ptr (free_stack128 start finish h)) [SMTPat (load_stack128 ptr (free_stack128 start finish h))]
[]
Vale.PPC64LE.Stack_i.lemma_free_stack_same_load128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures Vale.PPC64LE.Stack_i.load_stack128 ptr h == Vale.PPC64LE.Stack_i.load_stack128 ptr (Vale.PPC64LE.Stack_i.free_stack128 start finish h)) [ SMTPat (Vale.PPC64LE.Stack_i.load_stack128 ptr (Vale.PPC64LE.Stack_i.free_stack128 start finish h)) ]
{ "end_col": 30, "end_line": 85, "start_col": 2, "start_line": 80 }
FStar.Pervasives.Lemma
val lemma_correct_store_load_stack128 (ptr:int) (v:quad32) (h:vale_stack) : Lemma (load_stack128 ptr (store_stack128 ptr v h) == v) [SMTPat (load_stack128 ptr (store_stack128 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem
val lemma_correct_store_load_stack128 (ptr:int) (v:quad32) (h:vale_stack) : Lemma (load_stack128 ptr (store_stack128 ptr v h) == v) [SMTPat (load_stack128 ptr (store_stack128 ptr v h))] let lemma_correct_store_load_stack128 ptr v h =
false
null
true
let Machine_stack _ mem = h in correct_update_get128 ptr v mem
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap.correct_update_get128", "Prims.unit" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_correct_store_load_stack128 (ptr:int) (v:quad32) (h:vale_stack) : Lemma (load_stack128 ptr (store_stack128 ptr v h) == v) [SMTPat (load_stack128 ptr (store_stack128 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_correct_store_load_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (ensures Vale.PPC64LE.Stack_i.load_stack128 ptr (Vale.PPC64LE.Stack_i.store_stack128 ptr v h) == v) [ SMTPat (Vale.PPC64LE.Stack_i.load_stack128 ptr (Vale.PPC64LE.Stack_i.store_stack128 ptr v h) ) ]
{ "end_col": 33, "end_line": 71, "start_col": 47, "start_line": 69 }
FStar.Pervasives.Lemma
val lemma_free_stack_same_valid64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures valid_src_stack64 ptr (free_stack64 start finish h)) [SMTPat (valid_src_stack64 ptr (free_stack64 start finish h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
val lemma_free_stack_same_valid64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures valid_src_stack64 ptr (free_stack64 start finish h)) [SMTPat (valid_src_stack64 ptr (free_stack64 start finish h))] let lemma_free_stack_same_valid64 start finish ptr h =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "FStar.Set.set", "FStar.Map.domain", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_free_stack_same_valid64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures valid_src_stack64 ptr (free_stack64 start finish h)) [SMTPat (valid_src_stack64 ptr (free_stack64 start finish h))]
[]
Vale.PPC64LE.Stack_i.lemma_free_stack_same_valid64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures Vale.PPC64LE.Stack_i.valid_src_stack64 ptr (Vale.PPC64LE.Stack_i.free_stack64 start finish h)) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack64 ptr (Vale.PPC64LE.Stack_i.free_stack64 start finish h)) ]
{ "end_col": 81, "end_line": 30, "start_col": 2, "start_line": 27 }
FStar.Pervasives.Lemma
val lemma_free_stack_same_valid128 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures valid_src_stack128 ptr (free_stack128 start finish h)) [SMTPat (valid_src_stack128 ptr (free_stack128 start finish h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
val lemma_free_stack_same_valid128 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures valid_src_stack128 ptr (free_stack128 start finish h)) [SMTPat (valid_src_stack128 ptr (free_stack128 start finish h))] let lemma_free_stack_same_valid128 start finish ptr h =
false
null
true
reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "FStar.Set.set", "FStar.Map.domain", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr128" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_free_stack_same_valid128 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures valid_src_stack128 ptr (free_stack128 start finish h)) [SMTPat (valid_src_stack128 ptr (free_stack128 start finish h))]
[]
Vale.PPC64LE.Stack_i.lemma_free_stack_same_valid128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack128 ptr h /\ (ptr >= finish \/ ptr + 16 <= start)) (ensures Vale.PPC64LE.Stack_i.valid_src_stack128 ptr (Vale.PPC64LE.Stack_i.free_stack128 start finish h)) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack128 ptr (Vale.PPC64LE.Stack_i.free_stack128 start finish h)) ]
{ "end_col": 81, "end_line": 41, "start_col": 2, "start_line": 38 }
FStar.Pervasives.Lemma
val lemma_correct_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (load_stack64 ptr (store_stack64 ptr v h) == v) [SMTPat (load_stack64 ptr (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem
val lemma_correct_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (load_stack64 ptr (store_stack64 ptr v h) == v) [SMTPat (load_stack64 ptr (store_stack64 ptr v h))] let lemma_correct_store_load_stack64 ptr v h =
false
null
true
let Machine_stack _ mem = h in correct_update_get64 ptr v mem
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.nat64", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap.correct_update_get64", "Prims.unit" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_correct_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (load_stack64 ptr (store_stack64 ptr v h) == v) [SMTPat (load_stack64 ptr (store_stack64 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_correct_store_load_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.nat64 -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (ensures Vale.PPC64LE.Stack_i.load_stack64 ptr (Vale.PPC64LE.Stack_i.store_stack64 ptr v h) == v) [SMTPat (Vale.PPC64LE.Stack_i.load_stack64 ptr (Vale.PPC64LE.Stack_i.store_stack64 ptr v h))]
{ "end_col": 32, "end_line": 55, "start_col": 46, "start_line": 53 }
FStar.Pervasives.Lemma
val lemma_frame_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack64 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal ()
val lemma_frame_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack64 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack64 ptr v h))] let lemma_frame_store_load_stack64 ptr v h i =
false
null
true
let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.nat64", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "Vale.Arch.MachineHeap.frame_update_heap64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_frame_store_load_stack64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack64 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack64 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_frame_store_load_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.nat64 -> h: Vale.PPC64LE.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures Vale.PPC64LE.Stack_i.load_stack64 i (Vale.PPC64LE.Stack_i.store_stack64 ptr v h) == Vale.PPC64LE.Stack_i.load_stack64 i h) [SMTPat (Vale.PPC64LE.Stack_i.load_stack64 i (Vale.PPC64LE.Stack_i.store_stack64 ptr v h))]
{ "end_col": 29, "end_line": 60, "start_col": 46, "start_line": 57 }
FStar.Pervasives.Lemma
val lemma_frame_store_load_stack128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures (load_stack128 i (store_stack128 ptr v h) == load_stack128 i h)) [SMTPat (load_stack128 i (store_stack128 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal ()
val lemma_frame_store_load_stack128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures (load_stack128 i (store_stack128 ptr v h) == load_stack128 i h)) [SMTPat (load_stack128 i (store_stack128 ptr v h))] let lemma_frame_store_load_stack128 ptr v h i =
false
null
true
let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val128_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.get_heap_val32_reveal", "Vale.Arch.MachineHeap.frame_update_heap128" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_frame_store_load_stack128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures (load_stack128 i (store_stack128 ptr v h) == load_stack128 i h)) [SMTPat (load_stack128 i (store_stack128 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_frame_store_load_stack128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures Vale.PPC64LE.Stack_i.load_stack128 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h) == Vale.PPC64LE.Stack_i.load_stack128 i h) [SMTPat (Vale.PPC64LE.Stack_i.load_stack128 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h))]
{ "end_col": 30, "end_line": 77, "start_col": 47, "start_line": 73 }
FStar.Pervasives.Lemma
val lemma_store_stack_same_valid64_128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack128 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack128 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_stack_same_valid64_128 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap128_reveal (); BS.update_heap32_reveal ()
val lemma_store_stack_same_valid64_128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack128 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack128 ptr v h))] let lemma_store_stack_same_valid64_128 ptr v h i =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap128_reveal (); BS.update_heap32_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap32_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.update_heap128_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_r1_free_stack64 start finish h = () let lemma_same_init_r1_store_stack64 ptr v h = () let lemma_same_init_r1_free_stack128 start finish h = () let lemma_same_init_r1_store_stack128 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t let valid_taint_stack128 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t && Map.sel stackTaint (ptr + 8) = t && Map.sel stackTaint (ptr + 9) = t && Map.sel stackTaint (ptr + 10) = t && Map.sel stackTaint (ptr + 11) = t && Map.sel stackTaint (ptr + 12) = t && Map.sel stackTaint (ptr + 13) = t && Map.sel stackTaint (ptr + 14) = t && Map.sel stackTaint (ptr + 15) = t let store_taint_stack64 ptr t stackTaint = BS.update_n ptr 8 stackTaint t let store_taint_stack128 ptr t stackTaint = BS.update_n ptr 16 stackTaint t let lemma_valid_taint_stack64 ptr t stackTaint = () let lemma_valid_taint_stack128 ptr t stackTaint = () let lemma_valid_taint_stack64_reveal ptr t stackTaint = () let lemma_correct_store_load_taint_stack64 ptr t stackTaint = () let lemma_frame_store_load_taint_stack64 ptr t stackTaint i t' = () let lemma_valid_taint_stack128_reveal ptr t stackTaint = () let lemma_correct_store_load_taint_stack128 ptr t stackTaint = () let lemma_frame_store_load_taint_stack128 ptr t stackTaint i t' = ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_stack_same_valid64_128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack128 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack128 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_store_stack_same_valid64_128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures Vale.PPC64LE.Stack_i.valid_src_stack64 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h)) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack64 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h)) ]
{ "end_col": 28, "end_line": 162, "start_col": 2, "start_line": 160 }
FStar.Pervasives.Lemma
val lemma_free_stack_same_load64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures load_stack64 ptr h == load_stack64 ptr (free_stack64 start finish h)) [SMTPat (load_stack64 ptr (free_stack64 start finish h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal ()
val lemma_free_stack_same_load64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures load_stack64 ptr h == load_stack64 ptr (free_stack64 start finish h)) [SMTPat (load_stack64 ptr (free_stack64 start finish h))] let lemma_free_stack_same_load64 start finish ptr h =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.l_imp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Negation", "FStar.Set.mem", "Vale.Lib.Set.remove_between", "Prims.l_or", "Prims.op_Equality", "Prims.bool", "Vale.Lib.Set.remove_between_reveal", "FStar.Set.set", "FStar.Map.domain", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_free_stack_same_load64 (start:int) (finish:int) (ptr:int) (h:vale_stack) : Lemma (requires valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures load_stack64 ptr h == load_stack64 ptr (free_stack64 start finish h)) [SMTPat (load_stack64 ptr (free_stack64 start finish h))]
[]
Vale.PPC64LE.Stack_i.lemma_free_stack_same_load64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> finish: Prims.int -> ptr: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack64 ptr h /\ (ptr >= finish \/ ptr + 8 <= start)) (ensures Vale.PPC64LE.Stack_i.load_stack64 ptr h == Vale.PPC64LE.Stack_i.load_stack64 ptr (Vale.PPC64LE.Stack_i.free_stack64 start finish h)) [ SMTPat (Vale.PPC64LE.Stack_i.load_stack64 ptr (Vale.PPC64LE.Stack_i.free_stack64 start finish h)) ]
{ "end_col": 29, "end_line": 67, "start_col": 2, "start_line": 63 }
FStar.Pervasives.Lemma
val lemma_store_new_valid128 (ptr:int) (v:quad32) (h:vale_stack) : Lemma (valid_src_stack128 ptr (store_stack128 ptr v h)) [SMTPat (valid_src_stack128 ptr (store_stack128 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal ()
val lemma_store_new_valid128 (ptr:int) (v:quad32) (h:vale_stack) : Lemma (valid_src_stack128 ptr (store_stack128 ptr v h)) [SMTPat (valid_src_stack128 ptr (store_stack128 ptr v h))] let lemma_store_new_valid128 ptr v h =
false
null
true
reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap128_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.update_heap32_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr128" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_new_valid128 (ptr:int) (v:quad32) (h:vale_stack) : Lemma (valid_src_stack128 ptr (store_stack128 ptr v h)) [SMTPat (valid_src_stack128 ptr (store_stack128 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_store_new_valid128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (ensures Vale.PPC64LE.Stack_i.valid_src_stack128 ptr (Vale.PPC64LE.Stack_i.store_stack128 ptr v h)) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack128 ptr (Vale.PPC64LE.Stack_i.store_stack128 ptr v h)) ]
{ "end_col": 29, "end_line": 50, "start_col": 2, "start_line": 48 }
FStar.Pervasives.Lemma
val lemma_frame_store_load_stack64_128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack128 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack128 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_frame_store_load_stack64_128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val64_reveal ()
val lemma_frame_store_load_stack64_128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack128 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack128 ptr v h))] let lemma_frame_store_load_stack64_128 ptr v h i =
false
null
true
let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val64_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Vale.Arch.MachineHeap_s.get_heap_val64_reveal", "Prims.unit", "Vale.Arch.MachineHeap.frame_update_heap128" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2) let lemma_same_init_r1_free_stack64 start finish h = () let lemma_same_init_r1_store_stack64 ptr v h = () let lemma_same_init_r1_free_stack128 start finish h = () let lemma_same_init_r1_store_stack128 ptr v h = () let valid_taint_stack64 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t let valid_taint_stack128 ptr t stackTaint = Map.sel stackTaint ptr = t && Map.sel stackTaint (ptr + 1) = t && Map.sel stackTaint (ptr + 2) = t && Map.sel stackTaint (ptr + 3) = t && Map.sel stackTaint (ptr + 4) = t && Map.sel stackTaint (ptr + 5) = t && Map.sel stackTaint (ptr + 6) = t && Map.sel stackTaint (ptr + 7) = t && Map.sel stackTaint (ptr + 8) = t && Map.sel stackTaint (ptr + 9) = t && Map.sel stackTaint (ptr + 10) = t && Map.sel stackTaint (ptr + 11) = t && Map.sel stackTaint (ptr + 12) = t && Map.sel stackTaint (ptr + 13) = t && Map.sel stackTaint (ptr + 14) = t && Map.sel stackTaint (ptr + 15) = t let store_taint_stack64 ptr t stackTaint = BS.update_n ptr 8 stackTaint t let store_taint_stack128 ptr t stackTaint = BS.update_n ptr 16 stackTaint t let lemma_valid_taint_stack64 ptr t stackTaint = () let lemma_valid_taint_stack128 ptr t stackTaint = () let lemma_valid_taint_stack64_reveal ptr t stackTaint = () let lemma_correct_store_load_taint_stack64 ptr t stackTaint = () let lemma_frame_store_load_taint_stack64 ptr t stackTaint i t' = () let lemma_valid_taint_stack128_reveal ptr t stackTaint = () let lemma_correct_store_load_taint_stack128 ptr t stackTaint = () let lemma_frame_store_load_taint_stack128 ptr t stackTaint i t' = () let lemma_store_stack_same_valid64_128 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap128_reveal (); BS.update_heap32_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_frame_store_load_stack64_128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures (load_stack64 i (store_stack128 ptr v h) == load_stack64 i h)) [SMTPat (load_stack64 i (store_stack128 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_frame_store_load_stack64_128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack64 i h /\ (i >= ptr + 16 \/ i + 8 <= ptr)) (ensures Vale.PPC64LE.Stack_i.load_stack64 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h) == Vale.PPC64LE.Stack_i.load_stack64 i h) [SMTPat (Vale.PPC64LE.Stack_i.load_stack64 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h))]
{ "end_col": 29, "end_line": 167, "start_col": 50, "start_line": 164 }
FStar.Pervasives.Lemma
val lemma_store_new_valid64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (valid_src_stack64 ptr (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 ptr (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
val lemma_store_new_valid64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (valid_src_stack64 ptr (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 ptr (store_stack64 ptr v h))] let lemma_store_new_valid64 ptr v h =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.nat64", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap64_reveal", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_new_valid64 (ptr:int) (v:nat64) (h:vale_stack) : Lemma (valid_src_stack64 ptr (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 ptr (store_stack64 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_store_new_valid64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.nat64 -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (ensures Vale.PPC64LE.Stack_i.valid_src_stack64 ptr (Vale.PPC64LE.Stack_i.store_stack64 ptr v h)) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack64 ptr (Vale.PPC64LE.Stack_i.store_stack64 ptr v h)) ]
{ "end_col": 28, "end_line": 45, "start_col": 2, "start_line": 44 }
FStar.Pervasives.Lemma
val lemma_store_stack_same_valid64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack64 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
val lemma_store_stack_same_valid64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack64 ptr v h))] let lemma_store_stack_same_valid64 ptr v h i =
false
null
true
reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.nat64", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap64_reveal", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr64" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40"
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_stack_same_valid64 (ptr:int) (v:nat64) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures valid_src_stack64 i (store_stack64 ptr v h)) [SMTPat (valid_src_stack64 i (store_stack64 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_store_stack_same_valid64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.nat64 -> h: Vale.PPC64LE.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack64 i h /\ (i >= ptr + 8 \/ i + 8 <= ptr)) (ensures Vale.PPC64LE.Stack_i.valid_src_stack64 i (Vale.PPC64LE.Stack_i.store_stack64 ptr v h) ) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack64 i (Vale.PPC64LE.Stack_i.store_stack64 ptr v h)) ]
{ "end_col": 28, "end_line": 24, "start_col": 2, "start_line": 23 }
FStar.Pervasives.Lemma
val lemma_store_stack_same_valid128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures valid_src_stack128 i (store_stack128 ptr v h)) [SMTPat (valid_src_stack128 i (store_stack128 ptr v h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal ()
val lemma_store_stack_same_valid128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures valid_src_stack128 i (store_stack128 ptr v h)) [SMTPat (valid_src_stack128 i (store_stack128 ptr v h))] let lemma_store_stack_same_valid128 ptr v h i =
false
null
true
reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal ()
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Memory.quad32", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.Arch.MachineHeap_s.update_heap128_reveal", "Prims.unit", "Vale.Arch.MachineHeap_s.update_heap32_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Arch.MachineHeap_s.machine_heap", "Prims.bool", "Vale.Arch.MachineHeap_s.valid_addr128" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish)
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_store_stack_same_valid128 (ptr:int) (v:quad32) (h:vale_stack) (i:int) : Lemma (requires valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures valid_src_stack128 i (store_stack128 ptr v h)) [SMTPat (valid_src_stack128 i (store_stack128 ptr v h))]
[]
Vale.PPC64LE.Stack_i.lemma_store_stack_same_valid128
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ptr: Prims.int -> v: Vale.PPC64LE.Memory.quad32 -> h: Vale.PPC64LE.Stack_i.vale_stack -> i: Prims.int -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Stack_i.valid_src_stack128 i h /\ (i >= ptr + 16 \/ i + 16 <= ptr)) (ensures Vale.PPC64LE.Stack_i.valid_src_stack128 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h)) [ SMTPat (Vale.PPC64LE.Stack_i.valid_src_stack128 i (Vale.PPC64LE.Stack_i.store_stack128 ptr v h)) ]
{ "end_col": 29, "end_line": 35, "start_col": 2, "start_line": 33 }
FStar.Pervasives.Lemma
val lemma_compose_free_stack64 (start:int) (inter:int) (finish:int) (h:vale_stack) : Lemma (requires start <= inter /\ inter <= finish) (ensures free_stack64 inter finish (free_stack64 start inter h) == free_stack64 start finish h) [SMTPat (free_stack64 inter finish (free_stack64 start inter h))]
[ { "abbrev": false, "full_module": "Vale.Arch.MachineHeap", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_compose_free_stack64 start inter finish h = let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i:int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2)
val lemma_compose_free_stack64 (start:int) (inter:int) (finish:int) (h:vale_stack) : Lemma (requires start <= inter /\ inter <= finish) (ensures free_stack64 inter finish (free_stack64 start inter h) == free_stack64 start finish h) [SMTPat (free_stack64 inter finish (free_stack64 start inter h))] let lemma_compose_free_stack64 start inter finish h =
false
null
true
let Machine_stack _ mem = h in let domain = Map.domain mem in let map_restr = Map.restrict (Vale.Lib.Set.remove_between domain start inter) mem in let restrict = Map.domain map_restr in let Machine_stack _ mem1 = free_stack64 inter finish (free_stack64 start inter h) in let Machine_stack _ mem2 = free_stack64 start finish h in let aux (i: int) : Lemma (Map.contains mem1 i = Map.contains mem2 i /\ Map.sel mem1 i = Map.sel mem2 i) = Vale.Lib.Set.remove_between_reveal domain start inter i; Vale.Lib.Set.remove_between_reveal restrict inter finish i; Vale.Lib.Set.remove_between_reveal domain start finish i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start inter) mem i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between restrict inter finish) map_restr i; Vale.Lib.Set.lemma_sel_restrict (Vale.Lib.Set.remove_between domain start finish) mem i in Classical.forall_intro aux; assert (Map.equal mem1 mem2)
{ "checked_file": "Vale.PPC64LE.Stack_i.fst.checked", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.Lib.Set.fsti.checked", "Vale.Arch.MachineHeap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Stack_i.fst" }
[ "lemma" ]
[ "Prims.int", "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.Machine_s.nat64", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Map.t", "Vale.PPC64LE.Machine_s.nat8", "Prims._assert", "FStar.Map.equal", "Prims.unit", "FStar.Classical.forall_intro", "Prims.l_and", "Prims.op_Equality", "Prims.bool", "FStar.Map.contains", "FStar.Map.sel", "Prims.l_True", "Prims.squash", "Vale.Def.Words_s.nat8", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Lib.Set.lemma_sel_restrict", "Vale.Lib.Set.remove_between", "Vale.Lib.Set.remove_between_reveal", "Vale.PPC64LE.Stack_i.free_stack64", "FStar.Set.set", "FStar.Map.domain", "FStar.Map.restrict" ]
[]
module Vale.PPC64LE.Stack_i open FStar.Mul module BS = Vale.PPC64LE.Semantics_s open Vale.Arch.MachineHeap let vale_stack = machine_stack let valid_src_stack64 i st = BS.valid_src_stack64 i st let load_stack64 i st = BS.eval_stack i st let store_stack64 i v h = BS.update_stack64' i v h let free_stack64 start finish h = BS.free_stack' start finish h let valid_src_stack128 i st = BS.valid_src_stack128 i st let load_stack128 i st = BS.eval_stack128 i st let store_stack128 i v h = BS.update_stack128' i v h let free_stack128 start finish h = BS.free_stack' start finish h let init_r1 h = h.initial_r1 (* Lemmas *) #push-options "--z3rlimit 40" let lemma_store_stack_same_valid64 ptr v h i = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_free_stack_same_valid64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_stack_same_valid128 ptr v h i = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () let lemma_free_stack_same_valid128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish) let lemma_store_new_valid64 ptr v h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; BS.update_heap64_reveal () let lemma_store_new_valid128 ptr v h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; BS.update_heap32_reveal (); BS.update_heap128_reveal () #pop-options let lemma_correct_store_load_stack64 ptr v h = let Machine_stack _ mem = h in correct_update_get64 ptr v mem let lemma_frame_store_load_stack64 ptr v h i = let Machine_stack _ mem = h in frame_update_heap64 ptr v mem; BS.get_heap_val64_reveal () let lemma_free_stack_same_load64 start finish ptr h = reveal_opaque (`%BS.valid_addr64) BS.valid_addr64; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val64_reveal () let lemma_correct_store_load_stack128 ptr v h = let Machine_stack _ mem = h in correct_update_get128 ptr v mem let lemma_frame_store_load_stack128 ptr v h i = let Machine_stack _ mem = h in frame_update_heap128 ptr v mem; BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal () let lemma_free_stack_same_load128 start finish ptr h = reveal_opaque (`%BS.valid_addr128) BS.valid_addr128; let Machine_stack _ mem = h in let domain = Map.domain mem in Classical.forall_intro (Vale.Lib.Set.remove_between_reveal domain start finish); BS.get_heap_val32_reveal (); BS.get_heap_val128_reveal ()
false
false
Vale.PPC64LE.Stack_i.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_compose_free_stack64 (start:int) (inter:int) (finish:int) (h:vale_stack) : Lemma (requires start <= inter /\ inter <= finish) (ensures free_stack64 inter finish (free_stack64 start inter h) == free_stack64 start finish h) [SMTPat (free_stack64 inter finish (free_stack64 start inter h))]
[]
Vale.PPC64LE.Stack_i.lemma_compose_free_stack64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Stack_i.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
start: Prims.int -> inter: Prims.int -> finish: Prims.int -> h: Vale.PPC64LE.Stack_i.vale_stack -> FStar.Pervasives.Lemma (requires start <= inter /\ inter <= finish) (ensures Vale.PPC64LE.Stack_i.free_stack64 inter finish (Vale.PPC64LE.Stack_i.free_stack64 start inter h) == Vale.PPC64LE.Stack_i.free_stack64 start finish h) [ SMTPat (Vale.PPC64LE.Stack_i.free_stack64 inter finish (Vale.PPC64LE.Stack_i.free_stack64 start inter h)) ]
{ "end_col": 30, "end_line": 102, "start_col": 53, "start_line": 87 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n = 32
let n =
false
null
false
32
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n : Prims.int
[]
FStar.UInt32.n
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.int
{ "end_col": 17, "end_line": 20, "start_col": 15, "start_line": 20 }
Prims.Tot
val eq (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
val eq (a b: t) : Tot bool let eq (a b: t) : Tot bool =
false
null
false
eq #n (v a) (v b)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt.eq", "FStar.UInt32.n", "FStar.UInt32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq (a b: t) : Tot bool
[]
FStar.UInt32.eq
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 49, "end_line": 223, "start_col": 32, "start_line": 223 }
Prims.Tot
val lte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
val lte (a b: t) : Tot bool let lte (a b: t) : Tot bool =
false
null
false
lte #n (v a) (v b)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt.lte", "FStar.UInt32.n", "FStar.UInt32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lte (a b: t) : Tot bool
[]
FStar.UInt32.lte
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 51, "end_line": 235, "start_col": 33, "start_line": 235 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Percent_Hat = mul_mod
let op_Star_Percent_Hat =
false
null
false
mul_mod
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.mul_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Percent_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Star_Percent_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 40, "end_line": 323, "start_col": 33, "start_line": 323 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Percent_Hat = sub_mod
let op_Subtraction_Percent_Hat =
false
null
false
sub_mod
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.sub_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Percent_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Subtraction_Percent_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 47, "end_line": 320, "start_col": 40, "start_line": 320 }
Prims.Tot
val lt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
val lt (a b: t) : Tot bool let lt (a b: t) : Tot bool =
false
null
false
lt #n (v a) (v b)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt.lt", "FStar.UInt32.n", "FStar.UInt32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lt (a b: t) : Tot bool
[]
FStar.UInt32.lt
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 49, "end_line": 232, "start_col": 32, "start_line": 232 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Question_Hat = sub_underspec
let op_Subtraction_Question_Hat =
false
null
false
sub_underspec
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.sub_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Question_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Subtraction_Question_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 54, "end_line": 319, "start_col": 41, "start_line": 319 }
Prims.Tot
val gte (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
val gte (a b: t) : Tot bool let gte (a b: t) : Tot bool =
false
null
false
gte #n (v a) (v b)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt.gte", "FStar.UInt32.n", "FStar.UInt32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte (a b: t) : Tot bool
[]
FStar.UInt32.gte
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 51, "end_line": 229, "start_col": 33, "start_line": 229 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Subtraction_Hat = sub
let op_Subtraction_Hat =
false
null
false
sub
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.sub" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Subtraction_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Subtraction_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 35, "end_line": 318, "start_col": 32, "start_line": 318 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Question_Hat = add_underspec
let op_Plus_Question_Hat =
false
null
false
add_underspec
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.add_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *)
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Question_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Plus_Question_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 47, "end_line": 316, "start_col": 34, "start_line": 316 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Hat = add
let op_Plus_Hat =
false
null
false
add
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.add" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Plus_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 28, "end_line": 315, "start_col": 25, "start_line": 315 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Percent_Hat = add_mod
let op_Plus_Percent_Hat =
false
null
false
add_mod
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.add_mod" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Percent_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Plus_Percent_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 40, "end_line": 317, "start_col": 33, "start_line": 317 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Question_Hat = mul_underspec
let op_Star_Question_Hat =
false
null
false
mul_underspec
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.mul_underspec" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Question_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Star_Question_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 47, "end_line": 322, "start_col": 34, "start_line": 322 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Hat = mul
let op_Star_Hat =
false
null
false
mul
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.mul" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Star_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 28, "end_line": 321, "start_col": 25, "start_line": 321 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Bar_Hat = logor
let op_Bar_Hat =
false
null
false
logor
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.logor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Bar_Hat : x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Bar_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 29, "end_line": 328, "start_col": 24, "start_line": 328 }
Prims.Tot
val gt (a b: t) : Tot bool
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
val gt (a b: t) : Tot bool let gt (a b: t) : Tot bool =
false
null
false
gt #n (v a) (v b)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt.gt", "FStar.UInt32.n", "FStar.UInt32.v", "Prims.bool" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gt (a b: t) : Tot bool
[]
FStar.UInt32.gt
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 49, "end_line": 226, "start_col": 32, "start_line": 226 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Hat_Hat = logxor
let op_Hat_Hat =
false
null
false
logxor
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.logxor" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Hat_Hat : x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Hat_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 30, "end_line": 326, "start_col": 24, "start_line": 326 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Percent_Hat = rem
let op_Percent_Hat =
false
null
false
rem
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.rem" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Percent_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t{FStar.UInt32.v b <> 0} -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Percent_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t{FStar.UInt32.v b <> 0} -> Prims.Pure FStar.UInt32.t
{ "end_col": 31, "end_line": 325, "start_col": 28, "start_line": 325 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Equals_Hat = gte
let op_Greater_Equals_Hat =
false
null
false
gte
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.gte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Equals_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
[]
FStar.UInt32.op_Greater_Equals_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 38, "end_line": 333, "start_col": 35, "start_line": 333 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Greater_Hat = shift_right
let op_Greater_Greater_Hat =
false
null
false
shift_right
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.shift_right" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Greater_Hat : a: FStar.UInt32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Greater_Greater_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 47, "end_line": 330, "start_col": 36, "start_line": 330 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Hat = lt
let op_Less_Hat =
false
null
false
lt
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.lt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
[]
FStar.UInt32.op_Less_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 27, "end_line": 334, "start_col": 25, "start_line": 334 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Greater_Hat = gt
let op_Greater_Hat =
false
null
false
gt
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.gt" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Greater_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
[]
FStar.UInt32.op_Greater_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 30, "end_line": 332, "start_col": 28, "start_line": 332 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Slash_Hat = div
let op_Slash_Hat =
false
null
false
div
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.div" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Slash_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t{FStar.UInt32.v b <> 0} -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Slash_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t{FStar.UInt32.v b <> 0} -> Prims.Pure FStar.UInt32.t
{ "end_col": 29, "end_line": 324, "start_col": 26, "start_line": 324 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Amp_Hat = logand
let op_Amp_Hat =
false
null
false
logand
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.logand" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Amp_Hat : x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Amp_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 30, "end_line": 327, "start_col": 24, "start_line": 327 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Equals_Hat = eq
let op_Equals_Hat =
false
null
false
eq
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.eq" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Equals_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
[]
FStar.UInt32.op_Equals_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 29, "end_line": 331, "start_col": 27, "start_line": 331 }
Prims.Pure
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Less_Hat = shift_left
let op_Less_Less_Hat =
false
null
false
shift_left
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.shift_left" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Less_Hat : a: FStar.UInt32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
[]
FStar.UInt32.op_Less_Less_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 40, "end_line": 329, "start_col": 30, "start_line": 329 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Less_Equals_Hat = lte
let op_Less_Equals_Hat =
false
null
false
lte
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.lte" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c #reset-options (*** Infix notations *) unfold let op_Plus_Hat = add unfold let op_Plus_Question_Hat = add_underspec unfold let op_Plus_Percent_Hat = add_mod unfold let op_Subtraction_Hat = sub unfold let op_Subtraction_Question_Hat = sub_underspec unfold let op_Subtraction_Percent_Hat = sub_mod unfold let op_Star_Hat = mul unfold let op_Star_Question_Hat = mul_underspec unfold let op_Star_Percent_Hat = mul_mod unfold let op_Slash_Hat = div unfold let op_Percent_Hat = rem unfold let op_Hat_Hat = logxor unfold let op_Amp_Hat = logand unfold let op_Bar_Hat = logor unfold let op_Less_Less_Hat = shift_left unfold let op_Greater_Greater_Hat = shift_right unfold let op_Equals_Hat = eq unfold let op_Greater_Hat = gt unfold let op_Greater_Equals_Hat = gte
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Equals_Hat : a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
[]
FStar.UInt32.op_Less_Equals_Hat
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.bool
{ "end_col": 35, "end_line": 335, "start_col": 32, "start_line": 335 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
let minus (a: t) =
false
null
false
add_mod (lognot a) (uint_to_t 1)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt32.add_mod", "FStar.UInt32.lognot", "FStar.UInt32.uint_to_t" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val minus : a: FStar.UInt32.t -> FStar.UInt32.t
[]
FStar.UInt32.minus
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> FStar.UInt32.t
{ "end_col": 50, "end_line": 239, "start_col": 18, "start_line": 239 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let n_minus_one = uint_to_t (n - 1)
let n_minus_one =
false
null
false
uint_to_t (n - 1)
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[ "total" ]
[ "FStar.UInt32.uint_to_t", "Prims.op_Subtraction", "FStar.UInt32.n" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *)
false
true
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val n_minus_one : FStar.UInt32.t
[]
FStar.UInt32.n_minus_one
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.UInt32.t
{ "end_col": 35, "end_line": 243, "start_col": 18, "start_line": 243 }
Prims.Pure
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) = let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) let gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) =
false
null
false
let x = a in let y = b in let x_xor_y = logxor x y in let x_sub_y = sub_mod x y in let x_sub_y_xor_y = logxor x_sub_y y in let q = logor x_xor_y x_sub_y_xor_y in let x_xor_q = logxor x q in let x_xor_q_ = shift_right x_xor_q n_minus_one in let c = sub_mod x_xor_q_ (uint_to_t 1) in lemma_sub_msbs x y; lemma_msb_gte (v x) (v y); lemma_msb_gte (v y) (v x); c
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.t", "Prims.unit", "FStar.UInt.lemma_msb_gte", "FStar.UInt32.n", "FStar.UInt32.v", "FStar.UInt32.lemma_sub_msbs", "FStar.UInt32.sub_mod", "FStar.UInt32.uint_to_t", "FStar.UInt32.shift_right", "FStar.UInt32.n_minus_one", "FStar.UInt32.logxor", "FStar.UInt32.logor", "Prims.l_True", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_LessThan" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c private val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) (** A constant-time way to compute the [>=] inequality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a *) [@ CNoInline ] let gte_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gte_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0)))
[]
FStar.UInt32.gte_mask
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 5, "end_line": 311, "start_col": 3, "start_line": 299 }
Prims.Pure
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) = let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then begin logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n) end else begin logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n) end; c
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) let eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) =
false
null
false
let x = logxor a b in let minus_x = minus x in let x_or_minus_x = logor x minus_x in let xnx = shift_right x_or_minus_x n_minus_one in let c = sub_mod xnx (uint_to_t 1) in if a = b then (logxor_self (v a); lognot_lemma_1 #n; logor_lemma_1 (v x); assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0); assert (v c = ones n)) else (logxor_neq_nonzero (v a) (v b); lemma_msb_pow2 #n (v (lognot x)); lemma_msb_pow2 #n (v minus_x); lemma_minus_zero #n (v x); assert (v c = FStar.UInt.zero n)); c
{ "checked_file": "FStar.UInt32.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "FStar.UInt32.fsti" }
[]
[ "FStar.UInt32.t", "Prims.unit", "Prims.op_Equality", "Prims._assert", "Prims.b2t", "FStar.UInt.uint_t", "FStar.UInt32.n", "FStar.UInt32.v", "FStar.UInt.ones", "Prims.l_and", "Prims.int", "FStar.UInt.logor_lemma_1", "FStar.UInt.lognot_lemma_1", "FStar.UInt.logxor_self", "Prims.bool", "FStar.UInt.zero", "FStar.UInt.lemma_minus_zero", "FStar.UInt.lemma_msb_pow2", "FStar.UInt32.lognot", "FStar.UInt.logxor_neq_nonzero", "FStar.UInt32.sub_mod", "FStar.UInt32.uint_to_t", "FStar.UInt32.shift_right", "FStar.UInt32.n_minus_one", "FStar.UInt32.logor", "FStar.UInt32.minus", "FStar.UInt32.logxor", "Prims.l_True", "Prims.l_imp", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_disEquality" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) unfold let n = 32 /// For FStar.UIntN.fstp: anything that you fix/update here should be /// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of /// this module. /// /// Except, as compared to [FStar.IntN.fstp], here: /// - every occurrence of [int_t] has been replaced with [uint_t] /// - every occurrence of [@%] has been replaced with [%]. /// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers /// This module provides an abstract type for machine integers of a /// given signedness and width. The interface is designed to be safe /// with respect to arithmetic underflow and overflow. /// Note, we have attempted several times to re-design this module to /// make it more amenable to normalization and to impose less overhead /// on the SMT solver when reasoning about machine integer /// arithmetic. The following github issue reports on the current /// status of that work. /// /// https://github.com/FStarLang/FStar/issues/1757 open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (** Abstract type of machine integers, with an underlying representation using a bounded mathematical integer *) new val t : eqtype (** A coercion that projects a bounded mathematical integer from a machine integer *) val v (x:t) : Tot (uint_t n) (** A coercion that injects a bounded mathematical integers into a machine integer *) val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) (** Injection/projection inverse *) val uv_inv (x : t) : Lemma (ensures (uint_to_t (v x) == x)) [SMTPat (v x)] (** Projection/injection inverse *) val vu_inv (x : uint_t n) : Lemma (ensures (v (uint_to_t x) == x)) [SMTPat (uint_to_t x)] (** An alternate form of the injectivity of the [v] projection *) val v_inj (x1 x2: t): Lemma (requires (v x1 == v x2)) (ensures (x1 == x2)) (** Constants 0 and 1 *) val zero : x:t{v x = 0} val one : x:t{v x = 1} (**** Addition primitives *) (** Bounds-respecting addition The precondition enforces that the sum does not overflow, expressing the bound as an addition on mathematical integers *) val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) (** Underspecified, possibly overflowing addition: The postcondition only enures that the result is the sum of the arguments in case there is no overflow *) val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) (** Addition modulo [2^n] Machine integers can always be added, but the postcondition is now in terms of addition modulo [2^n] on mathematical integers *) val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) (**** Subtraction primitives *) (** Bounds-respecting subtraction The precondition enforces that the difference does not underflow, expressing the bound as a difference on mathematical integers *) val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) (** Underspecified, possibly overflowing subtraction: The postcondition only enures that the result is the difference of the arguments in case there is no underflow *) val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) (** Subtraction modulo [2^n] Machine integers can always be subtractd, but the postcondition is now in terms of subtraction modulo [2^n] on mathematical integers *) val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) (**** Multiplication primitives *) (** Bounds-respecting multiplication The precondition enforces that the product does not overflow, expressing the bound as a product on mathematical integers *) val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) (** Underspecified, possibly overflowing product The postcondition only enures that the result is the product of the arguments in case there is no overflow *) val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) (** Multiplication modulo [2^n] Machine integers can always be multiplied, but the postcondition is now in terms of product modulo [2^n] on mathematical integers *) val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) (**** Division primitives *) (** Euclidean division of [a] and [b], with [b] non-zero *) val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c)) (**** Modulo primitives *) (** Euclidean remainder The result is the modulus of [a] with respect to a non-zero [b] *) val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) (**** Bitwise operators *) /// Also see FStar.BV (** Bitwise logical conjunction *) val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) (** Bitwise logical exclusive-or *) val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) (** Bitwise logical disjunction *) val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) (** Bitwise logical negation *) val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) (**** Shift operators *) (** Shift right with zero fill, shifting at most the integer width *) val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) (** Shift left with zero fill, shifting at most the integer width *) val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) (**** Comparison operators *) (** Equality Note, it is safe to also use the polymorphic decidable equality operator [=] *) let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b) (** Greater than *) let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b) (** Greater than or equal *) let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b) (** Less than *) let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b) (** Less than or equal *) let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b) (** Unary negation *) inline_for_extraction let minus (a:t) = add_mod (lognot a) (uint_to_t 1) (** The maximum value for this type *) inline_for_extraction let n_minus_one = uint_to_t (n - 1) #set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1" (** A constant-time way to compute the equality of two machine integers. With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b Note, the branching on [a=b] is just for proof-purposes. *) [@ CNoInline ] let eq_mask (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
false
false
FStar.UInt32.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eq_mask (a b: t) : Pure t (requires True) (ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0)))
[]
FStar.UInt32.eq_mask
{ "file_name": "ulib/FStar.UInt32.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 5, "end_line": 282, "start_col": 3, "start_line": 260 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u])
let stt_vprop_post_equiv_univ_inst u =
false
null
false
R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u])
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_UInst", "Pulse.Soundness.Common.stt_vprop_post_equiv_fv", "Prims.Cons", "Prims.Nil", "FStar.Reflection.Types.term" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var) let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var) let frame_type (u:R.universe) = let var = 3 in let t = mk_name var in let t_type = RT.tm_type u in mk_arrow (t_type, R.Q_Implicit) (RT.close_term (frame_type_t u t) var) (** Type of sub_stt **)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stt_vprop_post_equiv_univ_inst : u105: FStar.Reflection.Types.universe -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.stt_vprop_post_equiv_univ_inst
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u105: FStar.Reflection.Types.universe -> FStar.Reflection.Types.term
{ "end_col": 89, "end_line": 269, "start_col": 39, "start_line": 269 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ])
let bind_type (u1 u2: R.universe) =
false
null
false
let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [RT.ND var 0])
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.Typing.subst_term", "Pulse.Soundness.Common.bind_type_t1", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil", "FStar.Reflection.Typing.tm_type", "Pulse.Reflection.Util.mk_name", "Prims.int" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ])
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_type : u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.bind_type
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> FStar.Reflection.Types.term
{ "end_col": 42, "end_line": 218, "start_col": 34, "start_line": 212 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_stt_pre2 u t pre1 post1 = let var = 1 in let pre2 = mk_name var in let pre2_type = vprop_tm in mk_arrow (pre2_type, R.Q_Explicit) (RT.close_term (sub_stt_post2 u t pre1 post1 pre2) var)
let sub_stt_pre2 u t pre1 post1 =
false
null
false
let var = 1 in let pre2 = mk_name var in let pre2_type = vprop_tm in mk_arrow (pre2_type, R.Q_Explicit) (RT.close_term (sub_stt_post2 u t pre1 post1 pre2) var)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.Typing.close_term", "Pulse.Soundness.Common.sub_stt_post2", "Pulse.Reflection.Util.vprop_tm", "Pulse.Reflection.Util.mk_name", "Prims.int" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var) let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var) let frame_type (u:R.universe) = let var = 3 in let t = mk_name var in let t_type = RT.tm_type u in mk_arrow (t_type, R.Q_Implicit) (RT.close_term (frame_type_t u t) var) (** Type of sub_stt **) let stt_vprop_post_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_post_equiv") let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u]) let stt_vprop_post_equiv (u:R.universe) (t t1 t2:R.term) = R.mk_app (stt_vprop_post_equiv_univ_inst u) [(t, R.Q_Implicit); (t1, R.Q_Explicit); (t2, R.Q_Explicit)] let sub_stt_res u t pre post = mk_stt_comp u t pre post let sub_stt_equiv_post u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_post_equiv u t post1 post2, R.Q_Explicit) (sub_stt_res u t pre2 post2) let sub_stt_equiv_pre u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_equiv pre1 pre2, R.Q_Explicit) (sub_stt_equiv_post u t pre1 pre2 post1 post2) let sub_stt_post2 u t pre1 post1 pre2 = let var = 0 in let post2 = mk_name var in let post2_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post2_type, R.Q_Explicit) (RT.close_term (sub_stt_equiv_pre u t pre1 pre2 post1 post2) var)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_stt_pre2 : u135: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre1: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.sub_stt_pre2
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u135: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre1: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 66, "end_line": 296, "start_col": 33, "start_line": 291 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var)
let frame_type_t (u: R.universe) (t: R.term) =
false
null
false
let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.Typing.close_term", "Pulse.Soundness.Common.frame_type_t_pre", "Pulse.Reflection.Util.vprop_tm", "Pulse.Reflection.Util.mk_name", "Prims.int" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frame_type_t : u103: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.frame_type_t
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u103: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 57, "end_line": 256, "start_col": 44, "start_line": 251 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ])
let bind_type_t1 (u1 u2: R.universe) (t1: R.term) =
false
null
false
let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [RT.ND var 0])
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.Typing.subst_term", "Pulse.Soundness.Common.bind_type_t1_t2", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil", "FStar.Reflection.Typing.tm_type", "Pulse.Reflection.Util.mk_name", "Prims.int" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ])
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_type_t1 : u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.bind_type_t1
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 42, "end_line": 210, "start_col": 49, "start_line": 204 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame))
let frame_res (u: R.universe) (t pre post frame: R.term) =
false
null
false
mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame))
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_stt_comp", "Pulse.Soundness.Common.mk_star", "Pulse.Reflection.Util.mk_abs", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.V2.Derived.mk_app", "Prims.Cons", "FStar.Reflection.V2.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "Pulse.Reflection.Util.bound_var", "Prims.Nil" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)]
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frame_res : u89: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post: FStar.Reflection.Types.term -> frame: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.frame_res
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u89: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post: FStar.Reflection.Types.term -> frame: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 101, "end_line": 230, "start_col": 4, "start_line": 228 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ln_comp = c:comp_st { ln_c c }
let ln_comp =
false
null
false
c: comp_st{ln_c c}
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "Pulse.Syntax.Base.comp_st", "Prims.b2t", "Pulse.Syntax.Naming.ln_c" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ln_comp : Type0
[]
Pulse.Soundness.Common.ln_comp
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
Type0
{ "end_col": 34, "end_line": 12, "start_col": 14, "start_line": 12 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)]
let mk_star (l r: R.term) =
false
null
false
let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)]
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.mk_app", "Prims.Cons", "FStar.Reflection.V2.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Reflection.V2.Builtins.pack_ln", "FStar.Reflection.V2.Data.Tv_FVar", "FStar.Reflection.V2.Builtins.pack_fv", "Pulse.Reflection.Util.star_lid" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_star : l: FStar.Reflection.Types.term -> r: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.mk_star
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
l: FStar.Reflection.Types.term -> r: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 50, "end_line": 225, "start_col": 2, "start_line": 223 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ])
let bind_type_t1_t2_pre (u1 u2: R.universe) (t1 t2 pre: R.term) =
false
null
false
let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [RT.ND var 0])
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "Pulse.Soundness.Common.post1_type_bind", "FStar.Reflection.V2.Data.Q_Implicit", "FStar.Reflection.Typing.subst_term", "Pulse.Soundness.Common.bind_type_t1_t2_pre_post1", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil", "Pulse.Reflection.Util.mk_name", "Prims.int" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ])
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_type_t1_t2_pre : u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.bind_type_t1_t2_pre
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 42, "end_line": 194, "start_col": 63, "start_line": 189 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm
let post2_type_bind t2 =
false
null
false
mk_arrow (t2, R.Q_Explicit) vprop_tm
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "Pulse.Reflection.Util.vprop_tm" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val post2_type_bind : t2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.post2_type_bind
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
t2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 61, "end_line": 180, "start_col": 25, "start_line": 180 }
Prims.GTot
val tot_typing_soundness (#g: env) (#e #t: term) (d: tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t))
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d
val tot_typing_soundness (#g: env) (#e #t: term) (d: tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) let tot_typing_soundness (#g: env) (#e #t: term) (d: tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) =
false
null
false
let E d = d in d
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "sometrivial" ]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.tot_typing", "FStar.Reflection.Typing.typing", "Pulse.Typing.elab_env", "Pulse.Elaborate.Pure.elab_term", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Reflection.Types.typ", "FStar.Stubs.TypeChecker.Core.E_Total", "FStar.Reflection.Typing.tot_typing" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t)
false
false
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tot_typing_soundness (#g: env) (#e #t: term) (d: tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t))
[]
Pulse.Soundness.Common.tot_typing_soundness
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
d: Pulse.Typing.tot_typing g e t -> Prims.GTot (FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g) (Pulse.Elaborate.Pure.elab_term e) (Pulse.Elaborate.Pure.elab_term t))
{ "end_col": 5, "end_line": 52, "start_col": 3, "start_line": 51 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2)
let bind_type_t1_t2_pre_post1_post2_f (u1 u2: R.universe) (t1 t2 pre post1 post2: R.term) =
false
null
false
mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "Pulse.Soundness.Common.g_type_bind", "FStar.Reflection.V2.Data.Q_Explicit", "Pulse.Soundness.Common.bind_res" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_type_t1_t2_pre_post1_post2_f : u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.bind_type_t1_t2_pre_post1_post2_f
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 37, "end_line": 173, "start_col": 2, "start_line": 172 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm
let post1_type_bind t1 =
false
null
false
mk_arrow (t1, R.Q_Explicit) vprop_tm
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "Pulse.Reflection.Util.vprop_tm" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ])
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val post1_type_bind : t1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.post1_type_bind
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
t1: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 61, "end_line": 188, "start_col": 25, "start_line": 188 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2)
let g_type_bind (u2: R.universe) (t1 t2 post1 post2: R.term) =
false
null
false
mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0, R.Q_Explicit]) post2)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "Pulse.Soundness.Common.bind_res", "FStar.Reflection.V2.Derived.mk_app", "Prims.Cons", "FStar.Reflection.V2.Data.argv", "Pulse.Reflection.Util.bound_var", "Prims.Nil" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_type_bind : u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.g_type_bind
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 88, "end_line": 169, "start_col": 4, "start_line": 168 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stt_env = e:env { has_stt_bindings (fstar_env e) }
let stt_env =
false
null
false
e: env{has_stt_bindings (fstar_env e)}
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "Pulse.Typing.Env.env", "Pulse.Soundness.Common.has_stt_bindings", "Pulse.Typing.Env.fstar_env" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var) let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var) let frame_type (u:R.universe) = let var = 3 in let t = mk_name var in let t_type = RT.tm_type u in mk_arrow (t_type, R.Q_Implicit) (RT.close_term (frame_type_t u t) var) (** Type of sub_stt **) let stt_vprop_post_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_post_equiv") let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u]) let stt_vprop_post_equiv (u:R.universe) (t t1 t2:R.term) = R.mk_app (stt_vprop_post_equiv_univ_inst u) [(t, R.Q_Implicit); (t1, R.Q_Explicit); (t2, R.Q_Explicit)] let sub_stt_res u t pre post = mk_stt_comp u t pre post let sub_stt_equiv_post u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_post_equiv u t post1 post2, R.Q_Explicit) (sub_stt_res u t pre2 post2) let sub_stt_equiv_pre u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_equiv pre1 pre2, R.Q_Explicit) (sub_stt_equiv_post u t pre1 pre2 post1 post2) let sub_stt_post2 u t pre1 post1 pre2 = let var = 0 in let post2 = mk_name var in let post2_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post2_type, R.Q_Explicit) (RT.close_term (sub_stt_equiv_pre u t pre1 pre2 post1 post2) var) let sub_stt_pre2 u t pre1 post1 = let var = 1 in let pre2 = mk_name var in let pre2_type = vprop_tm in mk_arrow (pre2_type, R.Q_Explicit) (RT.close_term (sub_stt_post2 u t pre1 post1 pre2) var) let sub_stt_post1 u t pre1 = let var = 2 in let post1 = mk_name var in let post1_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post1_type, R.Q_Explicit) (RT.close_term (sub_stt_pre2 u t pre1 post1) var) let sub_stt_pre1 u t = let var = 3 in let pre1 = mk_name var in let pre1_type = vprop_tm in mk_arrow (pre1_type, R.Q_Explicit) (RT.close_term (sub_stt_post1 u t pre1) var) let sub_stt_type u = let var = 4 in let t = mk_name var in let ty_typ = RT.tm_type u in mk_arrow (ty_typ, R.Q_Explicit) (RT.close_term (sub_stt_pre1 u t) var) (** Properties of environments suitable for elaboration **) let has_stt_bindings (f:RT.fstar_top_env) = RT.lookup_fvar f RT.bool_fv == Some (RT.tm_type RT.u_zero) /\ RT.lookup_fvar f vprop_fv == Some (RT.tm_type u2) /\ True //(forall (u1 u2:R.universe). RT.lookup_fvar_uinst f bind_fv [u1; u2] == Some (bind_type u1 u2)) /\ //(forall (u:R.universe). RT.lookup_fvar_uinst f frame_fv [u] == Some (frame_type u)) /\ //(forall (u:R.universe). RT.lookup_fvar_uinst f subsumption_fv [u] == Some (sub_stt_type u))
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stt_env : Type0
[]
Pulse.Soundness.Common.stt_env
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
Type0
{ "end_col": 54, "end_line": 328, "start_col": 14, "start_line": 328 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2)
let bind_type_t1_t2_pre_post1_post2 (u1 u2: R.universe) (t1 t2 pre post1 post2: R.term) =
false
null
false
let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Data.Q_Explicit", "Pulse.Soundness.Common.bind_type_t1_t2_pre_post1_post2_f", "Pulse.Reflection.Util.mk_stt_comp" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_type_t1_t2_pre_post1_post2 : u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.bind_type_t1_t2_pre_post1_post2
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u1: FStar.Reflection.Types.universe -> u2: FStar.Reflection.Types.universe -> t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 74, "end_line": 178, "start_col": 87, "start_line": 175 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_stt_res u t pre post = mk_stt_comp u t pre post
let sub_stt_res u t pre post =
false
null
false
mk_stt_comp u t pre post
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_stt_comp" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var) let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var) let frame_type (u:R.universe) = let var = 3 in let t = mk_name var in let t_type = RT.tm_type u in mk_arrow (t_type, R.Q_Implicit) (RT.close_term (frame_type_t u t) var) (** Type of sub_stt **) let stt_vprop_post_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_post_equiv") let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u]) let stt_vprop_post_equiv (u:R.universe) (t t1 t2:R.term) = R.mk_app (stt_vprop_post_equiv_univ_inst u) [(t, R.Q_Implicit); (t1, R.Q_Explicit); (t2, R.Q_Explicit)]
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_stt_res : u113: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.sub_stt_res
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u113: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 55, "end_line": 274, "start_col": 31, "start_line": 274 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_stt_equiv_pre u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_equiv pre1 pre2, R.Q_Explicit) (sub_stt_equiv_post u t pre1 pre2 post1 post2)
let sub_stt_equiv_pre u t pre1 post1 pre2 post2 =
false
null
false
mk_arrow (stt_vprop_equiv pre1 pre2, R.Q_Explicit) (sub_stt_equiv_post u t pre1 pre2 post1 post2)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "Pulse.Reflection.Util.stt_vprop_equiv", "FStar.Reflection.V2.Data.Q_Explicit", "Pulse.Soundness.Common.sub_stt_equiv_post" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var) let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var) let frame_type (u:R.universe) = let var = 3 in let t = mk_name var in let t_type = RT.tm_type u in mk_arrow (t_type, R.Q_Implicit) (RT.close_term (frame_type_t u t) var) (** Type of sub_stt **) let stt_vprop_post_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_post_equiv") let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u]) let stt_vprop_post_equiv (u:R.universe) (t t1 t2:R.term) = R.mk_app (stt_vprop_post_equiv_univ_inst u) [(t, R.Q_Implicit); (t1, R.Q_Explicit); (t2, R.Q_Explicit)] let sub_stt_res u t pre post = mk_stt_comp u t pre post let sub_stt_equiv_post u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_post_equiv u t post1 post2, R.Q_Explicit) (sub_stt_res u t pre2 post2)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_stt_equiv_pre : u126: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre1: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> pre2: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.sub_stt_equiv_pre
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u126: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre1: FStar.Reflection.Types.term -> post1: FStar.Reflection.Types.term -> pre2: FStar.Reflection.Types.term -> post2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 57, "end_line": 282, "start_col": 2, "start_line": 281 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let soundness_t (d:'a) = g:stt_env -> t:st_term -> c:comp -> d':st_typing g t c{d' << d} -> GTot (RT.tot_typing (elab_env g) (elab_st_typing d') (elab_comp c))
let soundness_t (d: 'a) =
false
null
false
g: stt_env -> t: st_term -> c: comp -> d': st_typing g t c {d' << d} -> GTot (RT.tot_typing (elab_env g) (elab_st_typing d') (elab_comp c))
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "Pulse.Soundness.Common.stt_env", "Pulse.Syntax.Base.st_term", "Pulse.Syntax.Base.comp", "Pulse.Typing.st_typing", "Prims.precedes", "FStar.Reflection.Typing.tot_typing", "Pulse.Typing.elab_env", "Pulse.Elaborate.Core.elab_st_typing", "Pulse.Elaborate.Pure.elab_comp" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame) let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var) let frame_type_t_pre (u:R.universe) (t pre:R.term) = let var = 1 in let post = mk_name var in let post_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre_post u t pre post) var) let frame_type_t (u:R.universe) (t:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.close_term (frame_type_t_pre u t pre) var) let frame_type (u:R.universe) = let var = 3 in let t = mk_name var in let t_type = RT.tm_type u in mk_arrow (t_type, R.Q_Implicit) (RT.close_term (frame_type_t u t) var) (** Type of sub_stt **) let stt_vprop_post_equiv_fv = R.pack_fv (mk_pulse_lib_core_lid "vprop_post_equiv") let stt_vprop_post_equiv_univ_inst u = R.pack_ln (R.Tv_UInst stt_vprop_post_equiv_fv [u]) let stt_vprop_post_equiv (u:R.universe) (t t1 t2:R.term) = R.mk_app (stt_vprop_post_equiv_univ_inst u) [(t, R.Q_Implicit); (t1, R.Q_Explicit); (t2, R.Q_Explicit)] let sub_stt_res u t pre post = mk_stt_comp u t pre post let sub_stt_equiv_post u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_post_equiv u t post1 post2, R.Q_Explicit) (sub_stt_res u t pre2 post2) let sub_stt_equiv_pre u t pre1 post1 pre2 post2 = mk_arrow (stt_vprop_equiv pre1 pre2, R.Q_Explicit) (sub_stt_equiv_post u t pre1 pre2 post1 post2) let sub_stt_post2 u t pre1 post1 pre2 = let var = 0 in let post2 = mk_name var in let post2_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post2_type, R.Q_Explicit) (RT.close_term (sub_stt_equiv_pre u t pre1 pre2 post1 post2) var) let sub_stt_pre2 u t pre1 post1 = let var = 1 in let pre2 = mk_name var in let pre2_type = vprop_tm in mk_arrow (pre2_type, R.Q_Explicit) (RT.close_term (sub_stt_post2 u t pre1 post1 pre2) var) let sub_stt_post1 u t pre1 = let var = 2 in let post1 = mk_name var in let post1_type = mk_arrow (t, R.Q_Explicit) vprop_tm in mk_arrow (post1_type, R.Q_Explicit) (RT.close_term (sub_stt_pre2 u t pre1 post1) var) let sub_stt_pre1 u t = let var = 3 in let pre1 = mk_name var in let pre1_type = vprop_tm in mk_arrow (pre1_type, R.Q_Explicit) (RT.close_term (sub_stt_post1 u t pre1) var) let sub_stt_type u = let var = 4 in let t = mk_name var in let ty_typ = RT.tm_type u in mk_arrow (ty_typ, R.Q_Explicit) (RT.close_term (sub_stt_pre1 u t) var) (** Properties of environments suitable for elaboration **) let has_stt_bindings (f:RT.fstar_top_env) = RT.lookup_fvar f RT.bool_fv == Some (RT.tm_type RT.u_zero) /\ RT.lookup_fvar f vprop_fv == Some (RT.tm_type u2) /\ True //(forall (u1 u2:R.universe). RT.lookup_fvar_uinst f bind_fv [u1; u2] == Some (bind_type u1 u2)) /\ //(forall (u:R.universe). RT.lookup_fvar_uinst f frame_fv [u] == Some (frame_type u)) /\ //(forall (u:R.universe). RT.lookup_fvar_uinst f subsumption_fv [u] == Some (sub_stt_type u)) let stt_env = e:env { has_stt_bindings (fstar_env e) } let check_top_level_environment (f:RT.fstar_top_env) : option stt_env = admit(); Some (mk_env f) //we should implement this as a runtime check let elab_comp_post (c:comp_st) : R.term = let t = elab_term (comp_res c) in let post = elab_term (comp_post c) in mk_abs t R.Q_Explicit post let comp_post_type (c:comp_st) : R.term = let t = elab_term (comp_res c) in mk_arrow (t, R.Q_Explicit) vprop_tm assume val inversion_of_stt_typing (g:env) (c:comp_st) (u:R.universe) // _ |- stt u#u t pre (fun (x:t) -> post) : Type _ (_:RT.tot_typing (elab_env g) (elab_comp c) (RT.tm_type u)) : GTot ( // _ |- t : Type u#u RT.tot_typing (elab_env g) (elab_term (comp_res c)) (RT.tm_type (comp_u c)) & // _ |- pre : vprop RT.tot_typing (elab_env g) (elab_term (comp_pre c)) (elab_term (tm_vprop)) & // _ |- (fun (x:t) -> post) : t -> vprop RT.tot_typing (elab_env g) (elab_comp_post c) (elab_term (tm_arrow (null_binder (comp_res c)) None (C_Tot tm_vprop))))
false
false
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val soundness_t : d: 'a -> Type0
[]
Pulse.Soundness.Common.soundness_t
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
d: 'a -> Type0
{ "end_col": 38, "end_line": 368, "start_col": 4, "start_line": 362 }
Prims.Tot
[ { "abbrev": false, "full_module": "Pulse.Elaborate", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Reflection.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Soundness", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frame_type_t_pre_post (u:R.universe) (t pre post:R.term) = let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var)
let frame_type_t_pre_post (u: R.universe) (t pre post: R.term) =
false
null
false
let var = 0 in let frame = mk_name var in mk_arrow (vprop_tm, R.Q_Explicit) (RT.close_term (frame_res u t pre post frame) var)
{ "checked_file": "Pulse.Soundness.Common.fst.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Elaborate.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Pulse.Soundness.Common.fst" }
[ "total" ]
[ "FStar.Reflection.Types.universe", "FStar.Reflection.Types.term", "Pulse.Reflection.Util.mk_arrow", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V2.Data.aqualv", "Pulse.Reflection.Util.vprop_tm", "FStar.Reflection.V2.Data.Q_Explicit", "FStar.Reflection.Typing.close_term", "Pulse.Soundness.Common.frame_res", "Pulse.Reflection.Util.mk_name", "Prims.int" ]
[]
module Pulse.Soundness.Common module RT = FStar.Reflection.Typing module R = FStar.Reflection.V2 module L = FStar.List.Tot module T = FStar.Tactics.V2 open FStar.List.Tot open Pulse.Syntax open Pulse.Reflection.Util open Pulse.Typing open Pulse.Elaborate let ln_comp = c:comp_st { ln_c c } let rec extend_env_l_lookup_fvar (g:R.env) (sg:env_bindings) (fv:R.fv) (us:R.universes) : Lemma (ensures RT.lookup_fvar_uinst (extend_env_l g sg) fv us == RT.lookup_fvar_uinst g fv us) [SMTPat (RT.lookup_fvar_uinst (extend_env_l g sg) fv us)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv us let elab_term_opt (b:option term) = match b with | Some b -> Some (elab_term b) | None -> None // let rec extend_env_l_lookup_bvar (g:R.env) (sg:env_bindings) (x:var) // : Lemma // (requires (forall x. RT.lookup_bvar g x == None)) // (ensures (RT.lookup_bvar (extend_env_l g sg) x == elab_term_opt (lookup sg x))) // (decreases sg) // [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] // = match sg with // | [] -> () // | hd :: tl -> extend_env_l_lookup_bvar g tl x let lookup_elab_env (g:env) (x:var) : Lemma (ensures (RT.lookup_bvar (elab_env g) x == elab_term_opt (lookup g x))) [SMTPat (RT.lookup_bvar (elab_env g) x)] = admit () // TODO: FIX ME!!!! let tot_typing_soundness (#g:env) (#e:term) (#t:term) (d:tot_typing g e t) : GTot (RT.tot_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d let ghost_typing_soundness (#g:env) (#e:term) (#t:term) (d:ghost_typing g e t) : GTot (RT.ghost_typing (elab_env g) (elab_term e) (elab_term t)) = let E d = d in d #push-options "--z3rlimit_factor 4" let mk_t_abs_tot (g:env) (#u:universe) (#q:option qualifier) (#ty:term) (ppname:ppname) (t_typing:tot_typing g ty (tm_type u)) (#body:term) (#body_ty:term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars body) }) (body_typing:tot_typing (push_binding g x ppname ty) (open_term body x) body_ty) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (elab_term body)) (elab_term (tm_arrow {binder_ty=ty; binder_ppname=ppname} q (close_comp (C_Tot body_ty) x)))) = let c = C_Tot body_ty in let r_ty = elab_term ty in let r_body = elab_term (open_term body x) in let r_c = elab_comp c in let r_t_typing = tot_typing_soundness t_typing in let r_body_typing = tot_typing_soundness body_typing in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; elab_freevars body; assert (~ (x `Set.mem` RT.freevars (elab_term body))); assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; assert (elab_term (tm_type u) == RT.tm_type u); let r_t_typing : RT.tot_typing (elab_env g) r_ty (RT.tm_type u) = coerce_eq () r_t_typing //strange that this coercion is needed in let d : RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_term (open_term body x)) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp (C_Tot body_ty) x))) = RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing in elab_open_commute' body (null_var x) 0; RT.open_term_spec (elab_term body) x; assert (elab_term (open_term body x) == RT.open_term (elab_term body) x); let d : RT.typing _ (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (RT.open_term (elab_term body) x) x)) _ = d in RT.close_open_inverse (elab_term body) x; d let mk_t_abs (g:env) (#u:universe) (#ty:term) (#q:option qualifier) (#t_typing:typing g ty T.E_Total (tm_type u)) (ppname:ppname) (r_t_typing:RT.tot_typing (elab_env g) (elab_term ty) (elab_comp (C_Tot (tm_type u)))) (#body:st_term) (#x:var { None? (lookup g x) /\ ~(x `Set.mem` freevars_st body) }) (#c:comp) (#body_typing:st_typing (push_binding g x ppname ty) (open_st_term body x) c) (r_body_typing:RT.tot_typing (elab_env (push_binding g x ppname ty)) (elab_st_typing body_typing) (elab_comp c)) : GTot (RT.tot_typing (elab_env g) (mk_abs_with_name ppname.name (elab_term ty) (elab_qual q) (RT.close_term (elab_st_typing body_typing) x)) (elab_term (tm_arrow {binder_ty=ty;binder_ppname=ppname} q (close_comp c x)))) = let r_ty = elab_term ty in let r_body = elab_st_typing body_typing in let r_c = elab_comp c in RT.well_typed_terms_are_ln _ _ _ r_body_typing; RT.open_close_inverse r_body x; elab_comp_close_commute c x; assume (~ (x `Set.mem` RT.freevars (RT.close_term r_body x))); RT.close_term_spec (elab_comp c) x; RT.T_Abs (elab_env g) x r_ty (RT.close_term r_body x) (T.E_Total, r_c) u ppname.name (elab_qual q) _ r_t_typing r_body_typing (*** Typing of combinators used in the elaboration **) (** Type of bind **) let bind_res (u2:R.universe) (t2 pre post2:R.term) = mk_stt_comp u2 t2 pre post2 let g_type_bind (u2:R.universe) (t1 t2 post1 post2:R.term) = mk_arrow (t1, R.Q_Explicit) (bind_res u2 t2 (R.mk_app post1 [bound_var 0 (* x *), R.Q_Explicit]) post2) let bind_type_t1_t2_pre_post1_post2_f (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = mk_arrow (g_type_bind u2 t1 t2 post1 post2, R.Q_Explicit) (bind_res u2 t2 pre post2) let bind_type_t1_t2_pre_post1_post2 (u1 u2:R.universe) (t1 t2 pre post1 post2:R.term) = let f_type = mk_stt_comp u1 t1 pre post1 in mk_arrow (f_type, R.Q_Explicit) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2) let post2_type_bind t2 = mk_arrow (t2, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre_post1 (u1 u2:R.universe) (t1 t2 pre post1:R.term) = let var = 0 in let post2 = mk_name var in mk_arrow (post2_type_bind t2, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2) [ RT.ND var 0 ]) let post1_type_bind t1 = mk_arrow (t1, R.Q_Explicit) vprop_tm let bind_type_t1_t2_pre (u1 u2:R.universe) (t1 t2 pre:R.term) = let var = 1 in let post1 = mk_name var in mk_arrow (post1_type_bind t1, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1) [ RT.ND var 0 ]) let bind_type_t1_t2 (u1 u2:R.universe) (t1 t2:R.term) = let var = 2 in let pre = mk_name var in let pre_type = vprop_tm in mk_arrow (pre_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2_pre u1 u2 t1 t2 pre) [ RT.ND var 0 ]) let bind_type_t1 (u1 u2:R.universe) (t1:R.term) = let var = 3 in let t2 = mk_name var in let t2_type = RT.tm_type u2 in mk_arrow (t2_type, R.Q_Implicit) (RT.subst_term (bind_type_t1_t2 u1 u2 t1 t2) [ RT.ND var 0 ]) let bind_type (u1 u2:R.universe) = let var = 4 in let t1 = mk_name var in let t1_type = RT.tm_type u1 in mk_arrow (t1_type, R.Q_Implicit) (RT.subst_term (bind_type_t1 u1 u2 t1) [ RT.ND var 0 ]) (** Type of frame **) let mk_star (l r:R.term) = let open R in let head = pack_ln (Tv_FVar (pack_fv star_lid)) in R.mk_app head [(l, Q_Explicit); (r, Q_Explicit)] let frame_res (u:R.universe) (t pre post frame:R.term) = mk_stt_comp u t (mk_star pre frame) (mk_abs t R.Q_Explicit (mk_star (R.mk_app post [bound_var 0, R.Q_Explicit]) frame)) let frame_type_t_pre_post_frame (u:R.universe) (t pre post frame:R.term) = let open R in let f_type = mk_stt_comp u t pre post in mk_arrow (f_type, Q_Explicit) (frame_res u t pre post frame)
false
true
Pulse.Soundness.Common.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 4, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frame_type_t_pre_post : u98: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
[]
Pulse.Soundness.Common.frame_type_t_pre_post
{ "file_name": "lib/steel/pulse/Pulse.Soundness.Common.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
u98: FStar.Reflection.Types.universe -> t: FStar.Reflection.Types.term -> pre: FStar.Reflection.Types.term -> post: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 61, "end_line": 242, "start_col": 62, "start_line": 238 }