effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val quickProc_wp (a: Type0) : Type u#1 | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let quickProc_wp (a:Type0) : Type u#1 = (s0:state) -> (wp_continue:state -> a -> Type0) -> Type0 | val quickProc_wp (a: Type0) : Type u#1
let quickProc_wp (a: Type0) : Type u#1 = | false | null | false | s0: state -> (wp_continue: state -> a -> Type0) -> Type0 | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.State.state"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr]
unfold let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK)
let va_lemma_norm_mods (mods:mods_t) (sM sK:state) : Lemma
(ensures update_state_mods mods sM sK == update_state_mods_norm mods sM sK)
= ()
[@va_qattr qmodattr]
let va_mod_reg_opr (r:reg_opr) : mod_t =
Mod_reg r
[@va_qattr qmodattr]
let va_mod_vec_opr (r:vec_opr) : mod_t =
Mod_vec r
[@va_qattr qmodattr] let va_mod_reg (r:reg) : mod_t = Mod_reg r
[@va_qattr qmodattr] let va_mod_vec (x:vec) : mod_t = Mod_vec x
[@va_qattr qmodattr] let va_mod_heaplet (h:heaplet_id) : mod_t = Mod_mem_heaplet h | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val quickProc_wp (a: Type0) : Type u#1 | [] | Vale.PPC64LE.QuickCode.quickProc_wp | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> Type | {
"end_col": 96,
"end_line": 93,
"start_col": 40,
"start_line": 93
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_Mod_reg (r:reg) = Mod_reg r | let va_Mod_reg (r: reg) = | false | null | false | Mod_reg r | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.QuickCode.Mod_reg",
"Vale.PPC64LE.QuickCode.mod_t"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_Mod_reg : r: Vale.PPC64LE.Machine_s.reg -> Vale.PPC64LE.QuickCode.mod_t | [] | Vale.PPC64LE.QuickCode.va_Mod_reg | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: Vale.PPC64LE.Machine_s.reg -> Vale.PPC64LE.QuickCode.mod_t | {
"end_col": 53,
"end_line": 28,
"start_col": 44,
"start_line": 28
} |
|
Prims.Tot | val va_mod_reg (r: reg) : mod_t | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_mod_reg (r:reg) : mod_t = Mod_reg r | val va_mod_reg (r: reg) : mod_t
let va_mod_reg (r: reg) : mod_t = | false | null | false | Mod_reg r | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.QuickCode.Mod_reg",
"Vale.PPC64LE.QuickCode.mod_t"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr]
unfold let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK)
let va_lemma_norm_mods (mods:mods_t) (sM sK:state) : Lemma
(ensures update_state_mods mods sM sK == update_state_mods_norm mods sM sK)
= ()
[@va_qattr qmodattr]
let va_mod_reg_opr (r:reg_opr) : mod_t =
Mod_reg r
[@va_qattr qmodattr]
let va_mod_vec_opr (r:vec_opr) : mod_t =
Mod_vec r | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_mod_reg (r: reg) : mod_t | [] | Vale.PPC64LE.QuickCode.va_mod_reg | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: Vale.PPC64LE.Machine_s.reg -> Vale.PPC64LE.QuickCode.mod_t | {
"end_col": 63,
"end_line": 89,
"start_col": 54,
"start_line": 89
} |
Prims.Tot | val va_mod_vec_opr (r: vec_opr) : mod_t | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_mod_vec_opr (r:vec_opr) : mod_t =
Mod_vec r | val va_mod_vec_opr (r: vec_opr) : mod_t
let va_mod_vec_opr (r: vec_opr) : mod_t = | false | null | false | Mod_vec r | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Decls.vec_opr",
"Vale.PPC64LE.QuickCode.Mod_vec",
"Vale.PPC64LE.QuickCode.mod_t"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr]
unfold let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK)
let va_lemma_norm_mods (mods:mods_t) (sM sK:state) : Lemma
(ensures update_state_mods mods sM sK == update_state_mods_norm mods sM sK)
= ()
[@va_qattr qmodattr]
let va_mod_reg_opr (r:reg_opr) : mod_t =
Mod_reg r
[@va_qattr qmodattr] | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_mod_vec_opr (r: vec_opr) : mod_t | [] | Vale.PPC64LE.QuickCode.va_mod_vec_opr | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: Vale.PPC64LE.Decls.vec_opr -> Vale.PPC64LE.QuickCode.mod_t | {
"end_col": 11,
"end_line": 87,
"start_col": 2,
"start_line": 87
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_quickCode = quickCode | let va_quickCode = | false | null | false | quickCode | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.QuickCode.quickCode"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr]
unfold let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK)
let va_lemma_norm_mods (mods:mods_t) (sM sK:state) : Lemma
(ensures update_state_mods mods sM sK == update_state_mods_norm mods sM sK)
= ()
[@va_qattr qmodattr]
let va_mod_reg_opr (r:reg_opr) : mod_t =
Mod_reg r
[@va_qattr qmodattr]
let va_mod_vec_opr (r:vec_opr) : mod_t =
Mod_vec r
[@va_qattr qmodattr] let va_mod_reg (r:reg) : mod_t = Mod_reg r
[@va_qattr qmodattr] let va_mod_vec (x:vec) : mod_t = Mod_vec x
[@va_qattr qmodattr] let va_mod_heaplet (h:heaplet_id) : mod_t = Mod_mem_heaplet h
let quickProc_wp (a:Type0) : Type u#1 = (s0:state) -> (wp_continue:state -> a -> Type0) -> Type0
let k_true (#a:Type0) (_:state) (_:a) = True
let t_monotone (#a:Type0) (c:va_code) (wp:quickProc_wp a) : Type =
s0:state -> k1:(state -> a -> Type0) -> k2:(state -> a -> Type0) -> Lemma
(requires (forall (s:state) (g:a). k1 s g ==> k2 s g))
(ensures wp s0 k1 ==> wp s0 k2)
let t_compute (#a:Type0) (c:va_code) (wp:quickProc_wp a) : Type =
s0:state -> Ghost (state & va_fuel & a)
(requires wp s0 k_true)
(ensures fun _ -> True)
let t_require (s0:va_state) = state_inv s0
unfold let va_t_require = t_require
let va_t_ensure (#a:Type0) (c:va_code) (mods:mods_t) (s0:state) (k:(state -> a -> Type0)) =
fun (sM, f0, g) -> eval_code c s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
let t_proof (#a:Type0) (c:va_code) (mods:mods_t) (wp:quickProc_wp a) : Type =
s0:state -> k:(state -> a -> Type0) -> Ghost (state & va_fuel & a)
(requires t_require s0 /\ wp s0 k)
(ensures va_t_ensure c mods s0 k)
// Code that returns a ghost value of type a
[@va_qattr]
noeq type quickCode (a:Type0) : va_code -> Type =
| QProc:
c:va_code ->
mods:mods_t ->
wp:quickProc_wp a ->
proof:t_proof c mods wp ->
quickCode a c | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_quickCode : a: Type0 -> _: Vale.PPC64LE.Machine_s.precode Vale.PPC64LE.Decls.ins Vale.PPC64LE.Decls.ocmp -> Type | [] | Vale.PPC64LE.QuickCode.va_quickCode | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> _: Vale.PPC64LE.Machine_s.precode Vale.PPC64LE.Decls.ins Vale.PPC64LE.Decls.ocmp -> Type | {
"end_col": 35,
"end_line": 129,
"start_col": 26,
"start_line": 129
} |
|
Prims.Tot | val va_mod_vec (x: vec) : mod_t | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_mod_vec (x:vec) : mod_t = Mod_vec x | val va_mod_vec (x: vec) : mod_t
let va_mod_vec (x: vec) : mod_t = | false | null | false | Mod_vec x | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.Machine_s.vec",
"Vale.PPC64LE.QuickCode.Mod_vec",
"Vale.PPC64LE.QuickCode.mod_t"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr]
unfold let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK)
let va_lemma_norm_mods (mods:mods_t) (sM sK:state) : Lemma
(ensures update_state_mods mods sM sK == update_state_mods_norm mods sM sK)
= ()
[@va_qattr qmodattr]
let va_mod_reg_opr (r:reg_opr) : mod_t =
Mod_reg r
[@va_qattr qmodattr]
let va_mod_vec_opr (r:vec_opr) : mod_t =
Mod_vec r | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_mod_vec (x: vec) : mod_t | [] | Vale.PPC64LE.QuickCode.va_mod_vec | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.PPC64LE.Machine_s.vec -> Vale.PPC64LE.QuickCode.mod_t | {
"end_col": 63,
"end_line": 90,
"start_col": 54,
"start_line": 90
} |
Prims.Tot | val update_state_mods_norm (mods: mods_t) (sM sK: state) : state | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK) | val update_state_mods_norm (mods: mods_t) (sM sK: state) : state
let update_state_mods_norm (mods: mods_t) (sM sK: state) : state = | false | null | false | norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]]
(update_state_mods mods sM sK) | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.QuickCode.mods_t",
"Vale.PPC64LE.State.state",
"FStar.Pervasives.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.delta_attr",
"Prims.string",
"Prims.Nil",
"FStar.Pervasives.delta_only",
"Vale.PPC64LE.QuickCode.update_state_mods"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr] | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods_norm (mods: mods_t) (sM sK: state) : state | [] | Vale.PPC64LE.QuickCode.update_state_mods_norm | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | mods: Vale.PPC64LE.QuickCode.mods_t -> sM: Vale.PPC64LE.State.state -> sK: Vale.PPC64LE.State.state
-> Vale.PPC64LE.State.state | {
"end_col": 129,
"end_line": 76,
"start_col": 2,
"start_line": 76
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_t_require = t_require | let va_t_require = | false | null | false | t_require | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.QuickCode.t_require"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr]
let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK)
[@va_qattr]
unfold let update_state_mods_norm (mods:mods_t) (sM sK:state) : state =
norm [iota; zeta; delta_attr [`%qmodattr]; delta_only [`%update_state_mods; `%update_state_mod]] (update_state_mods mods sM sK)
let va_lemma_norm_mods (mods:mods_t) (sM sK:state) : Lemma
(ensures update_state_mods mods sM sK == update_state_mods_norm mods sM sK)
= ()
[@va_qattr qmodattr]
let va_mod_reg_opr (r:reg_opr) : mod_t =
Mod_reg r
[@va_qattr qmodattr]
let va_mod_vec_opr (r:vec_opr) : mod_t =
Mod_vec r
[@va_qattr qmodattr] let va_mod_reg (r:reg) : mod_t = Mod_reg r
[@va_qattr qmodattr] let va_mod_vec (x:vec) : mod_t = Mod_vec x
[@va_qattr qmodattr] let va_mod_heaplet (h:heaplet_id) : mod_t = Mod_mem_heaplet h
let quickProc_wp (a:Type0) : Type u#1 = (s0:state) -> (wp_continue:state -> a -> Type0) -> Type0
let k_true (#a:Type0) (_:state) (_:a) = True
let t_monotone (#a:Type0) (c:va_code) (wp:quickProc_wp a) : Type =
s0:state -> k1:(state -> a -> Type0) -> k2:(state -> a -> Type0) -> Lemma
(requires (forall (s:state) (g:a). k1 s g ==> k2 s g))
(ensures wp s0 k1 ==> wp s0 k2)
let t_compute (#a:Type0) (c:va_code) (wp:quickProc_wp a) : Type =
s0:state -> Ghost (state & va_fuel & a)
(requires wp s0 k_true)
(ensures fun _ -> True) | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_t_require : s0: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0 | [] | Vale.PPC64LE.QuickCode.va_t_require | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s0: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0 | {
"end_col": 35,
"end_line": 108,
"start_col": 26,
"start_line": 108
} |
|
Prims.Tot | val update_state_mod (m: mod_t) (sM sK: state) : state | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK | val update_state_mod (m: mod_t) (sM sK: state) : state
let update_state_mod (m: mod_t) (sM sK: state) : state = | false | null | false | match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.QuickCode.mod_t",
"Vale.PPC64LE.State.state",
"Vale.PPC64LE.Decls.va_update_ok",
"Vale.PPC64LE.Machine_s.reg",
"Vale.PPC64LE.Decls.va_update_reg",
"Vale.PPC64LE.Machine_s.vec",
"Vale.PPC64LE.Decls.va_update_vec",
"Vale.PPC64LE.Decls.va_update_cr0",
"Vale.PPC64LE.Decls.va_update_xer",
"Vale.PPC64LE.Decls.va_update_mem",
"Vale.PPC64LE.Decls.va_update_mem_layout",
"Vale.PPC64LE.Decls.heaplet_id",
"Vale.PPC64LE.Decls.va_update_mem_heaplet",
"Vale.PPC64LE.Decls.va_update_stack",
"Vale.PPC64LE.Decls.va_update_stackTaint"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr] | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mod (m: mod_t) (sM sK: state) : state | [] | Vale.PPC64LE.QuickCode.update_state_mod | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Vale.PPC64LE.QuickCode.mod_t -> sM: Vale.PPC64LE.State.state -> sK: Vale.PPC64LE.State.state
-> Vale.PPC64LE.State.state | {
"end_col": 48,
"end_line": 66,
"start_col": 2,
"start_line": 55
} |
Prims.Tot | val update_state_mods (mods: mods_t) (sM sK: state) : state | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec update_state_mods (mods:mods_t) (sM sK:state) : state =
match mods with
| [] -> sK
| m::mods -> update_state_mod m sM (update_state_mods mods sM sK) | val update_state_mods (mods: mods_t) (sM sK: state) : state
let rec update_state_mods (mods: mods_t) (sM sK: state) : state = | false | null | false | match mods with
| [] -> sK
| m :: mods -> update_state_mod m sM (update_state_mods mods sM sK) | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [
"total"
] | [
"Vale.PPC64LE.QuickCode.mods_t",
"Vale.PPC64LE.State.state",
"Vale.PPC64LE.QuickCode.mod_t",
"Prims.list",
"Vale.PPC64LE.QuickCode.update_state_mod",
"Vale.PPC64LE.QuickCode.update_state_mods"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"]
let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false)
[@va_qattr]
let update_state_mod (m:mod_t) (sM sK:state) : state =
match m with
| Mod_None -> sK
| Mod_ok -> va_update_ok sM sK
| Mod_reg r -> va_update_reg r sM sK
| Mod_vec v -> va_update_vec v sM sK
| Mod_cr0 -> va_update_cr0 sM sK
| Mod_xer -> va_update_xer sM sK
| Mod_mem -> va_update_mem sM sK
| Mod_mem_layout -> va_update_mem_layout sM sK
| Mod_mem_heaplet n -> va_update_mem_heaplet n sM sK
| Mod_stack -> va_update_stack sM sK
| Mod_stackTaint -> va_update_stackTaint sM sK
[@va_qattr] | false | true | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update_state_mods (mods: mods_t) (sM sK: state) : state | [
"recursion"
] | Vale.PPC64LE.QuickCode.update_state_mods | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | mods: Vale.PPC64LE.QuickCode.mods_t -> sM: Vale.PPC64LE.State.state -> sK: Vale.PPC64LE.State.state
-> Vale.PPC64LE.State.state | {
"end_col": 67,
"end_line": 72,
"start_col": 2,
"start_line": 70
} |
Prims.Pure | val mod_eq (x y: mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) | [
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_eq (x y:mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) =
match x with
| Mod_None -> (match y with Mod_None -> true | _ -> false)
| Mod_ok -> (match y with Mod_ok -> true | _ -> false)
| Mod_reg rx -> (match y with Mod_reg ry -> rx = ry | _ -> false)
| Mod_vec vx -> (match y with Mod_vec vy -> vx = vy | _ -> false)
| Mod_cr0 -> (match y with Mod_cr0 -> true | _ -> false)
| Mod_xer -> (match y with Mod_xer -> true | _ -> false)
| Mod_mem -> (match y with Mod_mem -> true | _ -> false)
| Mod_mem_layout -> (match y with Mod_mem_layout -> true | _ -> false)
| Mod_mem_heaplet nx -> (match y with Mod_mem_heaplet ny -> nx = ny | _ -> false)
| Mod_stack -> (match y with Mod_stack -> true | _ -> false)
| Mod_stackTaint -> (match y with Mod_stackTaint -> true | _ -> false) | val mod_eq (x y: mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y))
let mod_eq (x y: mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) = | false | null | false | match x with
| Mod_None ->
(match y with
| Mod_None -> true
| _ -> false)
| Mod_ok ->
(match y with
| Mod_ok -> true
| _ -> false)
| Mod_reg rx ->
(match y with
| Mod_reg ry -> rx = ry
| _ -> false)
| Mod_vec vx ->
(match y with
| Mod_vec vy -> vx = vy
| _ -> false)
| Mod_cr0 ->
(match y with
| Mod_cr0 -> true
| _ -> false)
| Mod_xer ->
(match y with
| Mod_xer -> true
| _ -> false)
| Mod_mem ->
(match y with
| Mod_mem -> true
| _ -> false)
| Mod_mem_layout ->
(match y with
| Mod_mem_layout -> true
| _ -> false)
| Mod_mem_heaplet nx ->
(match y with
| Mod_mem_heaplet ny -> nx = ny
| _ -> false)
| Mod_stack ->
(match y with
| Mod_stack -> true
| _ -> false)
| Mod_stackTaint ->
(match y with
| Mod_stackTaint -> true
| _ -> false) | {
"checked_file": "Vale.PPC64LE.QuickCode.fst.checked",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.PPC64LE.QuickCode.fst"
} | [] | [
"Vale.PPC64LE.QuickCode.mod_t",
"Prims.bool",
"Vale.PPC64LE.Machine_s.reg",
"Prims.op_Equality",
"Vale.PPC64LE.Machine_s.vec",
"Vale.PPC64LE.Decls.heaplet_id",
"Prims.l_True",
"Prims.eq2"
] | [] | module Vale.PPC64LE.QuickCode
open FStar.Mul
open Vale.Def.Prop_s
open Vale.PPC64LE.Machine_s
open Vale.Arch.HeapImpl
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
irreducible let qmodattr = ()
type mod_t =
| Mod_None : mod_t
| Mod_ok: mod_t
| Mod_reg: reg -> mod_t
| Mod_vec: vec -> mod_t
| Mod_cr0: mod_t
| Mod_xer: mod_t
| Mod_mem: mod_t
| Mod_mem_layout: mod_t
| Mod_mem_heaplet: heaplet_id -> mod_t
| Mod_stack: mod_t
| Mod_stackTaint: mod_t
unfold let mods_t = list mod_t
unfold let va_mods_t = mods_t
[@va_qattr] unfold let va_Mod_None = Mod_None
[@va_qattr] unfold let va_Mod_ok = Mod_ok
[@va_qattr] unfold let va_Mod_reg (r:reg) = Mod_reg r
[@va_qattr] unfold let va_Mod_vec (v:vec) = Mod_vec v
[@va_qattr] unfold let va_Mod_cr0 = Mod_cr0
[@va_qattr] unfold let va_Mod_xer = Mod_xer
[@va_qattr] unfold let va_Mod_mem = Mod_mem
[@va_qattr] unfold let va_Mod_mem_layout = Mod_mem_layout
[@va_qattr] unfold let va_Mod_mem_heaplet (n:heaplet_id) = Mod_mem_heaplet n
[@va_qattr] unfold let va_Mod_stack = Mod_stack
[@va_qattr] unfold let va_Mod_stackTaint = Mod_stackTaint
[@va_qattr "opaque_to_smt"] | false | false | Vale.PPC64LE.QuickCode.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_eq (x y: mod_t) : Pure bool (requires True) (ensures fun b -> b == (x = y)) | [] | Vale.PPC64LE.QuickCode.mod_eq | {
"file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.QuickCode.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Vale.PPC64LE.QuickCode.mod_t -> y: Vale.PPC64LE.QuickCode.mod_t -> Prims.Pure Prims.bool | {
"end_col": 72,
"end_line": 51,
"start_col": 2,
"start_line": 40
} |
Prims.Tot | val gf128_power (h:poly) (n:nat) : poly | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gf128_power h n = shift_gf128_key_1 (g_power h n) | val gf128_power (h:poly) (n:nat) : poly
let gf128_power h n = | false | null | false | shift_gf128_key_1 (g_power h n) | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.nat",
"Vale.AES.GHash_BE.shift_gf128_key_1",
"Vale.AES.GHash_BE.g_power"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = () | false | true | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gf128_power (h:poly) (n:nat) : poly | [] | Vale.AES.GHash_BE.gf128_power | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Math.Poly2_s.poly -> n: Prims.nat -> Vale.Math.Poly2_s.poly | {
"end_col": 53,
"end_line": 21,
"start_col": 22,
"start_line": 21
} |
Prims.Tot | val shift_gf128_key_1 (h: poly) : poly | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h | val shift_gf128_key_1 (h: poly) : poly
let shift_gf128_key_1 (h: poly) : poly = | false | null | false | shift_key_1 128 gf128_modulus_low_terms h | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Vale.AES.GF128.shift_key_1",
"Vale.AES.GF128_s.gf128_modulus_low_terms"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options | false | true | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shift_gf128_key_1 (h: poly) : poly | [] | Vale.AES.GHash_BE.shift_gf128_key_1 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | {
"end_col": 43,
"end_line": 11,
"start_col": 2,
"start_line": 11
} |
Prims.Tot | val g_power (a:poly) (n:nat) : poly | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1) | val g_power (a:poly) (n:nat) : poly
let rec g_power (a: poly) (n: nat) : poly = | false | null | false | if n = 0 then zero else if n = 1 then a else a *~ g_power a (n - 1) | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Vale.Math.Poly2_s.zero",
"Prims.bool",
"Vale.AES.GF128.op_Star_Tilde",
"Vale.AES.GHash_BE.g_power",
"Prims.op_Subtraction"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h | false | true | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val g_power (a:poly) (n:nat) : poly | [
"recursion"
] | Vale.AES.GHash_BE.g_power | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Vale.Math.Poly2_s.poly -> n: Prims.nat -> Vale.Math.Poly2_s.poly | {
"end_col": 24,
"end_line": 16,
"start_col": 2,
"start_line": 14
} |
Prims.Tot | val ghash_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p | val ghash_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly
let rec ghash_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly = | false | null | false | let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"total"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.op_Equality",
"Vale.AES.GF128.op_Star_Tilde",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.bool",
"Vale.AES.GHash_BE.ghash_poly_unroll",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.AES.GHash_BE.g_power"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = () | false | true | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly | [
"recursion"
] | Vale.AES.GHash_BE.ghash_poly_unroll | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
m: Prims.nat ->
n: Prims.nat
-> Vale.Math.Poly2_s.poly | {
"end_col": 59,
"end_line": 28,
"start_col": 95,
"start_line": 24
} |
FStar.Pervasives.Lemma | val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
() | val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
)
let lemma_ghash_poly_of_unroll h prev data k m = | false | null | true | lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.unit",
"Vale.AES.GHash_BE.lemma_ghash_unroll_poly_unroll",
"Vale.AES.GHash_BE.lemma_ghash_poly_unroll"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
} | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus ==
ghash_poly h prev data k (k + m + 1)
) | [] | Vale.AES.GHash_BE.lemma_ghash_poly_of_unroll | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
m: Prims.nat
-> FStar.Pervasives.Lemma
(requires Vale.Math.Poly2_s.degree h < 128 /\ Vale.Math.Poly2_s.degree prev < 128)
(ensures
Vale.AES.GF128.mod_rev 128
(Vale.AES.GHash_BE.ghash_unroll h prev data k m 0)
Vale.AES.GF128_s.gf128_modulus ==
Vale.AES.GHash_BE.ghash_poly h prev data k (k + m + 1)) | {
"end_col": 4,
"end_line": 199,
"start_col": 2,
"start_line": 197
} |
FStar.Pervasives.Lemma | val lemma_ghash_incremental_poly (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma
(ensures
of_quad32 (ghash_incremental h_BE y_prev x) ==
ghash_poly
(of_quad32 h_BE)
(of_quad32 y_prev)
(fun_seq_quad32_BE_poly128 x) 0 (length x)
) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x) | val lemma_ghash_incremental_poly (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma
(ensures
of_quad32 (ghash_incremental h_BE y_prev x) ==
ghash_poly
(of_quad32 h_BE)
(of_quad32 y_prev)
(fun_seq_quad32_BE_poly128 x) 0 (length x)
)
let lemma_ghash_incremental_poly h_BE y_prev x = | false | null | true | ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x) | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.GHash_BE.lemma_ghash_incremental_poly_rec",
"Vale.AES.GHash_BE.fun_seq_quad32_BE_poly128",
"Prims.unit",
"Vale.AES.GHash_BE.ghash_incremental_reveal"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
} | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_incremental_poly (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma
(ensures
of_quad32 (ghash_incremental h_BE y_prev x) ==
ghash_poly
(of_quad32 h_BE)
(of_quad32 y_prev)
(fun_seq_quad32_BE_poly128 x) 0 (length x)
) | [] | Vale.AES.GHash_BE.lemma_ghash_incremental_poly | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h_BE: Vale.Def.Types_s.quad32 ->
y_prev: Vale.Def.Types_s.quad32 ->
x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Bits_s.of_quad32 (Vale.AES.GHash_BE.ghash_incremental h_BE y_prev x) ==
Vale.AES.GHash_BE.ghash_poly (Vale.Math.Poly2.Bits_s.of_quad32 h_BE)
(Vale.Math.Poly2.Bits_s.of_quad32 y_prev)
(Vale.AES.GHash_BE.fun_seq_quad32_BE_poly128 x)
0
(FStar.Seq.Base.length x)) | {
"end_col": 78,
"end_line": 238,
"start_col": 2,
"start_line": 237
} |
FStar.Pervasives.Lemma | val lemma_swap128_mask_shift (a:poly) : Lemma
(requires degree a < 128)
(ensures (
let a_sw = swap a 64 in
mask a 64 == shift a_sw (-64) /\
shift a (-64) == mask a_sw 64
)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_swap128_mask_shift (a:poly) : Lemma
(requires degree a < 128)
(ensures (
let a_sw = swap a 64 in
mask a 64 == shift a_sw (-64) /\
shift a (-64) == mask a_sw 64
))
=
lemma_quad32_double_swap a;
lemma_quad32_double a;
lemma_quad32_double (swap a 64);
lemma_mask_is_mod a 64;
lemma_shift_is_div (swap a 64) 64;
lemma_shift_is_div a 64;
lemma_mask_is_mod (swap a 64) 64 | val lemma_swap128_mask_shift (a:poly) : Lemma
(requires degree a < 128)
(ensures (
let a_sw = swap a 64 in
mask a 64 == shift a_sw (-64) /\
shift a (-64) == mask a_sw 64
))
let lemma_swap128_mask_shift (a: poly)
: Lemma (requires degree a < 128)
(ensures
(let a_sw = swap a 64 in
mask a 64 == shift a_sw (- 64) /\ shift a (- 64) == mask a_sw 64)) = | false | null | true | lemma_quad32_double_swap a;
lemma_quad32_double a;
lemma_quad32_double (swap a 64);
lemma_mask_is_mod a 64;
lemma_shift_is_div (swap a 64) 64;
lemma_shift_is_div a 64;
lemma_mask_is_mod (swap a 64) 64 | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Lemmas.lemma_mask_is_mod",
"Vale.Math.Poly2.swap",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_shift_is_div",
"Vale.Math.Poly2.Bits.lemma_quad32_double",
"Vale.Math.Poly2.Words.lemma_quad32_double_swap",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Math.Poly2_s.degree",
"Prims.squash",
"Prims.l_and",
"Prims.eq2",
"Vale.Math.Poly2.mask",
"Vale.Math.Poly2_s.shift",
"Prims.op_Minus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
()
let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
()
let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
=
if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0 then (
let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
()
) else ()
;
()
#reset-options "--z3rlimit 30"
let lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) // Precondition definitions
=
let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
// Postcondition definitions
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes' = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes' in
lemma_hash_append2 h y_init y_mid y_final full_blocks final_padded;
assert (y_final == ghash_incremental h y_init (full_blocks @| (create 1 final_padded)));
//// Need to show that input_quads == full_blocks @| (create 1 final_padded)
// First show that the inputs to input_quads corresponds
pad_to_128_bits_be_quad32_to_bytes input num_bytes;
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice input 0 num_blocks)) @| pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)));
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks) @| padded_bytes);
// Start deconstructing input_quads
append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks)) padded_bytes; // Distribute the be_bytes_to_seq_quad32
assert (input_quads == (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks))) @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad32_to_bytes (slice input 0 num_blocks);
assert (input_quads == full_blocks @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad_of_singleton final_padded padded_bytes;
assert (input_quads == full_blocks @| (create 1 final_padded));
()
let lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads))
=
let q_in = append input_blocks (create 1 final) in
let num_blocks = num_bytes / 16 in
let full_blocks = slice q_in 0 num_blocks in
assert (equal full_blocks input_blocks);
lemma_ghash_incremental_bytes_extra_helper h y_init y_mid y_final q_in final final_padded num_bytes
let lemma_div_distribute a b c =
let ab = a +. b in
let a' = a /. c in
let b' = b /. c in
let ab' = ab /. c in
let a'' = a %. c in
let b'' = b %. c in
let ab'' = ab %. c in
lemma_div_mod a c;
lemma_div_mod b c;
lemma_div_mod ab c;
// (a +. b) == (a) +. (b)
assert ((ab' *. c +. ab'') == (a' *. c +. a'') +. (b' *. c +. b''));
lemma_add_define_all ();
lemma_equal (ab' *. c +. a' *. c +. b' *. c) (ab'' +. a'' +. b'');
lemma_mul_distribute_left ab' a' c;
lemma_mul_distribute_left (ab' +. a') b' c;
assert ((ab' +. a' +. b') *. c == ab'' +. a'' +. b'');
lemma_mul_smaller_is_zero (ab' +. a' +. b') c;
assert (ab' +. a' +. b' == zero);
lemma_zero_define ();
lemma_equal ab' (a' +. b');
()
let lemma_swap128_mask_shift (a:poly) : Lemma
(requires degree a < 128)
(ensures (
let a_sw = swap a 64 in
mask a 64 == shift a_sw (-64) /\
shift a (-64) == mask a_sw 64
)) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_swap128_mask_shift (a:poly) : Lemma
(requires degree a < 128)
(ensures (
let a_sw = swap a 64 in
mask a 64 == shift a_sw (-64) /\
shift a (-64) == mask a_sw 64
)) | [] | Vale.AES.GHash_BE.lemma_swap128_mask_shift | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Vale.Math.Poly2_s.poly
-> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree a < 128)
(ensures
(let a_sw = Vale.Math.Poly2.swap a 64 in
Vale.Math.Poly2.mask a 64 == Vale.Math.Poly2_s.shift a_sw (- 64) /\
Vale.Math.Poly2_s.shift a (- 64) == Vale.Math.Poly2.mask a_sw 64)) | {
"end_col": 34,
"end_line": 406,
"start_col": 2,
"start_line": 400
} |
FStar.Pervasives.Lemma | val lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
() | val lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
let lemma_ghash_incremental0_append (h y0 y1 y2: quad32) (s1 s2: seq quad32)
: Lemma (requires y1 = ghash_incremental0 h y0 s1 /\ y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2)) = | false | null | true | let s12 = s1 @| s2 in
if length s1 = 0
then (assert (equal s12 s2))
else (if length s2 = 0 then (assert (equal s12 s1)) else (lemma_hash_append h y0 s1 s2));
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.bool",
"Vale.AES.GHash_BE.lemma_hash_append",
"FStar.Seq.Base.op_At_Bar",
"Prims.l_and",
"Prims.b2t",
"Vale.AES.GHash_BE.ghash_incremental0",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2)) | [] | Vale.AES.GHash_BE.lemma_ghash_incremental0_append | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Def.Types_s.quad32 ->
y0: Vale.Def.Types_s.quad32 ->
y1: Vale.Def.Types_s.quad32 ->
y2: Vale.Def.Types_s.quad32 ->
s1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
s2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
y1 = Vale.AES.GHash_BE.ghash_incremental0 h y0 s1 /\
y2 = Vale.AES.GHash_BE.ghash_incremental0 h y1 s2)
(ensures y2 = Vale.AES.GHash_BE.ghash_incremental0 h y0 (s1 @| s2)) | {
"end_col": 4,
"end_line": 281,
"start_col": 3,
"start_line": 270
} |
FStar.Pervasives.Lemma | val lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32) : Lemma
(requires y_mid = ghash_incremental0 h y_init s1 /\
y_final = ghash_incremental h y_mid (create 1 q))
(ensures y_final == ghash_incremental h y_init (s1 @| (create 1 q))) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
() | val lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32) : Lemma
(requires y_mid = ghash_incremental0 h y_init s1 /\
y_final = ghash_incremental h y_mid (create 1 q))
(ensures y_final == ghash_incremental h y_init (s1 @| (create 1 q)))
let lemma_hash_append2 (h y_init y_mid y_final: quad32) (s1: seq quad32) (q: quad32) = | false | null | true | let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (assert (equal s12 qs)) else (lemma_hash_append h y_init s1 qs);
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.bool",
"Vale.AES.GHash_BE.lemma_hash_append",
"FStar.Seq.Base.op_At_Bar",
"FStar.Seq.Base.create"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
() | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32) : Lemma
(requires y_mid = ghash_incremental0 h y_init s1 /\
y_final = ghash_incremental h y_mid (create 1 q))
(ensures y_final == ghash_incremental h y_init (s1 @| (create 1 q))) | [] | Vale.AES.GHash_BE.lemma_hash_append2 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Def.Types_s.quad32 ->
y_init: Vale.Def.Types_s.quad32 ->
y_mid: Vale.Def.Types_s.quad32 ->
y_final: Vale.Def.Types_s.quad32 ->
s1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
y_mid = Vale.AES.GHash_BE.ghash_incremental0 h y_init s1 /\
y_final = Vale.AES.GHash_BE.ghash_incremental h y_mid (FStar.Seq.Base.create 1 q))
(ensures
y_final == Vale.AES.GHash_BE.ghash_incremental h y_init (s1 @| FStar.Seq.Base.create 1 q)) | {
"end_col": 4,
"end_line": 292,
"start_col": 3,
"start_line": 284
} |
FStar.Pervasives.Lemma | val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) : Lemma
(ensures
ghash_incremental h y_prev (append a b) ==
(let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b))
(decreases %[length b]) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
() | val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) : Lemma
(ensures
ghash_incremental h y_prev (append a b) ==
(let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b))
(decreases %[length b])
let rec lemma_hash_append (h y_prev: quad32) (a b: ghash_plain_BE) = | false | null | true | ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1
then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert (all_but_last ab == append a (all_but_last b));
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma",
""
] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GHash_BE_s.ghash_plain_BE",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Vale.Lib.Seqs_s.all_but_last",
"FStar.Seq.Base.append",
"Vale.Lib.Seqs.lemma_all_but_last_append",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Vale.Lib.Seqs.lemma_slice_first_exactly_in_append",
"Prims.bool",
"Vale.AES.GHash_BE.lemma_hash_append",
"FStar.Seq.Properties.last",
"Vale.AES.GHash_BE.ghash_incremental_reveal"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) : Lemma
(ensures
ghash_incremental h y_prev (append a b) ==
(let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b))
(decreases %[length b]) | [
"recursion"
] | Vale.AES.GHash_BE.lemma_hash_append | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Def.Types_s.quad32 ->
y_prev: Vale.Def.Types_s.quad32 ->
a: Vale.AES.GHash_BE_s.ghash_plain_BE ->
b: Vale.AES.GHash_BE_s.ghash_plain_BE
-> FStar.Pervasives.Lemma
(ensures
Vale.AES.GHash_BE.ghash_incremental h y_prev (FStar.Seq.Base.append a b) ==
(let y_a = Vale.AES.GHash_BE.ghash_incremental h y_prev a in
Vale.AES.GHash_BE.ghash_incremental h y_a b)) (decreases FStar.Seq.Base.length b) | {
"end_col": 4,
"end_line": 264,
"start_col": 2,
"start_line": 253
} |
FStar.Pervasives.Lemma | val lemma_div_distribute (a b c:poly) : Lemma
(requires degree c >= 0)
(ensures (a +. b) /. c == (a /. c) +. (b /. c)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div_distribute a b c =
let ab = a +. b in
let a' = a /. c in
let b' = b /. c in
let ab' = ab /. c in
let a'' = a %. c in
let b'' = b %. c in
let ab'' = ab %. c in
lemma_div_mod a c;
lemma_div_mod b c;
lemma_div_mod ab c;
// (a +. b) == (a) +. (b)
assert ((ab' *. c +. ab'') == (a' *. c +. a'') +. (b' *. c +. b''));
lemma_add_define_all ();
lemma_equal (ab' *. c +. a' *. c +. b' *. c) (ab'' +. a'' +. b'');
lemma_mul_distribute_left ab' a' c;
lemma_mul_distribute_left (ab' +. a') b' c;
assert ((ab' +. a' +. b') *. c == ab'' +. a'' +. b'');
lemma_mul_smaller_is_zero (ab' +. a' +. b') c;
assert (ab' +. a' +. b' == zero);
lemma_zero_define ();
lemma_equal ab' (a' +. b');
() | val lemma_div_distribute (a b c:poly) : Lemma
(requires degree c >= 0)
(ensures (a +. b) /. c == (a /. c) +. (b /. c))
let lemma_div_distribute a b c = | false | null | true | let ab = a +. b in
let a' = a /. c in
let b' = b /. c in
let ab' = ab /. c in
let a'' = a %. c in
let b'' = b %. c in
let ab'' = ab %. c in
lemma_div_mod a c;
lemma_div_mod b c;
lemma_div_mod ab c;
assert ((ab' *. c +. ab'') == (a' *. c +. a'') +. (b' *. c +. b''));
lemma_add_define_all ();
lemma_equal (ab' *. c +. a' *. c +. b' *. c) (ab'' +. a'' +. b'');
lemma_mul_distribute_left ab' a' c;
lemma_mul_distribute_left (ab' +. a') b' c;
assert ((ab' +. a' +. b') *. c == ab'' +. a'' +. b'');
lemma_mul_smaller_is_zero (ab' +. a' +. b') c;
assert (ab' +. a' +. b' == zero);
lemma_zero_define ();
lemma_equal ab' (a' +. b');
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.unit",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.Math.Poly2.Lemmas.lemma_zero_define",
"Prims._assert",
"Prims.eq2",
"Vale.Math.Poly2_s.zero",
"Vale.Math.Poly2.Lemmas.lemma_mul_smaller_is_zero",
"Vale.Math.Poly2.op_Star_Dot",
"Vale.Math.Poly2.Lemmas.lemma_mul_distribute_left",
"Vale.Math.Poly2.Lemmas.lemma_add_define_all",
"Vale.Math.Poly2.lemma_div_mod",
"Vale.Math.Poly2.op_Percent_Dot",
"Vale.Math.Poly2.op_Slash_Dot"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
()
let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
()
let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
=
if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0 then (
let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
()
) else ()
;
()
#reset-options "--z3rlimit 30"
let lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) // Precondition definitions
=
let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
// Postcondition definitions
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes' = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes' in
lemma_hash_append2 h y_init y_mid y_final full_blocks final_padded;
assert (y_final == ghash_incremental h y_init (full_blocks @| (create 1 final_padded)));
//// Need to show that input_quads == full_blocks @| (create 1 final_padded)
// First show that the inputs to input_quads corresponds
pad_to_128_bits_be_quad32_to_bytes input num_bytes;
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice input 0 num_blocks)) @| pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)));
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks) @| padded_bytes);
// Start deconstructing input_quads
append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks)) padded_bytes; // Distribute the be_bytes_to_seq_quad32
assert (input_quads == (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks))) @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad32_to_bytes (slice input 0 num_blocks);
assert (input_quads == full_blocks @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad_of_singleton final_padded padded_bytes;
assert (input_quads == full_blocks @| (create 1 final_padded));
()
let lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads))
=
let q_in = append input_blocks (create 1 final) in
let num_blocks = num_bytes / 16 in
let full_blocks = slice q_in 0 num_blocks in
assert (equal full_blocks input_blocks);
lemma_ghash_incremental_bytes_extra_helper h y_init y_mid y_final q_in final final_padded num_bytes | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div_distribute (a b c:poly) : Lemma
(requires degree c >= 0)
(ensures (a +. b) /. c == (a /. c) +. (b /. c)) | [] | Vale.AES.GHash_BE.lemma_div_distribute | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> c: Vale.Math.Poly2_s.poly
-> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree c >= 0)
(ensures (a +. b) /. c == a /. c +. b /. c) | {
"end_col": 4,
"end_line": 390,
"start_col": 32,
"start_line": 368
} |
FStar.Pervasives.Lemma | val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1) | val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
let lemma_ghash_unroll_back_forward (h prev: poly) (data: (int -> poly128)) (k: int) (n: nat)
: Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) = | false | null | true | lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1) | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.op_GreaterThan",
"Vale.AES.GHash_BE.lemma_ghash_unroll_back_forward_rec",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_add_all",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.AES.GHash_BE.ghash_unroll",
"Vale.AES.GHash_BE.ghash_unroll_back",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) | [] | Vale.AES.GHash_BE.lemma_ghash_unroll_back_forward | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Vale.AES.GHash_BE.ghash_unroll h prev data k n 0 ==
Vale.AES.GHash_BE.ghash_unroll_back h prev data k (n + 1) n) | {
"end_col": 75,
"end_line": 47,
"start_col": 2,
"start_line": 46
} |
FStar.Pervasives.Lemma | val lemma_gf128_mul_rev_mod_rev (a h: poly)
: Lemma (requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
} | val lemma_gf128_mul_rev_mod_rev (a h: poly)
: Lemma (requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
let lemma_gf128_mul_rev_mod_rev (a h: poly)
: Lemma (requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus) = | false | null | true | let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc ( == ) {
rev ((rev a *. rev h) %. g);
( == ) { lemma_mod_mul_mod_right (rev a) (rev h) g }
rev ((rev a *. (rev h %. g)) %. g);
( == ) { lemma_shift_key_1 128 gf128_modulus_low_terms h }
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
( == ) { lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g }
rev ((rev a *. (shift (rev h1) 1)) %. g);
( == ) { lemma_shift_is_mul (rev h1) 1 }
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
( == ) { lemma_mul_all () }
rev (((rev a *. rev h1) *. monomial 1) %. g);
( == ) { lemma_shift_is_mul (rev a *. rev h1) 1 }
rev (shift (rev a *. rev h1) 1 %. g);
( == ) { lemma_mul_reverse_shift_1 a h1 127 }
rev (reverse (a *. h1) 255 %. g);
} | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Vale.Math.Poly2.op_Percent_Dot",
"Vale.Math.Poly2.op_Star_Dot",
"Vale.Math.Poly2_s.reverse",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Vale.Math.Poly2_s.shift",
"Vale.Math.Poly2_s.monomial",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.Math.Poly2.Lemmas.lemma_mod_mul_mod_right",
"Prims.squash",
"Vale.AES.GF128.lemma_shift_key_1",
"Vale.AES.GF128_s.gf128_modulus_low_terms",
"Vale.Math.Poly2.lemma_shift_is_mul",
"Vale.Math.Poly2.Lemmas.lemma_mul_all",
"Vale.Math.Poly2.Lemmas.lemma_mul_reverse_shift_1",
"Vale.AES.GF128.lemma_gf128_degree",
"Vale.AES.GF128_s.gf128_modulus",
"Vale.AES.GHash_BE.shift_gf128_key_1",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Math.Poly2_s.degree",
"Vale.AES.GF128.gf128_mul_rev",
"Vale.AES.GF128.mod_rev",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_gf128_mul_rev_mod_rev (a h: poly)
: Lemma (requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus) | [] | Vale.AES.GHash_BE.lemma_gf128_mul_rev_mod_rev | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly
-> FStar.Pervasives.Lemma
(requires Vale.Math.Poly2_s.degree a < 128 /\ Vale.Math.Poly2_s.degree h < 128)
(ensures
Vale.AES.GF128.gf128_mul_rev a h ==
Vale.AES.GF128.mod_rev 128
(a *. Vale.AES.GHash_BE.shift_gf128_key_1 h)
Vale.AES.GF128_s.gf128_modulus) | {
"end_col": 3,
"end_line": 74,
"start_col": 3,
"start_line": 52
} |
FStar.Pervasives.Lemma | val lemma_ghash_poly_unroll (h0 prev: poly) (data: (int -> poly128)) (k: int) (m: nat)
: Lemma (requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1)) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
} | val lemma_ghash_poly_unroll (h0 prev: poly) (data: (int -> poly128)) (k: int) (m: nat)
: Lemma (requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
let rec lemma_ghash_poly_unroll (h0 prev: poly) (data: (int -> poly128)) (k: int) (m: nat)
: Lemma (requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1)) = | false | null | true | let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0
then
calc ( == ) {
ghash_poly_unroll h0 prev data k m 0;
( == ) { () }
(prev +. d) *~ p1;
( == ) { () }
(ghash0 +. d) *~ h0;
( == ) { () }
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc ( == ) {
ghash_poly_unroll h0 prev data k m 0;
( == ) { () }
unroll1 +. d *~ p1;
( == ) { calc ( == ) {
unroll1;
( == ) { lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0 }
unroll0 *~ h0;
( == ) { lemma_ghash_poly_unroll h0 prev data k (m - 1) }
ghash0 *~ h0;
} }
ghash0 *~ h0 +. d *~ h0;
( == ) { lemma_gf128_mul_rev_distribute_left ghash0 d h0 }
(ghash0 +. d) *~ h0;
( == ) { () }
ghash_poly h0 prev data k (k + m + 1);
} | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.op_Equality",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Vale.AES.GHash_BE.ghash_poly_unroll",
"Vale.AES.GHash_BE.ghash_poly",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Vale.AES.GF128.op_Star_Tilde",
"Vale.Math.Poly2.op_Plus_Dot",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Prims.bool",
"Vale.AES.GHash_BE.lemma_ghash_poly_unroll_n",
"Prims.op_Subtraction",
"Vale.AES.GHash_BE.lemma_ghash_poly_unroll",
"Vale.AES.GF128.lemma_gf128_mul_rev_distribute_left",
"Vale.AES.GHash_BE.g_power",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Math.Poly2_s.degree",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_poly_unroll (h0 prev: poly) (data: (int -> poly128)) (k: int) (m: nat)
: Lemma (requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1)) | [
"recursion"
] | Vale.AES.GHash_BE.lemma_ghash_poly_unroll | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h0: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
m: Prims.nat
-> FStar.Pervasives.Lemma
(requires Vale.Math.Poly2_s.degree h0 < 128 /\ Vale.Math.Poly2_s.degree prev < 128)
(ensures
Vale.AES.GHash_BE.ghash_poly_unroll h0 prev data k m 0 ==
Vale.AES.GHash_BE.ghash_poly h0 prev data k (k + m + 1)) | {
"end_col": 5,
"end_line": 155,
"start_col": 3,
"start_line": 120
} |
FStar.Pervasives.Lemma | val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma
(requires length x > 0)
(ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_BE h x)
(decreases %[length x]) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x) | val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma
(requires length x > 0)
(ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_BE h x)
(decreases %[length x])
let rec ghash_incremental_to_ghash (h: quad32) (x: seq quad32) = | false | null | true | ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then () else ghash_incremental_to_ghash h (all_but_last x) | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma",
""
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GHash_BE.ghash_incremental_to_ghash",
"Vale.Lib.Seqs_s.all_but_last",
"Prims.unit",
"Vale.AES.GHash_BE_s.ghash_BE_reveal",
"Vale.AES.GHash_BE.ghash_incremental_reveal"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma
(requires length x > 0)
(ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_BE h x)
(decreases %[length x]) | [
"recursion"
] | Vale.AES.GHash_BE.ghash_incremental_to_ghash | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: Vale.Def.Types_s.quad32 -> x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length x > 0)
(ensures
Vale.AES.GHash_BE.ghash_incremental h (Vale.Def.Words_s.Mkfour 0 0 0 0) x ==
Vale.AES.GHash_BE_s.ghash_BE h x)
(decreases FStar.Seq.Base.length x) | {
"end_col": 52,
"end_line": 249,
"start_col": 2,
"start_line": 246
} |
FStar.Pervasives.Lemma | val lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads))
=
let q_in = append input_blocks (create 1 final) in
let num_blocks = num_bytes / 16 in
let full_blocks = slice q_in 0 num_blocks in
assert (equal full_blocks input_blocks);
lemma_ghash_incremental_bytes_extra_helper h y_init y_mid y_final q_in final final_padded num_bytes | val lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads))
let lemma_ghash_incremental_bytes_extra_helper_alt
(h y_init y_mid y_final: quad32)
(input_blocks: seq quad32)
(final final_padded: quad32)
(num_bytes: nat)
: Lemma
(requires
(1 <= num_bytes /\ num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\ num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes =
pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16))
in
length padded_bytes == 16 /\ final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures
(let input_bytes =
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks
(create 1 final))))
0
num_bytes
in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads)) = | false | null | true | let q_in = append input_blocks (create 1 final) in
let num_blocks = num_bytes / 16 in
let full_blocks = slice q_in 0 num_blocks in
assert (equal full_blocks input_blocks);
lemma_ghash_incremental_bytes_extra_helper h y_init y_mid y_final q_in final final_padded num_bytes | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.nat",
"Vale.AES.GHash_BE.lemma_ghash_incremental_bytes_extra_helper",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Prims.int",
"Prims.op_Division",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Prims.op_disEquality",
"Prims.op_Modulus",
"Prims.op_Equality",
"Vale.AES.GHash_BE.ghash_incremental0",
"Prims.eq2",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.AES.GHash_BE.ghash_incremental",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.squash",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
()
let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
()
let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
=
if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0 then (
let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
()
) else ()
;
()
#reset-options "--z3rlimit 30"
let lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) // Precondition definitions
=
let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
// Postcondition definitions
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes' = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes' in
lemma_hash_append2 h y_init y_mid y_final full_blocks final_padded;
assert (y_final == ghash_incremental h y_init (full_blocks @| (create 1 final_padded)));
//// Need to show that input_quads == full_blocks @| (create 1 final_padded)
// First show that the inputs to input_quads corresponds
pad_to_128_bits_be_quad32_to_bytes input num_bytes;
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice input 0 num_blocks)) @| pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)));
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks) @| padded_bytes);
// Start deconstructing input_quads
append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks)) padded_bytes; // Distribute the be_bytes_to_seq_quad32
assert (input_quads == (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks))) @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad32_to_bytes (slice input 0 num_blocks);
assert (input_quads == full_blocks @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad_of_singleton final_padded padded_bytes;
assert (input_quads == full_blocks @| (create 1 final_padded));
()
let lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\ | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads)) | [] | Vale.AES.GHash_BE.lemma_ghash_incremental_bytes_extra_helper_alt | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Def.Types_s.quad32 ->
y_init: Vale.Def.Types_s.quad32 ->
y_mid: Vale.Def.Types_s.quad32 ->
y_final: Vale.Def.Types_s.quad32 ->
input_blocks: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
final: Vale.Def.Types_s.quad32 ->
final_padded: Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
1 <= num_bytes /\ num_bytes < 16 * FStar.Seq.Base.length input_blocks + 16 /\
16 * FStar.Seq.Base.length input_blocks < num_bytes /\ num_bytes % 16 <> 0 /\
y_mid = Vale.AES.GHash_BE.ghash_incremental0 h y_init input_blocks /\
(let padded_bytes =
Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes
final)
0
(num_bytes % 16))
in
FStar.Seq.Base.length padded_bytes == 16 /\
final_padded == Vale.Def.Types_s.be_bytes_to_quad32 padded_bytes /\
y_final =
Vale.AES.GHash_BE.ghash_incremental h y_mid (FStar.Seq.Base.create 1 final_padded)))
(ensures
(let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
(FStar.Seq.Base.append input_blocks (FStar.Seq.Base.create 1 final))))
0
num_bytes
in
let padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in
let input_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 padded_bytes in
FStar.Seq.Base.length padded_bytes == 16 * FStar.Seq.Base.length input_quads /\
y_final == Vale.AES.GHash_BE.ghash_incremental h y_init input_quads)) | {
"end_col": 101,
"end_line": 366,
"start_col": 3,
"start_line": 361
} |
FStar.Pervasives.Lemma | val lemma_ghash_unroll_back_forward_rec (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat)
: Lemma (requires m < n)
(ensures
ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1) | val lemma_ghash_unroll_back_forward_rec (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat)
: Lemma (requires m < n)
(ensures
ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
let rec lemma_ghash_unroll_back_forward_rec
(h prev: poly)
(data: (int -> poly128))
(k: int)
(n m: nat)
: Lemma (requires m < n)
(ensures
ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m) = | false | null | true | lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1) | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.op_GreaterThan",
"Vale.AES.GHash_BE.lemma_ghash_unroll_back_forward_rec",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_add_all",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"Vale.AES.GHash_BE.ghash_unroll",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.op_Addition",
"Vale.AES.GHash_BE.ghash_unroll_back",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_unroll_back_forward_rec (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat)
: Lemma (requires m < n)
(ensures
ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m) | [
"recursion"
] | Vale.AES.GHash_BE.lemma_ghash_unroll_back_forward_rec | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
n: Prims.nat ->
m: Prims.nat
-> FStar.Pervasives.Lemma (requires m < n)
(ensures
Vale.AES.GHash_BE.ghash_unroll h prev data k n 0 ==
Vale.AES.GHash_BE.ghash_unroll h prev data k (n - 1 - m) (m + 1) +.
Vale.AES.GHash_BE.ghash_unroll_back h prev data k (n + 1) m) | {
"end_col": 75,
"end_line": 41,
"start_col": 2,
"start_line": 40
} |
FStar.Pervasives.Lemma | val ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
=
if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0 then (
let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
()
) else ()
;
() | val ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
let ghash_incremental_bytes_pure_no_extra
(old_io io h: quad32)
(in_quads: seq quad32)
(num_bytes: nat64)
: Lemma (requires io = ghash_incremental0 h old_io in_quads)
(ensures
length in_quads == (num_bytes / 16) /\ num_bytes % 16 == 0 ==>
(let input_bytes =
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes
in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\ io == ghash_incremental h old_io input_quads)) = | false | null | true | if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0
then
(let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
());
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat64",
"Prims.unit",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.op_GreaterThan",
"Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes",
"Vale.AES.GCM_helpers_BE.no_extra_bytes_helper",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Prims.bool",
"Prims.b2t",
"Vale.AES.GHash_BE.ghash_incremental0",
"Prims.squash",
"Prims.l_imp",
"Prims.l_and",
"Prims.eq2",
"Vale.AES.GHash_BE.ghash_incremental",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
()
let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
()
let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads)) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads)) | [] | Vale.AES.GHash_BE.ghash_incremental_bytes_pure_no_extra | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
old_io: Vale.Def.Types_s.quad32 ->
io: Vale.Def.Types_s.quad32 ->
h: Vale.Def.Types_s.quad32 ->
in_quads: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
num_bytes: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma (requires io = Vale.AES.GHash_BE.ghash_incremental0 h old_io in_quads)
(ensures
FStar.Seq.Base.length in_quads == num_bytes / 16 /\ num_bytes % 16 == 0 ==>
(let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
in_quads))
0
num_bytes
in
let padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in
let input_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==>
FStar.Seq.Base.length input_quads > 0 /\
io == Vale.AES.GHash_BE.ghash_incremental h old_io input_quads)) | {
"end_col": 4,
"end_line": 311,
"start_col": 2,
"start_line": 304
} |
FStar.Pervasives.Lemma | val lemma_ghash_unroll_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
} | val lemma_ghash_unroll_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n)
let rec lemma_ghash_unroll_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n) = | false | null | true | let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0
then
calc ( == ) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
( == ) { () }
mod_rev 128 ((prev +. d) *. sp) g;
( == ) { lemma_gf128_mul_rev_mod_rev (prev +. d) p }
(prev +. d) *~ p;
( == ) { () }
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc ( == ) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
( == ) { () }
mod_rev 128 (unroll1 +. d *. sp) g;
( == ) { lemma_add_mod_rev 128 unroll1 (d *. sp) g }
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
( == ) { lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1) }
ghash0 +. mod_rev 128 (d *. sp) g;
( == ) { lemma_gf128_mul_rev_mod_rev d p }
ghash0 +. d *~ p;
( == ) { () }
ghash_poly_unroll h prev data k m n;
} | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.op_Equality",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Vale.AES.GF128.mod_rev",
"Vale.AES.GHash_BE.ghash_unroll",
"Vale.AES.GHash_BE.ghash_poly_unroll",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Vale.AES.GF128.op_Star_Tilde",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.Math.Poly2.op_Star_Dot",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Vale.AES.GHash_BE.lemma_gf128_mul_rev_mod_rev",
"Prims.bool",
"Vale.AES.GF128.lemma_add_mod_rev",
"Vale.AES.GHash_BE.lemma_ghash_unroll_poly_unroll",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.AES.GF128.lemma_gf128_degree",
"Vale.AES.GHash_BE.shift_gf128_key_1",
"Vale.AES.GHash_BE.g_power",
"Vale.AES.GF128_s.gf128_modulus",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Math.Poly2_s.degree",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_unroll_poly_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n) | [
"recursion"
] | Vale.AES.GHash_BE.lemma_ghash_unroll_poly_unroll | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
m: Prims.nat ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires Vale.Math.Poly2_s.degree h < 128 /\ Vale.Math.Poly2_s.degree prev < 128)
(ensures
Vale.AES.GF128.mod_rev 128
(Vale.AES.GHash_BE.ghash_unroll h prev data k m n)
Vale.AES.GF128_s.gf128_modulus ==
Vale.AES.GHash_BE.ghash_poly_unroll h prev data k m n) | {
"end_col": 5,
"end_line": 194,
"start_col": 3,
"start_line": 163
} |
FStar.Pervasives.Lemma | val lemma_gf128_constant_shift_rev (_:unit) : Lemma
(mask (of_quad32 (Mkfour 0 0xc2000000 0 0)) 64 == reverse gf128_low_shift 63 /\
shift (of_quad32 (Mkfour 0 0xc2000000 0 0)) (-64) == zero) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_gf128_constant_shift_rev ()
=
let n0:nat32 = 0 in
let n1:nat32 = 0xc2000000 in
let n2:nat32 = 0 in
let n3:nat32 = 0 in
let r3 = gf128_low_shift in
calc (==) {
of_quad32 (Mkfour n0 n1 n2 n3);
== {
calc (==) {
Mkfour n0 n1 n2 n3;
== {lemma_quad32_of_nat32s n0 n1 n2 n3}
to_quad32 (poly128_of_nat32s n0 n1 n2 n3);
== {
lemma_bitwise_all ();
lemma_to_nat 32 (reverse r3 31) n1;
lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 63)
}
to_quad32 (reverse r3 63);
}
}
of_quad32 (to_quad32 (reverse r3 63));
== {lemma_of_to_quad32 (reverse r3 63)}
reverse r3 63;
};
lemma_bitwise_all ();
lemma_split_define (reverse gf128_low_shift 63) 64;
lemma_equal (mask (reverse gf128_low_shift 63) 64) (reverse gf128_low_shift 63);
lemma_equal (shift (reverse gf128_low_shift 63) (-64)) zero | val lemma_gf128_constant_shift_rev (_:unit) : Lemma
(mask (of_quad32 (Mkfour 0 0xc2000000 0 0)) 64 == reverse gf128_low_shift 63 /\
shift (of_quad32 (Mkfour 0 0xc2000000 0 0)) (-64) == zero)
let lemma_gf128_constant_shift_rev () = | false | null | true | let n0:nat32 = 0 in
let n1:nat32 = 0xc2000000 in
let n2:nat32 = 0 in
let n3:nat32 = 0 in
let r3 = gf128_low_shift in
calc ( == ) {
of_quad32 (Mkfour n0 n1 n2 n3);
( == ) { calc ( == ) {
Mkfour n0 n1 n2 n3;
( == ) { lemma_quad32_of_nat32s n0 n1 n2 n3 }
to_quad32 (poly128_of_nat32s n0 n1 n2 n3);
( == ) { (lemma_bitwise_all ();
lemma_to_nat 32 (reverse r3 31) n1;
lemma_equal (poly128_of_nat32s n0 n1 n2 n3) (reverse r3 63)) }
to_quad32 (reverse r3 63);
} }
of_quad32 (to_quad32 (reverse r3 63));
( == ) { lemma_of_to_quad32 (reverse r3 63) }
reverse r3 63;
};
lemma_bitwise_all ();
lemma_split_define (reverse gf128_low_shift 63) 64;
lemma_equal (mask (reverse gf128_low_shift 63) 64) (reverse gf128_low_shift 63);
lemma_equal (shift (reverse gf128_low_shift 63) (- 64)) zero | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Prims.unit",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2_s.shift",
"Vale.Math.Poly2_s.reverse",
"Vale.AES.GF128.gf128_low_shift",
"Prims.op_Minus",
"Vale.Math.Poly2_s.zero",
"Vale.Math.Poly2.mask",
"Vale.Math.Poly2.Lemmas.lemma_split_define",
"Vale.Math.Poly2.Lemmas.lemma_bitwise_all",
"FStar.Calc.calc_finish",
"Vale.Math.Poly2_s.poly",
"Prims.eq2",
"Vale.Math.Poly2.Bits_s.of_quad32",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Vale.Math.Poly2.Bits_s.to_quad32",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"Vale.Math.Poly2.Bits.poly128_of_nat32s",
"Vale.Math.Poly2.Bits.lemma_quad32_of_nat32s",
"Prims.squash",
"Vale.Math.Poly2.Bits.lemma_to_nat",
"Vale.Math.Poly2.Bits.lemma_of_to_quad32"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
()
let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
()
let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
=
if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0 then (
let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
()
) else ()
;
()
#reset-options "--z3rlimit 30"
let lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) // Precondition definitions
=
let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
// Postcondition definitions
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes' = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes' in
lemma_hash_append2 h y_init y_mid y_final full_blocks final_padded;
assert (y_final == ghash_incremental h y_init (full_blocks @| (create 1 final_padded)));
//// Need to show that input_quads == full_blocks @| (create 1 final_padded)
// First show that the inputs to input_quads corresponds
pad_to_128_bits_be_quad32_to_bytes input num_bytes;
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice input 0 num_blocks)) @| pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)));
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks) @| padded_bytes);
// Start deconstructing input_quads
append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks)) padded_bytes; // Distribute the be_bytes_to_seq_quad32
assert (input_quads == (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks))) @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad32_to_bytes (slice input 0 num_blocks);
assert (input_quads == full_blocks @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad_of_singleton final_padded padded_bytes;
assert (input_quads == full_blocks @| (create 1 final_padded));
()
let lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * (length input_blocks) + 16 /\
16 * (length input_blocks) < num_bytes /\
num_bytes % 16 <> 0 /\
y_mid = ghash_incremental0 h y_init input_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads))
=
let q_in = append input_blocks (create 1 final) in
let num_blocks = num_bytes / 16 in
let full_blocks = slice q_in 0 num_blocks in
assert (equal full_blocks input_blocks);
lemma_ghash_incremental_bytes_extra_helper h y_init y_mid y_final q_in final final_padded num_bytes
let lemma_div_distribute a b c =
let ab = a +. b in
let a' = a /. c in
let b' = b /. c in
let ab' = ab /. c in
let a'' = a %. c in
let b'' = b %. c in
let ab'' = ab %. c in
lemma_div_mod a c;
lemma_div_mod b c;
lemma_div_mod ab c;
// (a +. b) == (a) +. (b)
assert ((ab' *. c +. ab'') == (a' *. c +. a'') +. (b' *. c +. b''));
lemma_add_define_all ();
lemma_equal (ab' *. c +. a' *. c +. b' *. c) (ab'' +. a'' +. b'');
lemma_mul_distribute_left ab' a' c;
lemma_mul_distribute_left (ab' +. a') b' c;
assert ((ab' +. a' +. b') *. c == ab'' +. a'' +. b'');
lemma_mul_smaller_is_zero (ab' +. a' +. b') c;
assert (ab' +. a' +. b' == zero);
lemma_zero_define ();
lemma_equal ab' (a' +. b');
()
let lemma_swap128_mask_shift (a:poly) : Lemma
(requires degree a < 128)
(ensures (
let a_sw = swap a 64 in
mask a 64 == shift a_sw (-64) /\
shift a (-64) == mask a_sw 64
))
=
lemma_quad32_double_swap a;
lemma_quad32_double a;
lemma_quad32_double (swap a 64);
lemma_mask_is_mod a 64;
lemma_shift_is_div (swap a 64) 64;
lemma_shift_is_div a 64;
lemma_mask_is_mod (swap a 64) 64 | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_gf128_constant_shift_rev (_:unit) : Lemma
(mask (of_quad32 (Mkfour 0 0xc2000000 0 0)) 64 == reverse gf128_low_shift 63 /\
shift (of_quad32 (Mkfour 0 0xc2000000 0 0)) (-64) == zero) | [] | Vale.AES.GHash_BE.lemma_gf128_constant_shift_rev | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.mask (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Words_s.Mkfour 0
0xc2000000
0
0))
64 ==
Vale.Math.Poly2_s.reverse Vale.AES.GF128.gf128_low_shift 63 /\
Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Bits_s.of_quad32 (Vale.Def.Words_s.Mkfour 0
0xc2000000
0
0))
(- 64) ==
Vale.Math.Poly2_s.zero) | {
"end_col": 61,
"end_line": 437,
"start_col": 3,
"start_line": 409
} |
FStar.Pervasives.Lemma | val lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * length input /\
16 * (length input - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ //4096 * num_bytes < pow2_32 /\
(let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
y_mid = ghash_incremental0 h y_init full_blocks /\
final == index input num_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded)))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads)) | [
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) // Precondition definitions
=
let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
// Postcondition definitions
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes' = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes' in
lemma_hash_append2 h y_init y_mid y_final full_blocks final_padded;
assert (y_final == ghash_incremental h y_init (full_blocks @| (create 1 final_padded)));
//// Need to show that input_quads == full_blocks @| (create 1 final_padded)
// First show that the inputs to input_quads corresponds
pad_to_128_bits_be_quad32_to_bytes input num_bytes;
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice input 0 num_blocks)) @| pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)));
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks) @| padded_bytes);
// Start deconstructing input_quads
append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks)) padded_bytes; // Distribute the be_bytes_to_seq_quad32
assert (input_quads == (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks))) @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad32_to_bytes (slice input 0 num_blocks);
assert (input_quads == full_blocks @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad_of_singleton final_padded padded_bytes;
assert (input_quads == full_blocks @| (create 1 final_padded));
() | val lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * length input /\
16 * (length input - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ //4096 * num_bytes < pow2_32 /\
(let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
y_mid = ghash_incremental0 h y_init full_blocks /\
final == index input num_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded)))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads))
let lemma_ghash_incremental_bytes_extra_helper
(h y_init y_mid y_final: quad32)
(input: seq quad32)
(final final_padded: quad32)
(num_bytes: nat)
= | false | null | true | let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes' = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes' in
lemma_hash_append2 h y_init y_mid y_final full_blocks final_padded;
assert (y_final == ghash_incremental h y_init (full_blocks @| (create 1 final_padded)));
pad_to_128_bits_be_quad32_to_bytes input num_bytes;
assert (padded_bytes' ==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice input 0 num_blocks)) @|
pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)));
assert (padded_bytes' == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks) @| padded_bytes);
append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks)
)
padded_bytes;
assert (input_quads ==
(be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_blocks))) @|
(be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad32_to_bytes (slice input 0 num_blocks);
assert (input_quads == full_blocks @| (be_bytes_to_seq_quad32 padded_bytes));
be_bytes_to_seq_quad_of_singleton final_padded padded_bytes;
assert (input_quads == full_blocks @| (create 1 final_padded));
() | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.op_At_Bar",
"FStar.Seq.Base.create",
"Vale.Arch.Types.be_bytes_to_seq_quad_of_singleton",
"Vale.Def.Types_s.be_bytes_to_seq_quad32",
"Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes",
"FStar.Seq.Base.slice",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Vale.Arch.Types.append_distributes_be_bytes_to_seq_quad32",
"Vale.Def.Types_s.nat8",
"Vale.Def.Words_s.nat8",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.op_Modulus",
"Vale.AES.GCM_helpers_BE.pad_to_128_bits_be_quad32_to_bytes",
"Vale.AES.GHash_BE.ghash_incremental",
"Vale.AES.GHash_BE.lemma_hash_append2",
"Prims.int",
"Prims.op_Division"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
}
let lemma_ghash_incremental_poly h_BE y_prev x =
ghash_incremental_reveal ();
lemma_ghash_incremental_poly_rec h_BE y_prev x (fun_seq_quad32_BE_poly128 x)
let lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32)
=
()
let rec ghash_incremental_to_ghash (h:quad32) (x:seq quad32)
=
ghash_incremental_reveal ();
ghash_BE_reveal ();
if length x = 1 then ()
else ghash_incremental_to_ghash h (all_but_last x)
let rec lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE)
=
ghash_incremental_reveal ();
let ab = append a b in
assert (last ab == last b);
if length b = 1 then
(lemma_slice_first_exactly_in_append a b;
assert (all_but_last ab == a);
())
else
lemma_hash_append h y_prev a (all_but_last b);
lemma_all_but_last_append a b;
assert(all_but_last ab == append a (all_but_last b));
()
let lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma
(requires y1 = ghash_incremental0 h y0 s1 /\
y2 = ghash_incremental0 h y1 s2)
(ensures y2 = ghash_incremental0 h y0 (s1 @| s2))
=
let s12 = s1 @| s2 in
if length s1 = 0 then (
assert (equal s12 s2)
) else (
if length s2 = 0 then (
assert (equal s12 s1)
) else (
lemma_hash_append h y0 s1 s2
)
);
()
let lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32)
=
let qs = create 1 q in
let s12 = s1 @| qs in
if length s1 = 0 then (
assert(equal s12 qs)
) else (
lemma_hash_append h y_init s1 qs
);
()
let ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma
(requires io = ghash_incremental0 h old_io in_quads)
(ensures length in_quads == (num_bytes / 16) /\
num_bytes % 16 == 0 ==>
(let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
num_bytes > 0 ==> length input_quads > 0 /\
io == ghash_incremental h old_io input_quads))
=
if length in_quads = (num_bytes / 16) && num_bytes % 16 = 0 && num_bytes > 0 then (
let input_bytes = slice (le_seq_quad32_to_bytes in_quads) 0 num_bytes in
no_extra_bytes_helper in_quads num_bytes;
be_bytes_to_seq_quad32_to_bytes in_quads;
()
) else ()
;
()
#reset-options "--z3rlimit 30" | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * length input /\
16 * (length input - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ //4096 * num_bytes < pow2_32 /\
(let num_blocks = num_bytes / 16 in
let full_blocks = slice input 0 num_blocks in
y_mid = ghash_incremental0 h y_init full_blocks /\
final == index input num_blocks /\
(let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in
length padded_bytes == 16 /\
final_padded == be_bytes_to_quad32 padded_bytes /\
y_final = ghash_incremental h y_mid (create 1 final_padded)))))
(ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in
let padded_bytes = pad_to_128_bits input_bytes in
let input_quads = be_bytes_to_seq_quad32 padded_bytes in
length padded_bytes == 16 * length input_quads /\
y_final == ghash_incremental h y_init input_quads)) | [] | Vale.AES.GHash_BE.lemma_ghash_incremental_bytes_extra_helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Def.Types_s.quad32 ->
y_init: Vale.Def.Types_s.quad32 ->
y_mid: Vale.Def.Types_s.quad32 ->
y_final: Vale.Def.Types_s.quad32 ->
input: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
final: Vale.Def.Types_s.quad32 ->
final_padded: Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
1 <= num_bytes /\ num_bytes < 16 * FStar.Seq.Base.length input /\
16 * (FStar.Seq.Base.length input - 1) < num_bytes /\ num_bytes % 16 <> 0 /\
(let num_blocks = num_bytes / 16 in
let full_blocks = FStar.Seq.Base.slice input 0 num_blocks in
y_mid = Vale.AES.GHash_BE.ghash_incremental0 h y_init full_blocks /\
final == FStar.Seq.Base.index input num_blocks /\
(let padded_bytes =
Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes
final)
0
(num_bytes % 16))
in
FStar.Seq.Base.length padded_bytes == 16 /\
final_padded == Vale.Def.Types_s.be_bytes_to_quad32 padded_bytes /\
y_final =
Vale.AES.GHash_BE.ghash_incremental h y_mid (FStar.Seq.Base.create 1 final_padded))))
(ensures
(let input_bytes =
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
input))
0
num_bytes
in
let padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in
let input_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 padded_bytes in
FStar.Seq.Base.length padded_bytes == 16 * FStar.Seq.Base.length input_quads /\
y_final == Vale.AES.GHash_BE.ghash_incremental h y_init input_quads)) | {
"end_col": 4,
"end_line": 343,
"start_col": 3,
"start_line": 315
} |
FStar.Pervasives.Lemma | val lemma_ghash_incremental_poly_rec (h_BE y_prev: quad32) (x: seq quad32) (data: (int -> poly128))
: Lemma
(requires
(forall (i: int). {:pattern data i\/index x i}
0 <= i && i < length x ==> data i == of_quad32 (index x i)))
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x))
(decreases (length x)) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x))
=
ghash_incremental_reveal ();
let (~~) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0 then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc (==) {
~~(ghash_incremental_def h_BE y_prev x);
== {}
~~(gf128_mul_BE xor_BE h_BE);
== {lemma_of_to_quad32 (~~xor_BE *~ h)}
~~xor_BE *~ h;
== {lemma_add_quad32 y_i_minus_1 x_i}
(~~y_i_minus_1 +. ~~x_i) *~ h;
== {lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data}
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
== {}
ghash_poly h prev data 0 m;
} | val lemma_ghash_incremental_poly_rec (h_BE y_prev: quad32) (x: seq quad32) (data: (int -> poly128))
: Lemma
(requires
(forall (i: int). {:pattern data i\/index x i}
0 <= i && i < length x ==> data i == of_quad32 (index x i)))
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x))
(decreases (length x))
let rec lemma_ghash_incremental_poly_rec
(h_BE y_prev: quad32)
(x: seq quad32)
(data: (int -> poly128))
: Lemma
(requires
(forall (i: int). {:pattern data i\/index x i}
0 <= i && i < length x ==> data i == of_quad32 (index x i)))
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x))
(decreases (length x)) = | false | null | true | ghash_incremental_reveal ();
let ( ~~ ) = of_quad32 in
let h = ~~h_BE in
let prev = ~~y_prev in
let m = length x in
if m > 0
then
let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in
let x_i = last x in
let xor_BE = quad32_xor y_i_minus_1 x_i in
let g = gf128_modulus in
calc ( == ) {
~~(ghash_incremental_def h_BE y_prev x);
( == ) { () }
~~(gf128_mul_BE xor_BE h_BE);
( == ) { lemma_of_to_quad32 (~~xor_BE *~ h) }
~~xor_BE *~ h;
( == ) { lemma_add_quad32 y_i_minus_1 x_i }
(~~y_i_minus_1 +. ~~x_i) *~ h;
( == ) { lemma_ghash_incremental_poly_rec h_BE y_prev (all_but_last x) data }
(ghash_poly h prev data 0 (m - 1) +. data (m - 1)) *~ h;
( == ) { () }
ghash_poly h prev data 0 m;
} | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma",
""
] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.op_GreaterThan",
"FStar.Calc.calc_finish",
"Vale.Math.Poly2_s.poly",
"Prims.eq2",
"Vale.AES.GHash_BE.ghash_incremental_def",
"Vale.AES.GHash_BE.ghash_poly",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Vale.AES.GF128.op_Star_Tilde",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.op_Subtraction",
"Vale.AES.GHash_BE_s.gf128_mul_BE",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Vale.Math.Poly2.Bits.lemma_of_to_quad32",
"Vale.Math.Poly2.Words.lemma_add_quad32",
"Vale.AES.GHash_BE.lemma_ghash_incremental_poly_rec",
"Vale.Lib.Seqs_s.all_but_last",
"Vale.AES.GF128_s.gf128_modulus",
"Vale.Def.Types_s.quad32_xor",
"FStar.Seq.Properties.last",
"Prims.bool",
"Prims.nat",
"FStar.Seq.Base.length",
"Vale.Math.Poly2.Bits_s.of_quad32",
"Vale.AES.GHash_BE.ghash_incremental_reveal",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
let rec lemma_ghash_poly_unroll (h0:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma
(requires degree h0 < 128 /\ degree prev < 128)
(ensures ghash_poly_unroll h0 prev data k m 0 == ghash_poly h0 prev data k (k + m + 1))
=
let d = data (k + m) in
let p1 = g_power h0 1 in
let ghash0 = ghash_poly h0 prev data k (k + m) in
if m = 0 then
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
(prev +. d) *~ p1;
== {}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
else
let unroll0 = ghash_poly_unroll h0 prev data k (m - 1) 0 in
let unroll1 = ghash_poly_unroll h0 prev data k (m - 1) 1 in
calc (==) {
ghash_poly_unroll h0 prev data k m 0;
== {}
unroll1 +. d *~ p1;
== {
calc (==) {
unroll1;
== {lemma_ghash_poly_unroll_n h0 prev data k (m - 1) 0}
unroll0 *~ h0;
== {lemma_ghash_poly_unroll h0 prev data k (m - 1)}
ghash0 *~ h0;
}
}
ghash0 *~ h0 +. d *~ h0;
== {lemma_gf128_mul_rev_distribute_left ghash0 d h0}
(ghash0 +. d) *~ h0;
== {}
ghash_poly h0 prev data k (k + m + 1);
}
let rec lemma_ghash_unroll_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(requires degree h < 128 /\ degree prev < 128)
(ensures
mod_rev 128 (ghash_unroll h prev data k m n) gf128_modulus ==
ghash_poly_unroll h prev data k m n
)
=
let g = gf128_modulus in
let d = data (k + m) in
let p = g_power h (n + 1) in
let sp = shift_gf128_key_1 p in
lemma_gf128_degree ();
if m = 0 then
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 ((prev +. d) *. sp) g;
== {lemma_gf128_mul_rev_mod_rev (prev +. d) p}
(prev +. d) *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
else
let unroll1 = ghash_unroll h prev data k (m - 1) (n + 1) in
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
calc (==) {
mod_rev 128 (ghash_unroll h prev data k m n) g;
== {}
mod_rev 128 (unroll1 +. d *. sp) g;
== {lemma_add_mod_rev 128 unroll1 (d *. sp) g}
mod_rev 128 unroll1 g +. mod_rev 128 (d *. sp) g;
== {lemma_ghash_unroll_poly_unroll h prev data k (m - 1) (n + 1)}
ghash0 +. mod_rev 128 (d *. sp) g;
== {lemma_gf128_mul_rev_mod_rev d p}
ghash0 +. d *~ p;
== {}
ghash_poly_unroll h prev data k m n;
}
let lemma_ghash_poly_of_unroll h prev data k m =
lemma_ghash_poly_unroll h prev data k m;
lemma_ghash_unroll_poly_unroll h prev data k m 0;
()
let rec lemma_ghash_incremental_poly_rec (h_BE:quad32) (y_prev:quad32) (x:seq quad32) (data:int -> poly128) : Lemma
(requires
(forall (i:int).{:pattern data i \/ index x i} 0 <= i && i < length x ==>
data i == of_quad32 (index x i))
)
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x)
)
(decreases (length x)) | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_incremental_poly_rec (h_BE y_prev: quad32) (x: seq quad32) (data: (int -> poly128))
: Lemma
(requires
(forall (i: int). {:pattern data i\/index x i}
0 <= i && i < length x ==> data i == of_quad32 (index x i)))
(ensures
of_quad32 (ghash_incremental_def h_BE y_prev x) ==
ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) data 0 (length x))
(decreases (length x)) | [
"recursion"
] | Vale.AES.GHash_BE.lemma_ghash_incremental_poly_rec | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h_BE: Vale.Def.Types_s.quad32 ->
y_prev: Vale.Def.Types_s.quad32 ->
x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128)
-> FStar.Pervasives.Lemma
(requires
forall (i: Prims.int). {:pattern data i\/FStar.Seq.Base.index x i}
0 <= i && i < FStar.Seq.Base.length x ==>
data i == Vale.Math.Poly2.Bits_s.of_quad32 (FStar.Seq.Base.index x i))
(ensures
Vale.Math.Poly2.Bits_s.of_quad32 (Vale.AES.GHash_BE.ghash_incremental_def h_BE y_prev x) ==
Vale.AES.GHash_BE.ghash_poly (Vale.Math.Poly2.Bits_s.of_quad32 h_BE)
(Vale.Math.Poly2.Bits_s.of_quad32 y_prev)
data
0
(FStar.Seq.Base.length x))
(decreases FStar.Seq.Base.length x) | {
"end_col": 5,
"end_line": 234,
"start_col": 2,
"start_line": 212
} |
FStar.Pervasives.Lemma | val lemma_ghash_poly_unroll_n (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h) | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Words",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma
(ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
=
let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0 then
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
(prev +. d) *~ p1;
== {}
(prev +. d) *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
(prev +. d) *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate (prev +. d) p0 h}
((prev +. d) *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc (==) {
ghash_poly_unroll h prev data k m (n + 1);
== {}
ghash1 +. d *~ p1;
== {lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1)}
ghash0 *~ h +. d *~ p1;
== {}
ghash0 *~ h +. d *~ (h *~ p0);
== {lemma_gf128_mul_rev_commute p0 h}
ghash0 *~ h +. d *~ (p0 *~ h);
== {lemma_gf128_mul_rev_associate d p0 h}
ghash0 *~ h +. (d *~ p0) *~ h;
== {lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h}
(ghash0 +. d *~ p0) *~ h;
== {}
ghash_poly_unroll h prev data k m n *~ h;
} | val lemma_ghash_poly_unroll_n (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h)
let rec lemma_ghash_poly_unroll_n (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h) = | false | null | true | let d = data (k + m) in
let p0 = g_power h (n + 1) in
let p1 = g_power h (n + 2) in
if m = 0
then
calc ( == ) {
ghash_poly_unroll h prev data k m (n + 1);
( == ) { () }
(prev +. d) *~ p1;
( == ) { () }
(prev +. d) *~ (h *~ p0);
( == ) { lemma_gf128_mul_rev_commute p0 h }
(prev +. d) *~ (p0 *~ h);
( == ) { lemma_gf128_mul_rev_associate (prev +. d) p0 h }
((prev +. d) *~ p0) *~ h;
( == ) { () }
ghash_poly_unroll h prev data k m n *~ h;
}
else
let ghash0 = ghash_poly_unroll h prev data k (m - 1) (n + 1) in
let ghash1 = ghash_poly_unroll h prev data k (m - 1) (n + 2) in
calc ( == ) {
ghash_poly_unroll h prev data k m (n + 1);
( == ) { () }
ghash1 +. d *~ p1;
( == ) { lemma_ghash_poly_unroll_n h prev data k (m - 1) (n + 1) }
ghash0 *~ h +. d *~ p1;
( == ) { () }
ghash0 *~ h +. d *~ (h *~ p0);
( == ) { lemma_gf128_mul_rev_commute p0 h }
ghash0 *~ h +. d *~ (p0 *~ h);
( == ) { lemma_gf128_mul_rev_associate d p0 h }
ghash0 *~ h +. (d *~ p0) *~ h;
( == ) { lemma_gf128_mul_rev_distribute_left ghash0 (d *~ p0) h }
(ghash0 +. d *~ p0) *~ h;
( == ) { () }
ghash_poly_unroll h prev data k m n *~ h;
} | {
"checked_file": "Vale.AES.GHash_BE.fst.checked",
"dependencies": [
"Vale.Math.Poly2.Words.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.AES.OptPublic_BE.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GHash_BE.fst"
} | [
"lemma"
] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.AES.GHash_BE.poly128",
"Prims.nat",
"Prims.op_Equality",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Vale.AES.GHash_BE.ghash_poly_unroll",
"Prims.op_Addition",
"Vale.AES.GF128.op_Star_Tilde",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Vale.Math.Poly2.op_Plus_Dot",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Vale.AES.GF128.lemma_gf128_mul_rev_commute",
"Vale.AES.GF128.lemma_gf128_mul_rev_associate",
"Prims.bool",
"Vale.AES.GHash_BE.lemma_ghash_poly_unroll_n",
"Prims.op_Subtraction",
"Vale.AES.GF128.lemma_gf128_mul_rev_distribute_left",
"Vale.AES.GHash_BE.g_power",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | module Vale.AES.GHash_BE
open FStar.Mul
open Vale.Math.Poly2.Lemmas
open Vale.Math.Poly2.Words
friend Vale.AES.OptPublic_BE
#reset-options
let shift_gf128_key_1 (h:poly) : poly =
shift_key_1 128 gf128_modulus_low_terms h
let rec g_power (a:poly) (n:nat) : poly =
if n = 0 then zero else // arbitrary value for n = 0
if n = 1 then a else
a *~ g_power a (n - 1)
let lemma_g_power_1 a = ()
let lemma_g_power_n a n = ()
let gf128_power h n = shift_gf128_key_1 (g_power h n)
let lemma_gf128_power h n = ()
let rec ghash_poly_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly =
let d = data (k + m) in
let p = g_power h (n + 1) in
if m = 0 then (prev +. d) *~ p else
ghash_poly_unroll h prev data k (m - 1) (n + 1) +. d *~ p
let lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma
(hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
=
()
let rec lemma_ghash_unroll_back_forward_rec (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : Lemma
(requires m < n)
(ensures ghash_unroll h prev data k n 0 ==
ghash_unroll h prev data k (n - 1 - m) (m + 1) +. ghash_unroll_back h prev data k (n + 1) m)
=
lemma_add_all ();
if m > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (m - 1)
let lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma
(ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n)
=
lemma_add_all ();
if n > 0 then lemma_ghash_unroll_back_forward_rec h prev data k n (n - 1)
let lemma_gf128_mul_rev_mod_rev (a h:poly) : Lemma
(requires degree a < 128 /\ degree h < 128)
(ensures gf128_mul_rev a h == mod_rev 128 (a *. shift_gf128_key_1 h) gf128_modulus)
=
let h1 = shift_gf128_key_1 h in
let rev x = reverse x 127 in
let g = gf128_modulus in
lemma_gf128_degree ();
calc (==) {
// gf128_mul_rev a h
rev ((rev a *. rev h) %. g);
== {lemma_mod_mul_mod_right (rev a) (rev h) g}
rev ((rev a *. (rev h %. g)) %. g);
== {lemma_shift_key_1 128 gf128_modulus_low_terms h}
rev ((rev a *. (shift (rev h1) 1 %. g)) %. g);
== {lemma_mod_mul_mod_right (rev a) (shift (rev h1) 1) g}
rev ((rev a *. (shift (rev h1) 1)) %. g);
== {lemma_shift_is_mul (rev h1) 1}
rev ((rev a *. (rev h1 *. monomial 1)) %. g);
== {lemma_mul_all ()}
rev (((rev a *. rev h1) *. monomial 1) %. g);
== {lemma_shift_is_mul (rev a *. rev h1) 1}
rev (shift (rev a *. rev h1) 1 %. g);
== {lemma_mul_reverse_shift_1 a h1 127}
rev (reverse (a *. h1) 255 %. g);
}
let rec lemma_ghash_poly_unroll_n (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : Lemma | false | false | Vale.AES.GHash_BE.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_ghash_poly_unroll_n (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat)
: Lemma (ghash_poly_unroll h prev data k m (n + 1) == ghash_poly_unroll h prev data k m n *~ h) | [
"recursion"
] | Vale.AES.GHash_BE.lemma_ghash_poly_unroll_n | {
"file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: Vale.Math.Poly2_s.poly ->
prev: Vale.Math.Poly2_s.poly ->
data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) ->
k: Prims.int ->
m: Prims.nat ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Vale.AES.GHash_BE.ghash_poly_unroll h prev data k m (n + 1) ==
Vale.AES.GHash_BE.ghash_poly_unroll h prev data k m n *~ h) | {
"end_col": 5,
"end_line": 115,
"start_col": 3,
"start_line": 78
} |
FStar.Pervasives.Lemma | val init_next (#a: Type) (s: S.seq a) (f: (i: nat{i < S.length s} -> a)) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.init i f) /\ S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let init_next (#a: Type) (s: S.seq a) (f: (i:nat { i < S.length s }) -> a) (i: nat):
Lemma
(requires (
i < S.length s /\
S.equal (S.slice s 0 i) (S.init i f) /\
S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f)))
=
lemma_slice_ijk s 0 i (i + 1) | val init_next (#a: Type) (s: S.seq a) (f: (i: nat{i < S.length s} -> a)) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.init i f) /\ S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f)))
let init_next (#a: Type) (s: S.seq a) (f: (i: nat{i < S.length s} -> a)) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.init i f) /\ S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f))) = | false | null | true | lemma_slice_ijk s 0 i (i + 1) | {
"checked_file": "Hacl.Hash.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Hash.Lemmas.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Hacl.Hash.Lemmas.lemma_slice_ijk",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_and",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.init",
"Prims.eq2",
"FStar.Seq.Base.index",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Hash.Lemmas
module S = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
(** Two sequence lemmas required for pad, among others. *)
let lemma_slice (#a: Type) (s: S.seq a) (i: nat): Lemma
(requires (i <= S.length s))
(ensures (S.equal (S.append (S.slice s 0 i) (S.slice s i (S.length s))) s))
[ SMTPat (S.append (S.slice s 0 i) (S.slice s i (S.length s))) ]
=
()
let lemma_slice_ijk (#a: Type) (s: S.seq a) (i j k: nat): Lemma
(requires (i <= j /\ j <= k /\ k <= S.length s))
(ensures (S.equal (S.append (S.slice s i j) (S.slice s j k)) (S.slice s i k)))
[ SMTPat (S.append (S.slice s i j) (S.slice s j k)) ]
=
()
(** Two sequence lemmas required for the pre-computation of Spec.ws *)
// Note: a similar lemma exists in FStar.Seq.Base but yields a forall in the
// ensures clauses which doesn't work, really.
let init_index (#a: Type) (j: nat) (f: (i:nat { i < j }) -> a) (i: nat):
Lemma
(requires (
i < j))
(ensures (S.index (S.init j f) i == f i))
[ SMTPat (S.index (S.init j f) i) ]
=
()
let init_next (#a: Type) (s: S.seq a) (f: (i:nat { i < S.length s }) -> a) (i: nat):
Lemma
(requires (
i < S.length s /\
S.equal (S.slice s 0 i) (S.init i f) /\
S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f))) | false | false | Hacl.Hash.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val init_next (#a: Type) (s: S.seq a) (f: (i: nat{i < S.length s} -> a)) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.init i f) /\ S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f))) | [] | Hacl.Hash.Lemmas.init_next | {
"file_name": "code/hash/Hacl.Hash.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq a -> f: (i: Prims.nat{i < FStar.Seq.Base.length s} -> a) -> i: Prims.nat
-> FStar.Pervasives.Lemma
(requires
i < FStar.Seq.Base.length s /\
FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 i) (FStar.Seq.Base.init i f) /\
FStar.Seq.Base.index s i == f i)
(ensures
FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 (i + 1)) (FStar.Seq.Base.init (i + 1) f)) | {
"end_col": 31,
"end_line": 45,
"start_col": 2,
"start_line": 45
} |
FStar.Pervasives.Lemma | val create_next (#a: Type) (s: S.seq a) (v: a) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.create i v) /\ S.index s i == v))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.create (i + 1) v))) | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let create_next (#a: Type) (s: S.seq a) (v: a) (i: nat):
Lemma
(requires (
i < S.length s /\
S.equal (S.slice s 0 i) (S.create i v) /\
S.index s i == v))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.create (i + 1) v)))
=
lemma_slice_ijk s 0 i (i + 1) | val create_next (#a: Type) (s: S.seq a) (v: a) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.create i v) /\ S.index s i == v))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.create (i + 1) v)))
let create_next (#a: Type) (s: S.seq a) (v: a) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.create i v) /\ S.index s i == v))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.create (i + 1) v))) = | false | null | true | lemma_slice_ijk s 0 i (i + 1) | {
"checked_file": "Hacl.Hash.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Hash.Lemmas.fst"
} | [
"lemma"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Hacl.Hash.Lemmas.lemma_slice_ijk",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.create",
"Prims.eq2",
"FStar.Seq.Base.index",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Hash.Lemmas
module S = FStar.Seq
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
(** Two sequence lemmas required for pad, among others. *)
let lemma_slice (#a: Type) (s: S.seq a) (i: nat): Lemma
(requires (i <= S.length s))
(ensures (S.equal (S.append (S.slice s 0 i) (S.slice s i (S.length s))) s))
[ SMTPat (S.append (S.slice s 0 i) (S.slice s i (S.length s))) ]
=
()
let lemma_slice_ijk (#a: Type) (s: S.seq a) (i j k: nat): Lemma
(requires (i <= j /\ j <= k /\ k <= S.length s))
(ensures (S.equal (S.append (S.slice s i j) (S.slice s j k)) (S.slice s i k)))
[ SMTPat (S.append (S.slice s i j) (S.slice s j k)) ]
=
()
(** Two sequence lemmas required for the pre-computation of Spec.ws *)
// Note: a similar lemma exists in FStar.Seq.Base but yields a forall in the
// ensures clauses which doesn't work, really.
let init_index (#a: Type) (j: nat) (f: (i:nat { i < j }) -> a) (i: nat):
Lemma
(requires (
i < j))
(ensures (S.index (S.init j f) i == f i))
[ SMTPat (S.index (S.init j f) i) ]
=
()
let init_next (#a: Type) (s: S.seq a) (f: (i:nat { i < S.length s }) -> a) (i: nat):
Lemma
(requires (
i < S.length s /\
S.equal (S.slice s 0 i) (S.init i f) /\
S.index s i == f i))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.init (i + 1) f)))
=
lemma_slice_ijk s 0 i (i + 1)
(** One lemma required for the commutations of seq_uint*_of_be and append. *)
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
[ SMTPat (S.tail (S.cons hd tl)) ]
=
()
(** One lemma needed for our for loop for padding *)
let create_next (#a: Type) (s: S.seq a) (v: a) (i: nat):
Lemma
(requires (
i < S.length s /\
S.equal (S.slice s 0 i) (S.create i v) /\
S.index s i == v))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.create (i + 1) v))) | false | false | Hacl.Hash.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val create_next (#a: Type) (s: S.seq a) (v: a) (i: nat)
: Lemma
(requires (i < S.length s /\ S.equal (S.slice s 0 i) (S.create i v) /\ S.index s i == v))
(ensures (S.equal (S.slice s 0 (i + 1)) (S.create (i + 1) v))) | [] | Hacl.Hash.Lemmas.create_next | {
"file_name": "code/hash/Hacl.Hash.Lemmas.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: FStar.Seq.Base.seq a -> v: a -> i: Prims.nat
-> FStar.Pervasives.Lemma
(requires
i < FStar.Seq.Base.length s /\
FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 i) (FStar.Seq.Base.create i v) /\
FStar.Seq.Base.index s i == v)
(ensures
FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 (i + 1)) (FStar.Seq.Base.create (i + 1) v)) | {
"end_col": 31,
"end_line": 65,
"start_col": 2,
"start_line": 65
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "AE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.ModInvLimb",
"short_module": "BI"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_exp_st (t:limb_t) (len:BN.bn_len t) =
nBits:size_nat
-> n:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_mod_exp_post n a bBits b res) | let bn_mod_exp_st (t: limb_t) (len: BN.bn_len t) = | false | null | false |
nBits: size_nat ->
n: lbignum t len ->
a: lbignum t len ->
bBits: size_nat ->
b: lbignum t (blocks0 bBits (bits t))
-> Pure (lbignum t len)
(requires bn_mod_exp_pre n a bBits b /\ nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res -> bn_mod_exp_post n a bBits b res) | {
"checked_file": "Hacl.Spec.Bignum.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Exponentiation.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_pre",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Division",
"Prims.pow2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_post"
] | [] | module Hacl.Spec.Bignum.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mod_exp_pre
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
=
bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v b < pow2 bBits /\ bn_v a < bn_v n
let bn_mod_exp_post
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
(res:lbignum t len)
=
bn_mod_exp_pre n a bBits b /\
bn_v res == Lib.NatMod.pow_mod #(bn_v n) (bn_v a) (bn_v b)
val bn_check_mod_exp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
res:limb t{
let b =
bn_v n % 2 = 1 && 1 < bn_v n &&
bn_v b < pow2 bBits &&
bn_v a < bn_v n in
v res == (if b then v (ones t SEC) else v (zeros t SEC))}
let bn_mod_exp_precomp_st (t:limb_t) (len:BN.bn_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n /\
(1 + bn_v n * v mu) % pow2 (bits t) == 0)
(ensures fun res ->
bn_mod_exp_post n a bBits b res)
val bn_mod_exp_rl_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
val bn_mod_exp_mont_ladder_swap_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
val bn_mod_exp_fw_precomp:
#t:limb_t
-> len:BN.bn_len t
-> l:size_pos{l < bits t /\ pow2 l * len <= max_size_t} ->
bn_mod_exp_precomp_st t len
//no need to distinguish between vartime and consttime in the spec
val bn_mod_exp_vartime_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
val bn_mod_exp_consttime_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
let bn_mod_exp_precompr2_st (t:limb_t) (len:BN.bn_len t) =
n:lbignum t len
-> r2:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures fun res ->
bn_mod_exp_post n a bBits b res)
val bn_mod_exp_vartime_precompr2: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precompr2_st t len
val bn_mod_exp_consttime_precompr2: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precompr2_st t len | false | false | Hacl.Spec.Bignum.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_exp_st : t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Hacl.Spec.Bignum.bn_len t -> Type0 | [] | Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_st | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Hacl.Spec.Bignum.bn_len t -> Type0 | {
"end_col": 36,
"end_line": 114,
"start_col": 4,
"start_line": 104
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "AE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.ModInvLimb",
"short_module": "BI"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_exp_precompr2_st (t:limb_t) (len:BN.bn_len t) =
n:lbignum t len
-> r2:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures fun res ->
bn_mod_exp_post n a bBits b res) | let bn_mod_exp_precompr2_st (t: limb_t) (len: BN.bn_len t) = | false | null | false |
n: lbignum t len ->
r2: lbignum t len ->
a: lbignum t len ->
bBits: size_nat ->
b: lbignum t (blocks0 bBits (bits t))
-> Pure (lbignum t len)
(requires bn_mod_exp_pre n a bBits b /\ bn_v r2 == pow2 ((2 * bits t) * len) % bn_v n)
(ensures fun res -> bn_mod_exp_post n a bBits b res) | {
"checked_file": "Hacl.Spec.Bignum.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Exponentiation.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_pre",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_post"
] | [] | module Hacl.Spec.Bignum.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mod_exp_pre
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
=
bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v b < pow2 bBits /\ bn_v a < bn_v n
let bn_mod_exp_post
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
(res:lbignum t len)
=
bn_mod_exp_pre n a bBits b /\
bn_v res == Lib.NatMod.pow_mod #(bn_v n) (bn_v a) (bn_v b)
val bn_check_mod_exp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
res:limb t{
let b =
bn_v n % 2 = 1 && 1 < bn_v n &&
bn_v b < pow2 bBits &&
bn_v a < bn_v n in
v res == (if b then v (ones t SEC) else v (zeros t SEC))}
let bn_mod_exp_precomp_st (t:limb_t) (len:BN.bn_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n /\
(1 + bn_v n * v mu) % pow2 (bits t) == 0)
(ensures fun res ->
bn_mod_exp_post n a bBits b res)
val bn_mod_exp_rl_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
val bn_mod_exp_mont_ladder_swap_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
val bn_mod_exp_fw_precomp:
#t:limb_t
-> len:BN.bn_len t
-> l:size_pos{l < bits t /\ pow2 l * len <= max_size_t} ->
bn_mod_exp_precomp_st t len
//no need to distinguish between vartime and consttime in the spec
val bn_mod_exp_vartime_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len
val bn_mod_exp_consttime_precomp: #t:limb_t -> len:BN.bn_len t -> bn_mod_exp_precomp_st t len | false | false | Hacl.Spec.Bignum.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_exp_precompr2_st : t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Hacl.Spec.Bignum.bn_len t -> Type0 | [] | Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_precompr2_st | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Hacl.Spec.Bignum.bn_len t -> Type0 | {
"end_col": 36,
"end_line": 96,
"start_col": 4,
"start_line": 86
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontExponentiation",
"short_module": "AE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.ModInvLimb",
"short_module": "BI"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Exponentiation.Lemmas",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_exp_precomp_st (t:limb_t) (len:BN.bn_len t) =
n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n /\
(1 + bn_v n * v mu) % pow2 (bits t) == 0)
(ensures fun res ->
bn_mod_exp_post n a bBits b res) | let bn_mod_exp_precomp_st (t: limb_t) (len: BN.bn_len t) = | false | null | false |
n: lbignum t len ->
mu: limb t ->
r2: lbignum t len ->
a: lbignum t len ->
bBits: size_nat ->
b: lbignum t (blocks0 bBits (bits t))
-> Pure (lbignum t len)
(requires
bn_mod_exp_pre n a bBits b /\ bn_v r2 == pow2 ((2 * bits t) * len) % bn_v n /\
(1 + bn_v n * v mu) % pow2 (bits t) == 0)
(ensures fun res -> bn_mod_exp_post n a bBits b res) | {
"checked_file": "Hacl.Spec.Bignum.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Exponentiation.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_pre",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_post"
] | [] | module Hacl.Spec.Bignum.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mod_exp_pre
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
=
bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v b < pow2 bBits /\ bn_v a < bn_v n
let bn_mod_exp_post
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
(res:lbignum t len)
=
bn_mod_exp_pre n a bBits b /\
bn_v res == Lib.NatMod.pow_mod #(bn_v n) (bn_v a) (bn_v b)
val bn_check_mod_exp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> a:lbignum t len
-> bBits:size_nat
-> b:lbignum t (blocks0 bBits (bits t)) ->
res:limb t{
let b =
bn_v n % 2 = 1 && 1 < bn_v n &&
bn_v b < pow2 bBits &&
bn_v a < bn_v n in
v res == (if b then v (ones t SEC) else v (zeros t SEC))} | false | false | Hacl.Spec.Bignum.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_exp_precomp_st : t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Hacl.Spec.Bignum.bn_len t -> Type0 | [] | Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_precomp_st | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Spec.Bignum.Definitions.limb_t -> len: Hacl.Spec.Bignum.bn_len t -> Type0 | {
"end_col": 36,
"end_line": 67,
"start_col": 4,
"start_line": 55
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_exp_post
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
(res:lbignum t len)
=
bn_mod_exp_pre n a bBits b /\
bn_v res == Lib.NatMod.pow_mod #(bn_v n) (bn_v a) (bn_v b) | let bn_mod_exp_post
(#t: limb_t)
(#len: BN.bn_len t)
(n a: lbignum t len)
(bBits: size_nat)
(b: lbignum t (blocks0 bBits (bits t)))
(res: lbignum t len)
= | false | null | false | bn_mod_exp_pre n a bBits b /\ bn_v res == Lib.NatMod.pow_mod #(bn_v n) (bn_v a) (bn_v b) | {
"checked_file": "Hacl.Spec.Bignum.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Exponentiation.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_pre",
"Prims.eq2",
"Prims.nat",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.NatMod.pow_mod",
"Prims.logical"
] | [] | module Hacl.Spec.Bignum.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mod_exp_pre
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
=
bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v b < pow2 bBits /\ bn_v a < bn_v n
let bn_mod_exp_post
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
(res:lbignum t len) | false | false | Hacl.Spec.Bignum.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_exp_post : n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t)) ->
res: Hacl.Spec.Bignum.Definitions.lbignum t len
-> Prims.logical | [] | Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_post | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t)) ->
res: Hacl.Spec.Bignum.Definitions.lbignum t len
-> Prims.logical | {
"end_col": 60,
"end_line": 36,
"start_col": 2,
"start_line": 35
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_mod_exp_pre
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t)))
=
bn_v n % 2 = 1 /\ 1 < bn_v n /\
bn_v b < pow2 bBits /\ bn_v a < bn_v n | let bn_mod_exp_pre
(#t: limb_t)
(#len: BN.bn_len t)
(n a: lbignum t len)
(bBits: size_nat)
(b: lbignum t (blocks0 bBits (bits t)))
= | false | null | false | bn_v n % 2 = 1 /\ 1 < bn_v n /\ bn_v b < pow2 bBits /\ bn_v a < bn_v n | {
"checked_file": "Hacl.Spec.Bignum.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Exponentiation.fsti"
} | [
"total"
] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.blocks0",
"Lib.IntTypes.bits",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.logical"
] | [] | module Hacl.Spec.Bignum.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let bn_mod_exp_pre
(#t:limb_t)
(#len:BN.bn_len t)
(n:lbignum t len)
(a:lbignum t len)
(bBits:size_nat)
(b:lbignum t (blocks0 bBits (bits t))) | false | false | Hacl.Spec.Bignum.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_mod_exp_pre : n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t))
-> Prims.logical | [] | Hacl.Spec.Bignum.Exponentiation.bn_mod_exp_pre | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t len ->
bBits: Lib.IntTypes.size_nat ->
b:
Hacl.Spec.Bignum.Definitions.lbignum t
(Hacl.Spec.Bignum.Definitions.blocks0 bBits (Lib.IntTypes.bits t))
-> Prims.logical | {
"end_col": 41,
"end_line": 23,
"start_col": 3,
"start_line": 22
} |
|
Prims.GTot | val m (#sl: _) (#t: lattice_element sl) (#s: _) (x: secret_int t s) : GTot (int_t s) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x) | val m (#sl: _) (#t: lattice_element sl) (#s: _) (x: secret_int t s) : GTot (int_t s)
let m #sl (#t: lattice_element sl) #s (x: secret_int t s) : GTot (int_t s) = | false | null | false | u (reveal x) | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"sometrivial"
] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.secret_int",
"FStar.Integers.u",
"FStar.ConstantTime.Integers.reveal",
"FStar.Integers.int_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s) | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val m (#sl: _) (#t: lattice_element sl) (#s: _) (x: secret_int t s) : GTot (int_t s) | [] | FStar.ConstantTime.Integers.m | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.ConstantTime.Integers.secret_int t s -> Prims.GTot (FStar.Integers.int_t s) | {
"end_col": 16,
"end_line": 51,
"start_col": 4,
"start_line": 51
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128} | let sw = | false | null | false | s: signed_width{width_of_sw s <> Winfinite /\ width_of_sw s <> W128} | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.Integers.signed_width",
"Prims.l_and",
"Prims.b2t",
"Prims.op_disEquality",
"FStar.Integers.width",
"FStar.Integers.width_of_sw",
"FStar.Integers.Winfinite",
"FStar.Integers.W128"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time | false | true | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sw : Type0 | [] | FStar.ConstantTime.Integers.sw | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Type0 | {
"end_col": 31,
"end_line": 33,
"start_col": 9,
"start_line": 32
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t (q:qual) =
match q with
| Secret l s -> secret_int l s
| Public s -> int_t s | let t (q: qual) = | false | null | false | match q with
| Secret l s -> secret_int l s
| Public s -> int_t s | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.secret_int",
"FStar.Integers.signed_width",
"FStar.Integers.int_t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold
let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l
(** The type corresponding to a qualifier, either an integer or a secret integer *)
[@@mark_for_norm]
unfold | false | true | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t : q: FStar.ConstantTime.Integers.qual -> Type0 | [] | FStar.ConstantTime.Integers.t | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | q: FStar.ConstantTime.Integers.qual -> Type0 | {
"end_col": 23,
"end_line": 147,
"start_col": 2,
"start_line": 145
} |
|
Prims.Tot | val label_qual (q: qual{Secret? q}) : lattice_element (Secret?.sl q) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l | val label_qual (q: qual{Secret? q}) : lattice_element (Secret?.sl q)
let label_qual (q: qual{Secret? q}) : lattice_element (Secret?.sl q) = | false | null | false | match q with | Secret l _ -> l | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"Prims.b2t",
"FStar.ConstantTime.Integers.uu___is_Secret",
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.__proj__Secret__item__sl"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val label_qual (q: qual{Secret? q}) : lattice_element (Secret?.sl q) | [] | FStar.ConstantTime.Integers.label_qual | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | q: FStar.ConstantTime.Integers.qual{Secret? q} -> FStar.IFC.lattice_element (Secret?.sl q) | {
"end_col": 19,
"end_line": 139,
"start_col": 2,
"start_line": 138
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw | let sw_qual = | false | null | false | function
| Secret _ sw -> sw
| Public sw -> sw | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.Integers.signed_width"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm] | false | true | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sw_qual : _: FStar.ConstantTime.Integers.qual -> FStar.Integers.signed_width | [] | FStar.ConstantTime.Integers.sw_qual | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: FStar.ConstantTime.Integers.qual -> FStar.Integers.signed_width | {
"end_col": 19,
"end_line": 132,
"start_col": 14,
"start_line": 130
} |
|
Prims.Tot | val as_public (#q: qual{Public? q}) (x: t q) : int_t (sw_qual q) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_public (#q:qual{Public? q}) (x:t q)
: int_t (sw_qual q)
= x | val as_public (#q: qual{Public? q}) (x: t q) : int_t (sw_qual q)
let as_public (#q: qual{Public? q}) (x: t q) : int_t (sw_qual q) = | false | null | false | x | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"Prims.b2t",
"FStar.ConstantTime.Integers.uu___is_Public",
"FStar.ConstantTime.Integers.t",
"FStar.Integers.int_t",
"FStar.ConstantTime.Integers.sw_qual"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold
let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l
(** The type corresponding to a qualifier, either an integer or a secret integer *)
[@@mark_for_norm]
unfold
let t (q:qual) =
match q with
| Secret l s -> secret_int l s
| Public s -> int_t s
[@@mark_for_norm]
unfold
let i (#q:qual) (x:t q) : GTot (int_t (sw_qual q)) =
match q with
| Public s -> x
| Secret l s -> m (x <: secret_int l s)
[@@mark_for_norm]
unfold
let as_secret (#q:qual{Secret? q}) (x:t q)
: secret_int (label_qual q) (sw_qual q)
= x
[@@mark_for_norm]
unfold
let as_public (#q:qual{Public? q}) (x:t q) | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_public (#q: qual{Public? q}) (x: t q) : int_t (sw_qual q) | [] | FStar.ConstantTime.Integers.as_public | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.ConstantTime.Integers.t q -> FStar.Integers.int_t (FStar.ConstantTime.Integers.sw_qual q) | {
"end_col": 5,
"end_line": 166,
"start_col": 4,
"start_line": 166
} |
Prims.GTot | val i (#q: qual) (x: t q) : GTot (int_t (sw_qual q)) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let i (#q:qual) (x:t q) : GTot (int_t (sw_qual q)) =
match q with
| Public s -> x
| Secret l s -> m (x <: secret_int l s) | val i (#q: qual) (x: t q) : GTot (int_t (sw_qual q))
let i (#q: qual) (x: t q) : GTot (int_t (sw_qual q)) = | false | null | false | match q with
| Public s -> x
| Secret l s -> m (x <: secret_int l s) | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"sometrivial"
] | [
"FStar.ConstantTime.Integers.qual",
"FStar.ConstantTime.Integers.t",
"FStar.Integers.signed_width",
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.m",
"FStar.ConstantTime.Integers.secret_int",
"FStar.Integers.int_t",
"FStar.ConstantTime.Integers.sw_qual"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold
let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l
(** The type corresponding to a qualifier, either an integer or a secret integer *)
[@@mark_for_norm]
unfold
let t (q:qual) =
match q with
| Secret l s -> secret_int l s
| Public s -> int_t s
[@@mark_for_norm]
unfold | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val i (#q: qual) (x: t q) : GTot (int_t (sw_qual q)) | [] | FStar.ConstantTime.Integers.i | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.ConstantTime.Integers.t q
-> Prims.GTot (FStar.Integers.int_t (FStar.ConstantTime.Integers.sw_qual q)) | {
"end_col": 41,
"end_line": 154,
"start_col": 2,
"start_line": 152
} |
Prims.Tot | val op_Plus (#q: qual) (x: t q) (y: t q {ok ( + ) (i x) (i y)}) : Tot (t q) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( + ) (#q:qual) (x:t q) (y:t q{ok (+) (i x) (i y)})
: Tot (t q)
= match q with
| Public s -> as_public x + as_public y
| Secret l s -> as_secret x `addition` as_secret y | val op_Plus (#q: qual) (x: t q) (y: t q {ok ( + ) (i x) (i y)}) : Tot (t q)
let op_Plus (#q: qual) (x: t q) (y: t q {ok ( + ) (i x) (i y)}) : Tot (t q) = | false | null | false | match q with
| Public s -> as_public x + as_public y
| Secret l s -> (as_secret x) `addition` (as_secret y) | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"FStar.ConstantTime.Integers.t",
"FStar.Integers.ok",
"FStar.ConstantTime.Integers.sw_qual",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.ConstantTime.Integers.i",
"FStar.Integers.signed_width",
"FStar.ConstantTime.Integers.as_public",
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.addition",
"FStar.ConstantTime.Integers.__proj__Secret__item__sl",
"FStar.ConstantTime.Integers.label_qual",
"FStar.ConstantTime.Integers.as_secret"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold
let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l
(** The type corresponding to a qualifier, either an integer or a secret integer *)
[@@mark_for_norm]
unfold
let t (q:qual) =
match q with
| Secret l s -> secret_int l s
| Public s -> int_t s
[@@mark_for_norm]
unfold
let i (#q:qual) (x:t q) : GTot (int_t (sw_qual q)) =
match q with
| Public s -> x
| Secret l s -> m (x <: secret_int l s)
[@@mark_for_norm]
unfold
let as_secret (#q:qual{Secret? q}) (x:t q)
: secret_int (label_qual q) (sw_qual q)
= x
[@@mark_for_norm]
unfold
let as_public (#q:qual{Public? q}) (x:t q)
: int_t (sw_qual q)
= x
(** Lifting addition to work over both secret and public integers *)
[@@mark_for_norm]
unfold
noextract
inline_for_extraction
let ( + ) (#q:qual) (x:t q) (y:t q{ok (+) (i x) (i y)}) | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Plus (#q: qual) (x: t q) (y: t q {ok ( + ) (i x) (i y)}) : Tot (t q) | [] | FStar.ConstantTime.Integers.op_Plus | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
x: FStar.ConstantTime.Integers.t q ->
y:
FStar.ConstantTime.Integers.t q
{ FStar.Integers.ok FStar.Integers.op_Plus
(FStar.ConstantTime.Integers.i x)
(FStar.ConstantTime.Integers.i y) }
-> FStar.ConstantTime.Integers.t q | {
"end_col": 56,
"end_line": 177,
"start_col": 6,
"start_line": 175
} |
Prims.Tot | val as_secret (#q: qual{Secret? q}) (x: t q) : secret_int (label_qual q) (sw_qual q) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let as_secret (#q:qual{Secret? q}) (x:t q)
: secret_int (label_qual q) (sw_qual q)
= x | val as_secret (#q: qual{Secret? q}) (x: t q) : secret_int (label_qual q) (sw_qual q)
let as_secret (#q: qual{Secret? q}) (x: t q) : secret_int (label_qual q) (sw_qual q) = | false | null | false | x | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"Prims.b2t",
"FStar.ConstantTime.Integers.uu___is_Secret",
"FStar.ConstantTime.Integers.t",
"FStar.ConstantTime.Integers.secret_int",
"FStar.ConstantTime.Integers.__proj__Secret__item__sl",
"FStar.ConstantTime.Integers.label_qual",
"FStar.ConstantTime.Integers.sw_qual"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold
let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l
(** The type corresponding to a qualifier, either an integer or a secret integer *)
[@@mark_for_norm]
unfold
let t (q:qual) =
match q with
| Secret l s -> secret_int l s
| Public s -> int_t s
[@@mark_for_norm]
unfold
let i (#q:qual) (x:t q) : GTot (int_t (sw_qual q)) =
match q with
| Public s -> x
| Secret l s -> m (x <: secret_int l s)
[@@mark_for_norm]
unfold
let as_secret (#q:qual{Secret? q}) (x:t q) | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val as_secret (#q: qual{Secret? q}) (x: t q) : secret_int (label_qual q) (sw_qual q) | [] | FStar.ConstantTime.Integers.as_secret | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.ConstantTime.Integers.t q
-> FStar.ConstantTime.Integers.secret_int (FStar.ConstantTime.Integers.label_qual q)
(FStar.ConstantTime.Integers.sw_qual q) | {
"end_col": 5,
"end_line": 160,
"start_col": 4,
"start_line": 160
} |
Prims.Tot | val op_Plus_Percent
(#q: qual{norm (Unsigned? (sw_qual q) /\ width_of_sw (sw_qual q) <> W128)})
(x y: t q)
: Tot (t q) | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let ( +% ) (#q:qual{norm (Unsigned? (sw_qual q) /\ width_of_sw (sw_qual q) <> W128)})
(x:t q)
(y:t q)
: Tot (t q)
= match q with
| Public s -> as_public x +% as_public y
| Secret l s -> as_secret x `addition_mod` as_secret y | val op_Plus_Percent
(#q: qual{norm (Unsigned? (sw_qual q) /\ width_of_sw (sw_qual q) <> W128)})
(x y: t q)
: Tot (t q)
let op_Plus_Percent
(#q: qual{norm (Unsigned? (sw_qual q) /\ width_of_sw (sw_qual q) <> W128)})
(x y: t q)
: Tot (t q) = | false | null | false | match q with
| Public s -> as_public x +% as_public y
| Secret l s -> (as_secret x) `addition_mod` (as_secret y) | {
"checked_file": "FStar.ConstantTime.Integers.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.ConstantTime.Integers.fsti"
} | [
"total"
] | [
"FStar.ConstantTime.Integers.qual",
"FStar.Integers.norm",
"Prims.l_and",
"Prims.b2t",
"FStar.Integers.uu___is_Unsigned",
"FStar.ConstantTime.Integers.sw_qual",
"Prims.op_disEquality",
"FStar.Integers.width",
"FStar.Integers.width_of_sw",
"FStar.Integers.W128",
"FStar.ConstantTime.Integers.t",
"FStar.Integers.signed_width",
"FStar.Integers.op_Plus_Percent",
"FStar.ConstantTime.Integers.as_public",
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.addition_mod",
"FStar.ConstantTime.Integers.__proj__Secret__item__sl",
"FStar.ConstantTime.Integers.label_qual",
"FStar.ConstantTime.Integers.as_secret"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
/// This module provides a refinement of FStar.IFC providing an
/// interface restricted only to constant-time operations on integers.
///
/// In contrast, FStar.IFC provides a general monadic information-flow
/// control framework, which need not be restricted to constant-time
/// operations.
open FStar.IFC
open FStar.Integers
(** `sw`: signedness and width of machine integers excluding
FStar.[U]Int128, which does not provide constant-time
operations. *)
let sw = s:signed_width{width_of_sw s <> Winfinite
/\ width_of_sw s <> W128}
(** A `secret_int l s` is a machine-integer at secrecy level `l` and
signedness/width `s`. *)
val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0
(** A `secret_int l s` can be seen as an int in spec *)
val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
(** A `secret_int l s` can be also be seen as an machine integer in spec *)
let m #sl (#t:lattice_element sl) #s (x:secret_int t s)
: GTot (int_t s)
= u (reveal x)
(** `hide` is the inverse of `reveal`, proving that `secret_int` is injective *)
val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s)
val reveal_hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: Lemma (reveal (hide #sl #l #s x) == x)
val hide_reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: Lemma (hide (reveal x) == x)
[SMTPat (reveal x)]
(** `promote x l` allows increasing the confidentiality classification of `x`
This can easily be programmed using the FStar.IFC interface *)
val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
/// The remainder of this module provides liftings of specific
/// integers operations to work on secret integers, i.e., only those
/// that respect the constant time guarantees and do not break
/// confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
(** Bounds-respecting addition *)
noextract
inline_for_extraction
val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
(** Addition modulo *)
noextract
inline_for_extraction
val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
/// If we like this style, I will proceed to implement a lifting of
/// the rest of the constant-time integers over secret integers
/// Now, a multiplexing layer to overload operators over int_t and secret_int
(** A type of qualifiers, distinguishing secret and public integers *)
noeq
type qual =
| Secret: #sl:sl
-> l:lattice_element sl
-> sw:sw
-> qual
| Public: sw:signed_width
-> qual
(** The signedness and width of a qualifier *)
[@@mark_for_norm]
unfold
let sw_qual = function
| Secret _ sw -> sw
| Public sw -> sw
(** The lattice element of a secret qualifier *)
[@@mark_for_norm]
unfold
let label_qual (q:qual{Secret? q}) : lattice_element (Secret?.sl q) =
match q with
| Secret l _ -> l
(** The type corresponding to a qualifier, either an integer or a secret integer *)
[@@mark_for_norm]
unfold
let t (q:qual) =
match q with
| Secret l s -> secret_int l s
| Public s -> int_t s
[@@mark_for_norm]
unfold
let i (#q:qual) (x:t q) : GTot (int_t (sw_qual q)) =
match q with
| Public s -> x
| Secret l s -> m (x <: secret_int l s)
[@@mark_for_norm]
unfold
let as_secret (#q:qual{Secret? q}) (x:t q)
: secret_int (label_qual q) (sw_qual q)
= x
[@@mark_for_norm]
unfold
let as_public (#q:qual{Public? q}) (x:t q)
: int_t (sw_qual q)
= x
(** Lifting addition to work over both secret and public integers *)
[@@mark_for_norm]
unfold
noextract
inline_for_extraction
let ( + ) (#q:qual) (x:t q) (y:t q{ok (+) (i x) (i y)})
: Tot (t q)
= match q with
| Public s -> as_public x + as_public y
| Secret l s -> as_secret x `addition` as_secret y
(** Lifting addition modulo to work over both secret and public integers *)
[@@mark_for_norm]
unfold
noextract
inline_for_extraction
let ( +% ) (#q:qual{norm (Unsigned? (sw_qual q) /\ width_of_sw (sw_qual q) <> W128)})
(x:t q)
(y:t q) | false | false | FStar.ConstantTime.Integers.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_Plus_Percent
(#q: qual{norm (Unsigned? (sw_qual q) /\ width_of_sw (sw_qual q) <> W128)})
(x y: t q)
: Tot (t q) | [] | FStar.ConstantTime.Integers.op_Plus_Percent | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.ConstantTime.Integers.t q -> y: FStar.ConstantTime.Integers.t q
-> FStar.ConstantTime.Integers.t q | {
"end_col": 60,
"end_line": 190,
"start_col": 6,
"start_line": 188
} |
Steel.ST.Effect.ST | val compare
(#a: eqtype)
(#p0 #p1: perm)
(a0 a1: A.array a)
(#s0 #s1: G.erased (Seq.seq a))
(n: US.t{US.v n == A.length a0 /\ A.length a0 == A.length a1})
: ST bool
((A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(fun _ -> (A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(requires True)
(ensures fun b -> b <==> s0 == s1) | [
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.ST.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "Steel.ST.Array",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Array",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let compare (#a:eqtype) (#p0 #p1:perm)
(a0 a1:A.array a)
(#s0 #s1:G.erased (Seq.seq a))
(n:US.t{US.v n == A.length a0 /\ A.length a0 == A.length a1})
: ST bool
(A.pts_to a0 p0 s0
`star`
A.pts_to a1 p1 s1)
(fun _ ->
A.pts_to a0 p0 s0
`star`
A.pts_to a1 p1 s1)
(requires True)
(ensures fun b -> b <==> s0 == s1)
= let b = for_all2 n a0 a1 (fun x y -> x = y) in
A.pts_to_length a0 s0;
A.pts_to_length a1 s1;
assert (b <==> Seq.equal s0 s1);
return b | val compare
(#a: eqtype)
(#p0 #p1: perm)
(a0 a1: A.array a)
(#s0 #s1: G.erased (Seq.seq a))
(n: US.t{US.v n == A.length a0 /\ A.length a0 == A.length a1})
: ST bool
((A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(fun _ -> (A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(requires True)
(ensures fun b -> b <==> s0 == s1)
let compare
(#a: eqtype)
(#p0 #p1: perm)
(a0 a1: A.array a)
(#s0 #s1: G.erased (Seq.seq a))
(n: US.t{US.v n == A.length a0 /\ A.length a0 == A.length a1})
: ST bool
((A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(fun _ -> (A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(requires True)
(ensures fun b -> b <==> s0 == s1) = | true | null | false | let b = for_all2 n a0 a1 (fun x y -> x = y) in
A.pts_to_length a0 s0;
A.pts_to_length a1 s1;
assert (b <==> Seq.equal s0 s1);
return b | {
"checked_file": "Steel.ST.Array.Util.fsti.checked",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Effect.fsti.checked",
"Steel.ST.Array.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.Array.Util.fsti"
} | [] | [
"Prims.eqtype",
"Steel.FractionalPermission.perm",
"Steel.ST.Array.array",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"FStar.SizeT.t",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"FStar.SizeT.v",
"Steel.ST.Array.length",
"Steel.ST.Util.return",
"Prims.bool",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Steel.Effect.Common.VStar",
"Steel.ST.Array.pts_to",
"FStar.Ghost.reveal",
"Steel.Effect.Common.vprop",
"Prims.unit",
"Prims._assert",
"Prims.l_iff",
"Prims.b2t",
"FStar.Seq.Base.equal",
"Steel.ST.Array.pts_to_length",
"Steel.ST.Array.Util.for_all2",
"Prims.op_Equality",
"Steel.Effect.Common.star",
"Prims.l_True"
] | [] | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.Array.Util
module G = FStar.Ghost
module US = FStar.SizeT
module A = Steel.ST.Array
open Steel.FractionalPermission
open Steel.ST.Effect
open Steel.ST.Util
/// Some utilities for steel arrays
/// Create an array whose elements are specified by the input function
inline_for_extraction
val array_literal
(#a:Type0)
(n:US.t)
(f:(i:US.t{US.v i < US.v n} -> a))
: ST (A.array a)
emp
(fun arr ->
A.pts_to arr full_perm (Seq.init (US.v n) (fun i -> f (US.uint_to_t i))))
(requires US.v n > 0)
(ensures fun arr -> A.length arr == US.v n)
/// Check if all the elements of an array satisfy a predicate
inline_for_extraction
val for_all
(#a:Type0)
(#perm:perm)
(#s:G.erased (Seq.seq a))
(n:US.t)
(arr:A.array a)
(p:a -> bool)
: ST bool
(A.pts_to arr perm s)
(fun _ -> A.pts_to arr perm s)
(requires A.length arr == US.v n)
(ensures fun b -> b <==> (forall (i:nat). i < Seq.length s ==>
p (Seq.index s i)))
/// for_all2, for predicates over elements of two arrays
inline_for_extraction
val for_all2
(#a #b:Type0)
(#p0 #p1:perm)
(#s0:G.erased (Seq.seq a))
(#s1:G.erased (Seq.seq b))
(n:US.t)
(a0:A.array a)
(a1:A.array b)
(p:a -> b -> bool)
: ST bool
(A.pts_to a0 p0 s0
`star`
A.pts_to a1 p1 s1)
(fun _ ->
A.pts_to a0 p0 s0
`star`
A.pts_to a1 p1 s1)
(requires
A.length a0 == US.v n /\
A.length a0 == A.length a1)
(ensures fun b -> b <==> (forall (i:nat). (i < Seq.length s0 /\ i < Seq.length s1) ==>
p (Seq.index s0 i) (Seq.index s1 i)))
/// An array compare function that uses for_all2
/// to loop over the two arrays and compre their elements
let compare (#a:eqtype) (#p0 #p1:perm)
(a0 a1:A.array a)
(#s0 #s1:G.erased (Seq.seq a))
(n:US.t{US.v n == A.length a0 /\ A.length a0 == A.length a1})
: ST bool
(A.pts_to a0 p0 s0
`star`
A.pts_to a1 p1 s1)
(fun _ ->
A.pts_to a0 p0 s0
`star`
A.pts_to a1 p1 s1)
(requires True) | false | false | Steel.ST.Array.Util.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val compare
(#a: eqtype)
(#p0 #p1: perm)
(a0 a1: A.array a)
(#s0 #s1: G.erased (Seq.seq a))
(n: US.t{US.v n == A.length a0 /\ A.length a0 == A.length a1})
: ST bool
((A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(fun _ -> (A.pts_to a0 p0 s0) `star` (A.pts_to a1 p1 s1))
(requires True)
(ensures fun b -> b <==> s0 == s1) | [] | Steel.ST.Array.Util.compare | {
"file_name": "lib/steel/Steel.ST.Array.Util.fsti",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
a0: Steel.ST.Array.array a ->
a1: Steel.ST.Array.array a ->
n:
FStar.SizeT.t
{ FStar.SizeT.v n == Steel.ST.Array.length a0 /\
Steel.ST.Array.length a0 == Steel.ST.Array.length a1 }
-> Steel.ST.Effect.ST Prims.bool | {
"end_col": 12,
"end_line": 113,
"start_col": 3,
"start_line": 109
} |
Prims.Tot | val atom:eqtype | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let atom : eqtype = int | val atom:eqtype
let atom:eqtype = | false | null | false | int | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"Prims.int"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val atom:eqtype | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.atom | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Prims.eqtype | {
"end_col": 23,
"end_line": 41,
"start_col": 20,
"start_line": 41
} |
Prims.Tot | val sort:permute | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<)) | val sort:permute
let sort:permute = | false | null | false | List.Tot.Base.sortWith #int (compare_of_bool ( < )) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.List.Tot.Base.sortWith",
"Prims.int",
"FStar.List.Tot.Base.compare_of_bool",
"Prims.op_LessThan"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sort:permute | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.sort | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Tactics.CanonCommMonoidSimple.Equiv.permute | {
"end_col": 70,
"end_line": 224,
"start_col": 21,
"start_line": 224
} |
FStar.Tactics.Effect.Tac | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let where = where_aux 0 | let where = | true | null | false | where_aux 0 | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.where_aux"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val where : x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.where | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat) | {
"end_col": 23,
"end_line": 275,
"start_col": 12,
"start_line": 275
} |
|
Prims.Tot | val update (#a: Type) (x: atom) (xa: a) (am: amap a) : amap a | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am | val update (#a: Type) (x: atom) (xa: a) (am: amap a) : amap a
let update (#a: Type) (x: atom) (xa: a) (am: amap a) : amap a = | false | null | false | (x, xa) :: fst am, snd am | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Prims.Cons",
"FStar.Pervasives.Native.fst",
"FStar.Pervasives.Native.snd"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val update (#a: Type) (x: atom) (xa: a) (am: amap a) : amap a | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.update | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
x: FStar.Tactics.CanonCommMonoidSimple.Equiv.atom ->
xa: a ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a
-> FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a | {
"end_col": 25,
"end_line": 68,
"start_col": 2,
"start_line": 68
} |
FStar.Tactics.Effect.Tac | val repeat_cong_right_identity (eq m: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec repeat_cong_right_identity (eq: term) (m: term) : Tac unit =
or_else (fun _ -> apply_lemma (`right_identity))
(fun _ -> apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m
) | val repeat_cong_right_identity (eq m: term) : Tac unit
let rec repeat_cong_right_identity (eq m: term) : Tac unit = | true | null | false | or_else (fun _ -> apply_lemma (`right_identity))
(fun _ ->
apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.or_else",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.repeat_cong_right_identity",
"FStar.Tactics.V2.Logic.split"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val repeat_cong_right_identity (eq m: term) : Tac unit | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.repeat_cong_right_identity | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | eq: FStar.Tactics.NamedView.term -> m: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 21,
"end_line": 314,
"start_col": 2,
"start_line": 309
} |
FStar.Tactics.Effect.Tac | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let term_eq = FStar.Tactics.term_eq_old | let term_eq = | true | null | false | FStar.Tactics.term_eq_old | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.V1.Builtins.term_eq_old"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2 | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val term_eq : _: FStar.Reflection.Types.term -> _: FStar.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.bool | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.term_eq | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | _: FStar.Reflection.Types.term -> _: FStar.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.bool | {
"end_col": 39,
"end_line": 24,
"start_col": 14,
"start_line": 24
} |
|
FStar.Tactics.Effect.Tac | val reification (eq m: term) (ts: list term) (am: amap term) (t: term)
: Tac (exp * list term * amap term) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t | val reification (eq m: term) (ts: list term) (am: amap term) (t: term)
: Tac (exp * list term * amap term)
let reification (eq m: term) (ts: list term) (am: amap term) (t: term)
: Tac (exp * list term * amap term) = | true | null | false | let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.reification_aux",
"FStar.Pervasives.Native.tuple3",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Tactics.V2.Derived.norm_term",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"Prims.Nil",
"FStar.Pervasives.delta"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val reification (eq m: term) (ts: list term) (am: amap term) (t: term)
: Tac (exp * list term * amap term) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.reification | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Tactics.NamedView.term ->
m: FStar.Tactics.NamedView.term ->
ts: Prims.list FStar.Tactics.NamedView.term ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term ->
t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac
((FStar.Tactics.CanonCommMonoidSimple.Equiv.exp * Prims.list FStar.Tactics.NamedView.term) *
FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term) | {
"end_col": 35,
"end_line": 306,
"start_col": 39,
"start_line": 302
} |
Prims.Tot | val sort_correct:permute_correct sort | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a) | val sort_correct:permute_correct sort
let sort_correct:permute_correct sort = | false | null | false | (fun #a -> sort_correct_aux #a) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort_correct_aux",
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sort_correct:permute_correct sort | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.sort_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | FStar.Tactics.CanonCommMonoidSimple.Equiv.permute_correct FStar.Tactics.CanonCommMonoidSimple.Equiv.sort
| {
"end_col": 73,
"end_line": 236,
"start_col": 42,
"start_line": 236
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let permute = list atom -> list atom | let permute = | false | null | false | list atom -> list atom | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val permute : Type0 | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.permute | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | Type0 | {
"end_col": 36,
"end_line": 134,
"start_col": 14,
"start_line": 134
} |
|
Prims.Tot | val select (#a: Type) (x: atom) (am: amap a) : Tot a | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am | val select (#a: Type) (x: atom) (am: amap a) : Tot a
let select (#a: Type) (x: atom) (am: amap a) : Tot a = | false | null | false | match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.List.Tot.Base.assoc",
"FStar.Pervasives.Native.fst",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.snd"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val select (#a: Type) (x: atom) (am: amap a) : Tot a | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.select | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
x: FStar.Tactics.CanonCommMonoidSimple.Equiv.atom ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a
-> a | {
"end_col": 15,
"end_line": 66,
"start_col": 2,
"start_line": 64
} |
Prims.Tot | val const (#a: Type) (xa: a) : amap a | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let const (#a:Type) (xa:a) : amap a = ([], xa) | val const (#a: Type) (xa: a) : amap a
let const (#a: Type) (xa: a) : amap a = | false | null | false | ([], xa) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.Mktuple2",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"Prims.Nil",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val const (#a: Type) (xa: a) : amap a | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.const | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | xa: a -> FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a | {
"end_col": 46,
"end_line": 62,
"start_col": 38,
"start_line": 62
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) | let permute_correct (p: permute) = | false | null | false | #a: Type -> eq: equiv a -> m: cm a eq -> am: amap a -> xs: list atom
-> Lemma (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (p xs))) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.permute",
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val permute_correct : p: FStar.Tactics.CanonCommMonoidSimple.Equiv.permute -> Type | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.permute_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | p: FStar.Tactics.CanonCommMonoidSimple.Equiv.permute -> Type | {
"end_col": 67,
"end_line": 139,
"start_col": 2,
"start_line": 138
} |
|
FStar.Pervasives.Lemma | val sort_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom)
: Lemma (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (sort xs))) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs | val sort_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom)
: Lemma (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (sort xs)))
let sort_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom)
: Lemma (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (sort xs))) = | false | null | true | permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.permute_via_swaps_correct",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort_via_swaps",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_Exists",
"FStar.Tactics.CanonCommSwaps.swaps_for",
"Prims.eq2",
"FStar.Tactics.CanonCommSwaps.apply_swaps",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sort_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom)
: Lemma (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (sort xs))) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.sort_correct_aux | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am xs)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.sort xs))) | {
"end_col": 76,
"end_line": 234,
"start_col": 2,
"start_line": 234
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let canon (e:exp) = sort (flatten e) | let canon (e: exp) = | false | null | false | sort (flatten e) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val canon : e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.canon | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom | {
"end_col": 36,
"end_line": 240,
"start_col": 20,
"start_line": 240
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss) | let permute_via_swaps (p: permute) = | false | null | false | #a: Type -> am: amap a -> xs: list atom
-> Lemma (exists (ss: swaps_for xs). p xs == apply_swaps xs ss) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.permute",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_Exists",
"FStar.Tactics.CanonCommSwaps.swaps_for",
"Prims.eq2",
"FStar.Tactics.CanonCommSwaps.apply_swaps",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss')) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val permute_via_swaps : p: FStar.Tactics.CanonCommMonoidSimple.Equiv.permute -> Type | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.permute_via_swaps | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | p: FStar.Tactics.CanonCommMonoidSimple.Equiv.permute -> Type | {
"end_col": 63,
"end_line": 204,
"start_col": 2,
"start_line": 203
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let amap (a:Type) = list (atom * a) * a | let amap (a: Type) = | false | null | false | list (atom * a) * a | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Pervasives.Native.tuple2",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val amap : a: Type -> Type | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.amap | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Type -> Type | {
"end_col": 39,
"end_line": 61,
"start_col": 20,
"start_line": 61
} |
|
Prims.Tot | val convert_am (am: amap term) : term | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) ) | val convert_am (am: amap term) : term
let convert_am (am: amap term) : term = | false | null | false | let map, def = am in
`(((`#(convert_map map)), (`#def))) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Reflection.Types.term",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.convert_map"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
let rec repeat_cong_right_identity (eq: term) (m: term) : Tac unit =
or_else (fun _ -> apply_lemma (`right_identity))
(fun _ -> apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m
)
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
(* `am` is an amap (basically a list) of terms, each representing a value
of type `a` (whichever we are canonicalizing). This functions converts | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val convert_am (am: amap term) : term | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.convert_am | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term
-> FStar.Tactics.NamedView.term | {
"end_col": 35,
"end_line": 330,
"start_col": 40,
"start_line": 327
} |
FStar.Tactics.Effect.Tac | val canon_lhs_rhs (eq m lhs rhs: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let canon_lhs_rhs (eq: term) (m: term) (lhs rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta](`CM?.unit (`#m)) in
let am = const m_unit in (* empty map *)
let (r1, ts, am) = reification eq m [] am lhs in
let (r2, _, am) = reification eq m ts am rhs in
//dump ("am = " ^ term_to_string (quote am));
//dump ("r1 = " ^ term_to_string (norm_term [delta;primops] (quote (mdenote eq m am r1))));
//dump ("r2 = " ^ term_to_string (norm_term [delta;primops] (quote (mdenote eq m am r2))));
//dump ("before = " ^ term_to_string (norm_term [hnf;delta;primops]
// (quote (mdenote eq m am r1 `EQ?.eq eq` mdenote eq m am r2))));
//dump ("current goal -- " ^ term_to_string (cur_goal ()));
let am = convert_am am in
let r1 = quote_exp r1 in
let r2 = quote_exp r2 in
change_sq (`(mdenote (`#eq) (`#m) (`#am) (`#r1)
`EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2)));
(* dump ("expected after = " ^ term_to_string (norm_term [delta;primops] *)
(* (quote (xsdenote eq m am (canon r1) `EQ?.eq eq` *)
(* xsdenote eq m am (canon r2))))); *)
apply (`monoid_reflect);
//dump ("after apply monoid_reflect");
norm [iota; zeta; delta_only [`%canon; `%xsdenote; `%flatten; `%sort;
`%select; `%assoc; `%fst; `%__proj__Mktuple2__item___1;
`%(@); `%append; `%List.Tot.sortWith;
`%List.Tot.partition; `%bool_of_compare;
`%compare_of_bool;
]; primops];
//dump "before refl";
or_else (fun _ -> apply_lemma (`(EQ?.reflexivity (`#eq))))
(fun _ -> repeat_cong_right_identity eq m) | val canon_lhs_rhs (eq m lhs rhs: term) : Tac unit
let canon_lhs_rhs (eq m lhs rhs: term) : Tac unit = | true | null | false | let m_unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let am = const m_unit in
let r1, ts, am = reification eq m [] am lhs in
let r2, _, am = reification eq m ts am rhs in
let am = convert_am am in
let r1 = quote_exp r1 in
let r2 = quote_exp r2 in
change_sq (`(EQ?.eq (`#eq) (mdenote (`#eq) (`#m) (`#am) (`#r1)) (mdenote (`#eq) (`#m) (`#am) (`#r2))
));
apply (`monoid_reflect);
norm [
iota;
zeta;
delta_only [
`%canon; `%xsdenote; `%flatten; `%sort; `%select; `%assoc; `%fst;
`%__proj__Mktuple2__item___1; `%( @ ); `%append; `%List.Tot.sortWith; `%List.Tot.partition;
`%bool_of_compare; `%compare_of_bool
];
primops
];
or_else (fun _ -> apply_lemma (`(EQ?.reflexivity (`#eq))))
(fun _ -> repeat_cong_right_identity eq m) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.V2.Derived.or_else",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.repeat_cong_right_identity",
"FStar.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.delta_only",
"Prims.string",
"Prims.Nil",
"FStar.Pervasives.primops",
"FStar.Tactics.V2.Derived.apply",
"FStar.Tactics.V2.Derived.change_sq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.quote_exp",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.convert_am",
"FStar.Pervasives.Native.tuple3",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.reification",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.const",
"FStar.Tactics.V2.Derived.norm_term",
"FStar.Pervasives.delta"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
let rec repeat_cong_right_identity (eq: term) (m: term) : Tac unit =
or_else (fun _ -> apply_lemma (`right_identity))
(fun _ -> apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m
)
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
(* `am` is an amap (basically a list) of terms, each representing a value
of type `a` (whichever we are canonicalizing). This functions converts
`am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt)) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val canon_lhs_rhs (eq m lhs rhs: term) : Tac unit | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.canon_lhs_rhs | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Tactics.NamedView.term ->
m: FStar.Tactics.NamedView.term ->
lhs: FStar.Tactics.NamedView.term ->
rhs: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 52,
"end_line": 369,
"start_col": 66,
"start_line": 339
} |
FStar.Tactics.Effect.Tac | val reification_aux (ts: list term) (am: amap term) (mult unit t: term)
: Tac (exp * list term * amap term) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am | val reification_aux (ts: list term) (am: amap term) (mult unit t: term)
: Tac (exp * list term * amap term)
let rec reification_aux (ts: list term) (am: amap term) (mult unit t: term)
: Tac (exp * list term * amap term) = | true | null | false | let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [t1, Q_Explicit ; t2, Q_Explicit] ->
if term_eq (pack (Tv_FVar fv)) mult
then
(let e1, ts, am = reification_aux ts am mult unit t1 in
let e2, ts, am = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ -> if term_eq t unit then (Unit, ts, am) else fatom t ts am | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"Prims.list",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Reflection.V2.Data.argv",
"FStar.Reflection.Types.fv",
"FStar.Reflection.Types.term",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.Mult",
"FStar.Pervasives.Native.tuple3",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.reification_aux",
"Prims.bool",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.fatom",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.term_eq",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_FVar",
"FStar.Tactics.NamedView.named_term_view",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V2.Data.aqualv",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.Unit",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.NamedView.inspect",
"FStar.Tactics.V2.SyntaxHelpers.collect_app"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val reification_aux (ts: list term) (am: amap term) (mult unit t: term)
: Tac (exp * list term * amap term) | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.reification_aux | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
ts: Prims.list FStar.Tactics.NamedView.term ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term ->
mult: FStar.Tactics.NamedView.term ->
unit: FStar.Tactics.NamedView.term ->
t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac
((FStar.Tactics.CanonCommMonoidSimple.Equiv.exp * Prims.list FStar.Tactics.NamedView.term) *
FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term) | {
"end_col": 22,
"end_line": 299,
"start_col": 82,
"start_line": 287
} |
Prims.Tot | val exp_to_string (e: exp) : string | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")" | val exp_to_string (e: exp) : string
let rec exp_to_string (e: exp) : string = | false | null | false | match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1 ^ ") (" ^ exp_to_string e2 ^ ")" | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"Prims.op_Hat",
"Prims.string_of_int",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp_to_string",
"Prims.string"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_to_string (e: exp) : string | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.exp_to_string | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp -> Prims.string | {
"end_col": 51,
"end_line": 53,
"start_col": 2,
"start_line": 49
} |
FStar.Pervasives.Lemma | val canon_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (canon e))) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e))) | val canon_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (canon e)))
let canon_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (canon e))) = | false | null | true | flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq
(mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e))) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort",
"Prims.unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort_correct",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten_correct",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.canon",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val canon_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (canon e))) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.canon_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote eq m am e)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.canon e))) | {
"end_col": 59,
"end_line": 248,
"start_col": 2,
"start_line": 244
} |
Prims.Tot | val xsdenote (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom) : a | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs') | val xsdenote (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom) : a
let rec xsdenote (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom) : a = | false | null | false | match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x :: xs' -> CM?.mult m (select x am) (xsdenote eq m am xs') | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.select",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val xsdenote (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs: list atom) : a | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom
-> a | {
"end_col": 61,
"end_line": 80,
"start_col": 2,
"start_line": 77
} |
Prims.Tot | val flatten (e: exp) : list atom | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2 | val flatten (e: exp) : list atom
let rec flatten (e: exp) : list atom = | false | null | false | match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2 | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"Prims.Nil",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"Prims.Cons",
"FStar.List.Tot.Base.op_At",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten",
"Prims.list"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val flatten (e: exp) : list atom | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom | {
"end_col": 41,
"end_line": 88,
"start_col": 2,
"start_line": 85
} |
FStar.Pervasives.Lemma | val sort_via_swaps (#a: Type) (am: amap a) (xs: list atom)
: Lemma (exists (ss: swaps_for xs). sort xs == apply_swaps xs ss) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
() | val sort_via_swaps (#a: Type) (am: amap a) (xs: list atom)
: Lemma (exists (ss: swaps_for xs). sort xs == apply_swaps xs ss)
let sort_via_swaps (#a: Type) (am: amap a) (xs: list atom)
: Lemma (exists (ss: swaps_for xs). sort xs == apply_swaps xs ss) = | false | null | true | List.Tot.Properties.sortWith_permutation #int (compare_of_bool ( < )) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
() | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommSwaps.swap",
"FStar.List.Tot.Base.length",
"FStar.Tactics.CanonCommSwaps.equal_counts_implies_swaps",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.sort",
"Prims.unit",
"FStar.List.Tot.Properties.sortWith_permutation",
"Prims.int",
"FStar.List.Tot.Base.compare_of_bool",
"Prims.op_LessThan",
"Prims.l_True",
"Prims.squash",
"Prims.l_Exists",
"FStar.Tactics.CanonCommSwaps.swaps_for",
"Prims.eq2",
"FStar.Tactics.CanonCommSwaps.apply_swaps",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sort_via_swaps (#a: Type) (am: amap a) (xs: list atom)
: Lemma (exists (ss: swaps_for xs). sort xs == apply_swaps xs ss) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.sort_via_swaps | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom
-> FStar.Pervasives.Lemma
(ensures
exists (ss: FStar.Tactics.CanonCommSwaps.swaps_for xs).
FStar.Tactics.CanonCommMonoidSimple.Equiv.sort xs ==
FStar.Tactics.CanonCommSwaps.apply_swaps xs ss) | {
"end_col": 6,
"end_line": 230,
"start_col": 4,
"start_line": 228
} |
Prims.Tot | val quote_exp (e: exp) : term | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt)) | val quote_exp (e: exp) : term
let rec quote_exp (e: exp) : term = | false | null | false | match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n ->
let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt)) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Reflection.Types.term",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.quote_exp",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Const",
"FStar.Reflection.V2.Data.C_Int"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
let rec repeat_cong_right_identity (eq: term) (m: term) : Tac unit =
or_else (fun _ -> apply_lemma (`right_identity))
(fun _ -> apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m
)
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
(* `am` is an amap (basically a list) of terms, each representing a value
of type `a` (whichever we are canonicalizing). This functions converts
`am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) ) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val quote_exp (e: exp) : term | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.quote_exp | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp -> FStar.Tactics.NamedView.term | {
"end_col": 30,
"end_line": 337,
"start_col": 4,
"start_line": 333
} |
FStar.Tactics.Effect.Tac | val where_aux (n: nat) (x: term) (xs: list term) : Tac (option nat) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs' | val where_aux (n: nat) (x: term) (xs: list term) : Tac (option nat)
let rec where_aux (n: nat) (x: term) (xs: list term) : Tac (option nat) = | true | null | false | match xs with
| [] -> None
| x' :: xs' -> if term_eq x x' then Some n else where_aux (n + 1) x xs' | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"Prims.nat",
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Some",
"Prims.bool",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.where_aux",
"Prims.op_Addition",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.term_eq"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) : | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val where_aux (n: nat) (x: term) (xs: list term) : Tac (option nat) | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.where_aux | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | n: Prims.nat -> x: FStar.Tactics.NamedView.term -> xs: Prims.list FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option Prims.nat) | {
"end_col": 69,
"end_line": 274,
"start_col": 2,
"start_line": 272
} |
FStar.Pervasives.Lemma | val monoid_reflect_orig (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e1 e2: exp)
: Lemma (requires (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2))))
(ensures (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2))) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2) | val monoid_reflect_orig (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e1 e2: exp)
: Lemma (requires (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2))))
(ensures (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2)))
let monoid_reflect_orig (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e1 e2: exp)
: Lemma (requires (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2))))
(ensures (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2))) = | false | null | true | canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1) (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1) (xsdenote eq m am (canon e2)) (mdenote eq m am e2) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.canon",
"Prims.unit",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.canon_correct",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2))) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val monoid_reflect_orig (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e1 e2: exp)
: Lemma (requires (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2))))
(ensures (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2))) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.monoid_reflect_orig | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
e1: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp ->
e2: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> FStar.Pervasives.Lemma
(requires
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.canon e1))
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.canon e2)))
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote eq m am e1)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote eq m am e2)) | {
"end_col": 42,
"end_line": 261,
"start_col": 2,
"start_line": 253
} |
FStar.Tactics.Effect.Tac | val fatom (t: term) (ts: list term) (am: amap term) : Tac (exp * list term * amap term) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am) | val fatom (t: term) (ts: list term) (am: amap term) : Tac (exp * list term * amap term)
let fatom (t: term) (ts: list term) (am: amap term) : Tac (exp * list term * amap term) = | true | null | false | match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.Atom",
"FStar.Pervasives.Native.tuple3",
"FStar.List.Tot.Base.op_At",
"Prims.Cons",
"Prims.Nil",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.update",
"FStar.Tactics.V2.Derived.norm_term",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.List.Tot.Base.length",
"FStar.Pervasives.Native.option",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.where"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0 | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fatom (t: term) (ts: list term) (am: amap term) : Tac (exp * list term * amap term) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.fatom | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
t: FStar.Tactics.NamedView.term ->
ts: Prims.list FStar.Tactics.NamedView.term ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac
((FStar.Tactics.CanonCommMonoidSimple.Equiv.exp * Prims.list FStar.Tactics.NamedView.term) *
FStar.Tactics.CanonCommMonoidSimple.Equiv.amap FStar.Tactics.NamedView.term) | {
"end_col": 47,
"end_line": 283,
"start_col": 2,
"start_line": 278
} |
Prims.Tot | val monoid_reflect:
#a: Type ->
eq: equiv a ->
m: cm a eq ->
am: amap a ->
e1: exp ->
e2: exp ->
squash (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2)))
-> squash (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2)) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2 | val monoid_reflect:
#a: Type ->
eq: equiv a ->
m: cm a eq ->
am: amap a ->
e1: exp ->
e2: exp ->
squash (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2)))
-> squash (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2))
let monoid_reflect
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(e1: exp)
(e2: exp)
(_: squash (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2))))
: squash (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2)) = | false | null | true | monoid_reflect_orig #a eq m am e1 e2 | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.canon",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.monoid_reflect_orig",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2))) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val monoid_reflect:
#a: Type ->
eq: equiv a ->
m: cm a eq ->
am: amap a ->
e1: exp ->
e2: exp ->
squash (EQ?.eq eq (xsdenote eq m am (canon e1)) (xsdenote eq m am (canon e2)))
-> squash (EQ?.eq eq (mdenote eq m am e1) (mdenote eq m am e2)) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.monoid_reflect | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
e1: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp ->
e2: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp ->
_:
Prims.squash (EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.canon e1))
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.canon e2)))
-> Prims.squash (EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote eq m am e1)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote eq m am e2)) | {
"end_col": 38,
"end_line": 266,
"start_col": 2,
"start_line": 266
} |
Prims.Tot | val convert_map (m: list (atom * term)) : term | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps))) | val convert_map (m: list (atom * term)) : term
let rec convert_map (m: list (atom * term)) : term = | false | null | false | match m with
| [] -> `[]
| (a, t) :: ps ->
let a = pack (Tv_Const (C_Int a)) in
`(((`#a), (`#t)) :: (`#(convert_map ps))) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.NamedView.term",
"FStar.Reflection.Types.term",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.convert_map",
"FStar.Tactics.NamedView.pack",
"FStar.Tactics.NamedView.Tv_Const",
"FStar.Reflection.V2.Data.C_Int"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
let rec repeat_cong_right_identity (eq: term) (m: term) : Tac unit =
or_else (fun _ -> apply_lemma (`right_identity))
(fun _ -> apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m
) | false | true | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val convert_map (m: list (atom * term)) : term | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.convert_map | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: Prims.list (FStar.Tactics.CanonCommMonoidSimple.Equiv.atom * FStar.Tactics.NamedView.term)
-> FStar.Tactics.NamedView.term | {
"end_col": 45,
"end_line": 322,
"start_col": 2,
"start_line": 317
} |
FStar.Pervasives.Lemma | val apply_swaps_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(ss: list (swap (length xs)))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swaps xs ss))))
(decreases ss) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss')) | val apply_swaps_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(ss: list (swap (length xs)))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swaps xs ss))))
(decreases ss)
let rec apply_swaps_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(ss: list (swap (length xs)))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swaps xs ss))))
(decreases ss) = | false | null | true | match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s :: ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq
(xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss')) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma",
""
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommSwaps.swap",
"FStar.List.Tot.Base.length",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity",
"FStar.Tactics.CanonCommSwaps.apply_swap",
"FStar.Tactics.CanonCommSwaps.apply_swaps",
"Prims.unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swaps_correct",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swap_correct",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss))) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply_swaps_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(ss: list (swap (length xs)))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swaps xs ss))))
(decreases ss) | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swaps_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom ->
ss: Prims.list (FStar.Tactics.CanonCommSwaps.swap (FStar.List.Tot.Base.length xs))
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am xs)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommSwaps.apply_swaps xs ss))) (decreases ss) | {
"end_col": 80,
"end_line": 200,
"start_col": 2,
"start_line": 193
} |
FStar.Pervasives.Lemma | val flatten_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (flatten e))) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2)) | val flatten_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (flatten e)))
let rec flatten_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (flatten e))) = | false | null | true | match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq
(xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m
(mdenote eq m am e1)
(mdenote eq m am e2)
(xsdenote eq m am (flatten e1))
(xsdenote eq m am (flatten e2));
EQ?.transitivity eq
(CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2)) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.select",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten",
"FStar.List.Tot.Base.op_At",
"Prims.unit",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten_correct",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten_correct_aux",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val flatten_correct (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp)
: Lemma (EQ?.eq eq (mdenote eq m am e) (xsdenote eq m am (flatten e))) | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote eq m am e)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten e))) | {
"end_col": 70,
"end_line": 129,
"start_col": 2,
"start_line": 116
} |
Prims.Tot | val mdenote (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp) : a | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2) | val mdenote (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp) : a
let rec mdenote (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp) : a = | false | null | false | match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"total"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.exp",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.select",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mdenote (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (am: amap a) (e: exp) : a | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.mdenote | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
e: FStar.Tactics.CanonCommMonoidSimple.Equiv.exp
-> a | {
"end_col": 70,
"end_line": 74,
"start_col": 2,
"start_line": 71
} |
FStar.Pervasives.Lemma | val apply_swap_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs))
: Lemma (ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap xs s))))
(decreases xs) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s | val apply_swap_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs))
: Lemma (ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap xs s))))
(decreases xs)
let apply_swap_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs))
: Lemma (ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap xs s))))
(decreases xs) = | false | null | true | apply_swap_aux_correct 0 eq m am xs s | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma",
""
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommSwaps.swap",
"FStar.List.Tot.Base.length",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swap_aux_correct",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"FStar.Tactics.CanonCommSwaps.apply_swap",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s))) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply_swap_correct
(#a: Type)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs))
: Lemma (ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap xs s))))
(decreases xs) | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swap_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom ->
s: FStar.Tactics.CanonCommSwaps.swap (FStar.List.Tot.Base.length xs)
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am xs)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommSwaps.apply_swap xs s))) (decreases xs) | {
"end_col": 39,
"end_line": 186,
"start_col": 2,
"start_line": 186
} |
FStar.Pervasives.Lemma | val flatten_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs1 xs2: list atom)
: Lemma
(EQ?.eq eq
(xsdenote eq m am (xs1 @ xs2))
(CM?.mult m (xsdenote eq m am xs1) (xsdenote eq m am xs2))) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2)) | val flatten_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs1 xs2: list atom)
: Lemma
(EQ?.eq eq
(xsdenote eq m am (xs1 @ xs2))
(CM?.mult m (xsdenote eq m am xs1) (xsdenote eq m am xs2)))
let rec flatten_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs1 xs2: list atom)
: Lemma
(EQ?.eq eq
(xsdenote eq m am (xs1 @ xs2))
(CM?.mult m (xsdenote eq m am xs1) (xsdenote eq m am xs2))) = | false | null | true | match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] ->
(if (Nil? xs2)
then
(right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x :: xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m
(select x am)
(xsdenote eq m am (xs1' @ xs2))
(select x am)
(CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq
(CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2)) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma"
] | [
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"Prims.unit",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity",
"Prims.uu___is_Nil",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.select",
"FStar.Algebra.CommMonoid.Equiv.right_identity",
"Prims.bool",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity",
"Prims.Cons",
"Prims.Nil",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity",
"FStar.List.Tot.Base.op_At",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__associativity",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten_correct_aux",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val flatten_correct_aux (#a: Type) (eq: equiv a) (m: cm a eq) (am: amap a) (xs1 xs2: list atom)
: Lemma
(EQ?.eq eq
(xsdenote eq m am (xs1 @ xs2))
(CM?.mult m (xsdenote eq m am xs1) (xsdenote eq m am xs2))) | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.flatten_correct_aux | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs1: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom ->
xs2: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am (xs1 @ xs2))
(CM?.mult m
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am xs1)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am xs2))) | {
"end_col": 112,
"end_line": 112,
"start_col": 2,
"start_line": 93
} |
FStar.Tactics.Effect.Tac | val canon_monoid (eq m: term) : Tac unit | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let canon_monoid (eq: term) (m: term) : Tac unit =
norm [iota; zeta];
let t = cur_goal () in
// removing top-level squash application
let sq, rel_xy = collect_app t in
// unpacking the application of the equivalence relation (lhs `EQ?.eq eq` rhs)
(match rel_xy with
| [(rel_xy,_)] -> (
let rel, xy = collect_app rel_xy in
if (length xy >= 2)
then (
match FStar.List.Tot.Base.index xy (length xy - 2) , FStar.List.Tot.index xy (length xy - 1) with
| (lhs, Q_Explicit) , (rhs, Q_Explicit) -> canon_lhs_rhs eq m lhs rhs
| _ -> fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else (
fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
)
)
| _ -> fail "Goal should be squash applied to a binary relation") | val canon_monoid (eq m: term) : Tac unit
let canon_monoid (eq m: term) : Tac unit = | true | null | false | norm [iota; zeta];
let t = cur_goal () in
let sq, rel_xy = collect_app t in
(match rel_xy with
| [rel_xy, _] ->
(let rel, xy = collect_app rel_xy in
if (length xy >= 2)
then
(match
FStar.List.Tot.Base.index xy (length xy - 2), FStar.List.Tot.index xy (length xy - 1)
with
| (lhs, Q_Explicit), (rhs, Q_Explicit) -> canon_lhs_rhs eq m lhs rhs
| _ ->
fail "Goal should have been an application of a binary relation to 2 explicit arguments"
)
else
(fail "Goal should have been an application of a binary relation to n implicit and 2 explicit arguments"
))
| _ -> fail "Goal should be squash applied to a binary relation") | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [] | [
"FStar.Tactics.NamedView.term",
"Prims.list",
"FStar.Reflection.V2.Data.argv",
"FStar.Reflection.Types.term",
"FStar.Reflection.V2.Data.aqualv",
"Prims.op_GreaterThanOrEqual",
"FStar.List.Tot.Base.length",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.index",
"Prims.op_Subtraction",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.canon_lhs_rhs",
"Prims.unit",
"FStar.Tactics.V2.Derived.fail",
"Prims.bool",
"FStar.Tactics.V2.SyntaxHelpers.collect_app",
"FStar.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal",
"FStar.Tactics.V2.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"Prims.Nil"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s)))
let apply_swap_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs))
: Lemma (ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap xs s)))
(decreases xs) =
apply_swap_aux_correct 0 eq m am xs s
let rec apply_swaps_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (ss:list (swap (length xs)))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swaps xs ss)))
(decreases ss) =
match ss with
| [] -> EQ?.reflexivity eq (xsdenote eq m am xs)
| s::ss' ->
apply_swap_correct eq m am xs s;
apply_swaps_correct eq m am (apply_swap xs s) ss';
EQ?.transitivity eq (xsdenote eq m am xs)
(xsdenote eq m am (apply_swap xs s))
(xsdenote eq m am (apply_swaps (apply_swap xs s) ss'))
let permute_via_swaps (p:permute) =
(#a:Type) -> (am:amap a) -> xs:list atom ->
Lemma (exists (ss:swaps_for xs). p xs == apply_swaps xs ss)
let permute_via_swaps_correct_aux (p:permute) (pvs:permute_via_swaps p)
(#a:Type) (eq:equiv a)(m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs)) =
pvs am xs;
assert(exists (ss:swaps_for xs). p xs == apply_swaps xs ss);
exists_elim (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
(() <: squash (exists (ss:swaps_for xs). p xs == apply_swaps xs ss))
(fun ss -> apply_swaps_correct eq m am xs ss)
let permute_via_swaps_correct
(p:permute) (pvs:permute_via_swaps p) : permute_correct p =
fun #a -> permute_via_swaps_correct_aux p pvs #a
(***** Sorting atoms is a correct permutation
(since it can be done by swaps) *)
// Here we sort the variable numbers
let sort : permute = List.Tot.Base.sortWith #int (compare_of_bool (<))
let sort_via_swaps (#a:Type) (am:amap a) (xs:list atom)
: Lemma (exists (ss:swaps_for xs). sort xs == apply_swaps xs ss)
= List.Tot.Properties.sortWith_permutation #int (compare_of_bool (<)) xs;
let ss = equal_counts_implies_swaps xs (sort xs) in
()
let sort_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom)
: Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (sort xs)) =
permute_via_swaps_correct sort (fun #a am -> sort_via_swaps am) eq m am xs
let sort_correct : permute_correct sort = (fun #a -> sort_correct_aux #a)
(***** Canonicalization tactics *)
let canon (e:exp) = sort (flatten e)
let canon_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (canon e)) =
flatten_correct eq m am e;
sort_correct eq m am (flatten e);
EQ?.transitivity eq (mdenote eq m am e)
(xsdenote eq m am (flatten e))
(xsdenote eq m am (sort (flatten e)))
let monoid_reflect_orig (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
: Lemma (requires (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
(ensures (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2)) =
canon_correct eq m am e1;
canon_correct eq m am e2;
EQ?.symmetry eq (mdenote eq m am e2) (xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e1))
(xsdenote eq m am (canon e2));
EQ?.transitivity eq (mdenote eq m am e1)
(xsdenote eq m am (canon e2))
(mdenote eq m am e2)
let monoid_reflect (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e1 e2:exp)
(_ : squash (xsdenote eq m am (canon e1) `EQ?.eq eq` xsdenote eq m am (canon e2)))
: squash (mdenote eq m am e1 `EQ?.eq eq` mdenote eq m am e2) =
monoid_reflect_orig #a eq m am e1 e2
(* Finds the position of first occurrence of x in xs.
This is now specialized to terms and their funny term_eq. *)
let rec where_aux (n:nat) (x:term) (xs:list term) :
Tac (option nat) =
match xs with
| [] -> None
| x'::xs' -> if term_eq x x' then Some n else where_aux (n+1) x xs'
let where = where_aux 0
let fatom (t:term) (ts:list term) (am:amap term) : Tac (exp * list term * amap term) =
match where t ts with
| Some v -> (Atom v, ts, am)
| None ->
let vfresh = length ts in
let t = norm_term [iota; zeta] t in
(Atom vfresh, ts @ [t], update vfresh t am)
// This expects that mult, unit, and t have already been normalized
let rec reification_aux (ts:list term) (am:amap term)
(mult unit t : term) : Tac (exp * list term * amap term) =
let hd, tl = collect_app t in
match inspect hd, tl with
| Tv_FVar fv, [(t1, Q_Explicit) ; (t2, Q_Explicit)] ->
if term_eq (pack (Tv_FVar fv)) mult
then (let (e1, ts, am) = reification_aux ts am mult unit t1 in
let (e2, ts, am) = reification_aux ts am mult unit t2 in
(Mult e1 e2, ts, am))
else fatom t ts am
| _, _ ->
if term_eq t unit
then (Unit, ts, am)
else fatom t ts am
let reification (eq: term) (m: term) (ts:list term) (am:amap term) (t:term) :
Tac (exp * list term * amap term) =
let mult = norm_term [iota; zeta; delta] (`CM?.mult (`#m)) in
let unit = norm_term [iota; zeta; delta] (`CM?.unit (`#m)) in
let t = norm_term [iota; zeta] t in
reification_aux ts am mult unit t
let rec repeat_cong_right_identity (eq: term) (m: term) : Tac unit =
or_else (fun _ -> apply_lemma (`right_identity))
(fun _ -> apply_lemma (`CM?.congruence (`#m));
split ();
apply_lemma (`EQ?.reflexivity (`#eq));
repeat_cong_right_identity eq m
)
let rec convert_map (m : list (atom * term)) : term =
match m with
| [] -> `[]
| (a, t)::ps ->
let a = pack (Tv_Const (C_Int a)) in
(* let t = norm_term [delta] t in *)
`((`#a, (`#t)) :: (`#(convert_map ps)))
(* `am` is an amap (basically a list) of terms, each representing a value
of type `a` (whichever we are canonicalizing). This functions converts
`am` into a single `term` of type `amap a`, suitable to call `mdenote` with *)
let convert_am (am : amap term) : term =
let (map, def) = am in
(* let def = norm_term [delta] def in *)
`( (`#(convert_map map), `#def) )
let rec quote_exp (e:exp) : term =
match e with
| Unit -> (`Unit)
| Mult e1 e2 -> (`Mult (`#(quote_exp e1)) (`#(quote_exp e2)))
| Atom n -> let nt = pack (Tv_Const (C_Int n)) in
(`Atom (`#nt))
let canon_lhs_rhs (eq: term) (m: term) (lhs rhs:term) : Tac unit =
let m_unit = norm_term [iota; zeta; delta](`CM?.unit (`#m)) in
let am = const m_unit in (* empty map *)
let (r1, ts, am) = reification eq m [] am lhs in
let (r2, _, am) = reification eq m ts am rhs in
//dump ("am = " ^ term_to_string (quote am));
//dump ("r1 = " ^ term_to_string (norm_term [delta;primops] (quote (mdenote eq m am r1))));
//dump ("r2 = " ^ term_to_string (norm_term [delta;primops] (quote (mdenote eq m am r2))));
//dump ("before = " ^ term_to_string (norm_term [hnf;delta;primops]
// (quote (mdenote eq m am r1 `EQ?.eq eq` mdenote eq m am r2))));
//dump ("current goal -- " ^ term_to_string (cur_goal ()));
let am = convert_am am in
let r1 = quote_exp r1 in
let r2 = quote_exp r2 in
change_sq (`(mdenote (`#eq) (`#m) (`#am) (`#r1)
`EQ?.eq (`#eq)`
mdenote (`#eq) (`#m) (`#am) (`#r2)));
(* dump ("expected after = " ^ term_to_string (norm_term [delta;primops] *)
(* (quote (xsdenote eq m am (canon r1) `EQ?.eq eq` *)
(* xsdenote eq m am (canon r2))))); *)
apply (`monoid_reflect);
//dump ("after apply monoid_reflect");
norm [iota; zeta; delta_only [`%canon; `%xsdenote; `%flatten; `%sort;
`%select; `%assoc; `%fst; `%__proj__Mktuple2__item___1;
`%(@); `%append; `%List.Tot.sortWith;
`%List.Tot.partition; `%bool_of_compare;
`%compare_of_bool;
]; primops];
//dump "before refl";
or_else (fun _ -> apply_lemma (`(EQ?.reflexivity (`#eq))))
(fun _ -> repeat_cong_right_identity eq m)
[@@plugin] | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val canon_monoid (eq m: term) : Tac unit | [] | FStar.Tactics.CanonCommMonoidSimple.Equiv.canon_monoid | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | eq: FStar.Tactics.NamedView.term -> m: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 68,
"end_line": 391,
"start_col": 2,
"start_line": 373
} |
FStar.Pervasives.Lemma | val apply_swap_aux_correct
(#a: Type)
(n: nat)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs + n))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap_aux n xs s))))
(decreases xs) | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSwaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid.Equiv",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommMonoidSimple",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s)))
(decreases xs) =
match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1;x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1;x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then (
CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq (CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else (
apply_swap_aux_correct (n+1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m (select x1 am) (xsdenote eq m am (x2 :: xs'))
(select x1 am) (xsdenote eq m am (apply_swap_aux (n+1) (x2 :: xs') s))) | val apply_swap_aux_correct
(#a: Type)
(n: nat)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs + n))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap_aux n xs s))))
(decreases xs)
let rec apply_swap_aux_correct
(#a: Type)
(n: nat)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs + n))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap_aux n xs s))))
(decreases xs) = | false | null | true | match xs with
| [] -> EQ?.reflexivity eq (CM?.unit m)
| [x] -> EQ?.reflexivity eq (select x am)
| [x1 ; x2] ->
if n = (s <: nat)
then CM?.commutativity m (select x1 am) (select x2 am)
else EQ?.reflexivity eq (xsdenote eq m am [x1; x2])
| x1 :: x2 :: xs' ->
if n = (s <: nat)
then
(CM?.associativity m (select x1 am) (select x2 am) (xsdenote eq m am xs');
EQ?.symmetry eq
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')));
CM?.commutativity m (select x1 am) (select x2 am);
EQ?.reflexivity eq (xsdenote eq m am xs');
CM?.congruence m
(CM?.mult m (select x1 am) (select x2 am))
(xsdenote eq m am xs')
(CM?.mult m (select x2 am) (select x1 am))
(xsdenote eq m am xs');
CM?.associativity m (select x2 am) (select x1 am) (xsdenote eq m am xs');
EQ?.transitivity eq
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x1 am) (select x2 am)) (xsdenote eq m am xs'))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'));
EQ?.transitivity eq
(CM?.mult m (select x1 am) (CM?.mult m (select x2 am) (xsdenote eq m am xs')))
(CM?.mult m (CM?.mult m (select x2 am) (select x1 am)) (xsdenote eq m am xs'))
(CM?.mult m (select x2 am) (CM?.mult m (select x1 am) (xsdenote eq m am xs'))))
else
(apply_swap_aux_correct (n + 1) eq m am (x2 :: xs') s;
EQ?.reflexivity eq (select x1 am);
CM?.congruence m
(select x1 am)
(xsdenote eq m am (x2 :: xs'))
(select x1 am)
(xsdenote eq m am (apply_swap_aux (n + 1) (x2 :: xs') s))) | {
"checked_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.CanonCommSwaps.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.Base.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Algebra.CommMonoid.Equiv.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.CanonCommMonoidSimple.Equiv.fst"
} | [
"lemma",
""
] | [
"Prims.nat",
"FStar.Algebra.CommMonoid.Equiv.equiv",
"FStar.Algebra.CommMonoid.Equiv.cm",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.amap",
"Prims.list",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.atom",
"FStar.Tactics.CanonCommSwaps.swap",
"Prims.op_Addition",
"FStar.List.Tot.Base.length",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.select",
"Prims.op_Equality",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity",
"Prims.bool",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote",
"Prims.Cons",
"Prims.Nil",
"Prims.unit",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__associativity",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry",
"FStar.Tactics.CanonCommSwaps.apply_swap_aux",
"FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swap_aux_correct",
"Prims.l_True",
"Prims.squash",
"FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.CanonCommMonoidSimple.Equiv
open FStar.Algebra.CommMonoid.Equiv
open FStar.List
open FStar.Classical
open FStar.Tactics.CanonCommSwaps
open FStar.Tactics.V2
let term_eq = FStar.Tactics.term_eq_old
(* A simple expression canonizer for commutative monoids (working up to
some given equivalence relation as opposed to just propositional equality).
For a canonizer with more features see FStar.Tactics.CanonCommMonoid.fst.
Based on FStar.Tactics.CanonCommMonoidSimple.fst
*)
(* Only dump when debugging is on *)
//let dump m = if debugging () then dump m
(***** Expression syntax *)
// GM: ugh, we had `nat`, but then we get bitten by lack
// of subtyping over datatypes when we typecheck the amap term
// we generate (see convert_am).
let atom : eqtype = int
type exp : Type =
| Unit : exp
| Mult : exp -> exp -> exp
| Atom : atom -> exp
let rec exp_to_string (e:exp) : string =
match e with
| Unit -> "Unit"
| Atom x -> "Atom " ^ string_of_int (x <: atom)
| Mult e1 e2 -> "Mult (" ^ exp_to_string e1
^ ") (" ^ exp_to_string e2 ^ ")"
(***** Expression denotation *)
// Use a map that stores for each atom
// (1) its denotation that should be treated abstractly (type a) and
// (2) user-specified extra information depending on its term (type b)
let amap (a:Type) = list (atom * a) * a
let const (#a:Type) (xa:a) : amap a = ([], xa)
let select (#a:Type) (x:atom) (am:amap a) : Tot a =
match assoc #atom #a x (fst am) with
| Some a -> a
| _ -> snd am
let update (#a:Type) (x:atom) (xa:a) (am:amap a) : amap a =
(x, xa)::fst am, snd am
let rec mdenote (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp) : a =
match e with
| Unit -> CM?.unit m
| Atom x -> select x am
| Mult e1 e2 -> CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2)
let rec xsdenote (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs:list atom) : a =
match xs with
| [] -> CM?.unit m
| [x] -> select x am
| x::xs' -> CM?.mult m (select x am) (xsdenote eq m am xs')
(***** Flattening expressions to lists of atoms *)
let rec flatten (e:exp) : list atom =
match e with
| Unit -> []
| Atom x -> [x]
| Mult e1 e2 -> flatten e1 @ flatten e2
let rec flatten_correct_aux (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (xs1 xs2:list atom)
: Lemma (xsdenote eq m am (xs1 @ xs2) `EQ?.eq eq` CM?.mult m (xsdenote eq m am xs1)
(xsdenote eq m am xs2)) =
match xs1 with
| [] ->
CM?.identity m (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.unit m) (xsdenote eq m am xs2)) (xsdenote eq m am xs2)
| [x] -> (
if (Nil? xs2)
then (right_identity eq m (select x am);
EQ?.symmetry eq (CM?.mult m (select x am) (CM?.unit m)) (select x am))
else EQ?.reflexivity eq (CM?.mult m (xsdenote eq m am [x]) (xsdenote eq m am xs2)))
| x::xs1' ->
flatten_correct_aux eq m am xs1' xs2;
EQ?.reflexivity eq (select x am);
CM?.congruence m (select x am) (xsdenote eq m am (xs1' @ xs2))
(select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2));
CM?.associativity m (select x am) (xsdenote eq m am xs1') (xsdenote eq m am xs2);
EQ?.symmetry eq (CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)));
EQ?.transitivity eq (CM?.mult m (select x am) (xsdenote eq m am (xs1' @ xs2)))
(CM?.mult m (select x am) (CM?.mult m (xsdenote eq m am xs1') (xsdenote eq m am xs2)))
(CM?.mult m (CM?.mult m (select x am) (xsdenote eq m am xs1')) (xsdenote eq m am xs2))
let rec flatten_correct (#a:Type) (eq:equiv a) (m:cm a eq) (am:amap a) (e:exp)
: Lemma (mdenote eq m am e `EQ?.eq eq` xsdenote eq m am (flatten e)) =
match e with
| Unit -> EQ?.reflexivity eq (CM?.unit m)
| Atom x -> EQ?.reflexivity eq (select x am)
| Mult e1 e2 ->
flatten_correct_aux eq m am (flatten e1) (flatten e2);
EQ?.symmetry eq (xsdenote eq m am (flatten e1 @ flatten e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)));
flatten_correct eq m am e1;
flatten_correct eq m am e2;
CM?.congruence m (mdenote eq m am e1) (mdenote eq m am e2)
(xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2));
EQ?.transitivity eq (CM?.mult m (mdenote eq m am e1) (mdenote eq m am e2))
(CM?.mult m (xsdenote eq m am (flatten e1)) (xsdenote eq m am (flatten e2)))
(xsdenote eq m am (flatten e1 @ flatten e2))
(***** Permuting the lists of atoms
by swapping adjacent elements *)
let permute = list atom -> list atom
// high-level correctness criterion for permutations
let permute_correct (p:permute) =
#a:Type -> eq:equiv a -> m:cm a eq -> am:amap a -> xs:list atom ->
Lemma (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (p xs))
// sufficient condition:
// permutation has to be expressible as swaps of adjacent list elements
// In the general case, an arbitrary permutation can be done via swaps.
// (see FStar.Tactics.CanonCommSwaps for a proof)
let rec apply_swap_aux_correct (#a:Type) (n:nat) (eq:equiv a) (m:cm a eq) (am:amap a)
(xs:list atom) (s:swap (length xs + n))
: Lemma (requires True)
(ensures (xsdenote eq m am xs `EQ?.eq eq` xsdenote eq m am (apply_swap_aux n xs s))) | false | false | FStar.Tactics.CanonCommMonoidSimple.Equiv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val apply_swap_aux_correct
(#a: Type)
(n: nat)
(eq: equiv a)
(m: cm a eq)
(am: amap a)
(xs: list atom)
(s: swap (length xs + n))
: Lemma (requires True)
(ensures (EQ?.eq eq (xsdenote eq m am xs) (xsdenote eq m am (apply_swap_aux n xs s))))
(decreases xs) | [
"recursion"
] | FStar.Tactics.CanonCommMonoidSimple.Equiv.apply_swap_aux_correct | {
"file_name": "ulib/FStar.Tactics.CanonCommMonoidSimple.Equiv.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
n: Prims.nat ->
eq: FStar.Algebra.CommMonoid.Equiv.equiv a ->
m: FStar.Algebra.CommMonoid.Equiv.cm a eq ->
am: FStar.Tactics.CanonCommMonoidSimple.Equiv.amap a ->
xs: Prims.list FStar.Tactics.CanonCommMonoidSimple.Equiv.atom ->
s: FStar.Tactics.CanonCommSwaps.swap (FStar.List.Tot.Base.length xs + n)
-> FStar.Pervasives.Lemma
(ensures
EQ?.eq eq
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq m am xs)
(FStar.Tactics.CanonCommMonoidSimple.Equiv.xsdenote eq
m
am
(FStar.Tactics.CanonCommSwaps.apply_swap_aux n xs s))) (decreases xs) | {
"end_col": 96,
"end_line": 180,
"start_col": 2,
"start_line": 152
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "EverParse3d.ErrorCode",
"short_module": "LPE"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t = input_stream_base | let t = | false | null | false | input_stream_base | {
"checked_file": "EverParse3d.InputStream.Extern.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Extern.Base.fsti"
} | [
"total"
] | [
"EverParse3d.InputStream.Extern.Base.input_stream_base"
] | [] | module EverParse3d.InputStream.Extern.Base
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module U8 = FStar.UInt8
module LPE = EverParse3d.ErrorCode
module U64 = FStar.UInt64
val input_stream_base : Type0
inline_for_extraction | false | true | EverParse3d.InputStream.Extern.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t : Type0 | [] | EverParse3d.InputStream.Extern.Base.t | {
"file_name": "src/3d/prelude/extern/EverParse3d.InputStream.Extern.Base.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | Type0 | {
"end_col": 25,
"end_line": 15,
"start_col": 8,
"start_line": 15
} |
|
Prims.Tot | val createEmpty (#a: Type) : Tot (s: (seq a){length s = 0}) | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "List"
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let createEmpty (#a:Type)
: Tot (s:(seq a){length s=0})
= empty #a | val createEmpty (#a: Type) : Tot (s: (seq a){length s = 0})
let createEmpty (#a: Type) : Tot (s: (seq a){length s = 0}) = | false | null | false | empty #a | {
"checked_file": "FStar.Seq.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Seq.Base.fsti"
} | [
"total"
] | [
"FStar.Seq.Base.empty",
"FStar.Seq.Base.seq",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length"
] | [] | (*
Copyright 2008-2014 Nikhil Swamy and Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(* A logical theory of sequences indexed by natural numbers in [0, n) *)
module FStar.Seq.Base
//#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1"
module List = FStar.List.Tot
new val seq ([@@@strictly_positive] a : Type u#a) : Type u#a
(* Destructors *)
val length: #a:Type -> seq a -> Tot nat
val index: #a:Type -> s:seq a -> i:nat{i < length s} -> Tot a
val create: #a:Type -> nat -> a -> Tot (seq a)
private val init_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a))
:Tot (seq a)
inline_for_extraction val init: #a:Type -> len:nat -> contents: (i:nat { i < len } -> Tot a) -> Tot (seq a)
private val init_aux_ghost (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a))
: GTot (seq a)
inline_for_extraction val init_ghost: #a:Type -> len:nat -> contents: (i:nat { i < len } -> GTot a) -> GTot (seq a)
val empty (#a:Type) : Tot (s:(seq a){length s=0})
[@@(deprecated "Seq.empty")]
unfold
let createEmpty (#a:Type) | false | false | FStar.Seq.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val createEmpty (#a: Type) : Tot (s: (seq a){length s = 0}) | [] | FStar.Seq.Base.createEmpty | {
"file_name": "ulib/FStar.Seq.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s = 0} | {
"end_col": 14,
"end_line": 48,
"start_col": 6,
"start_line": 48
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "List"
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let op_At_Bar (#a:Type) (s1:seq a) (s2:seq a) = append s1 s2 | let op_At_Bar (#a: Type) (s1 s2: seq a) = | false | null | false | append s1 s2 | {
"checked_file": "FStar.Seq.Base.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Seq.Base.fsti"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append"
] | [] | (*
Copyright 2008-2014 Nikhil Swamy and Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(* A logical theory of sequences indexed by natural numbers in [0, n) *)
module FStar.Seq.Base
//#set-options "--initial_fuel 0 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1"
module List = FStar.List.Tot
new val seq ([@@@strictly_positive] a : Type u#a) : Type u#a
(* Destructors *)
val length: #a:Type -> seq a -> Tot nat
val index: #a:Type -> s:seq a -> i:nat{i < length s} -> Tot a
val create: #a:Type -> nat -> a -> Tot (seq a)
private val init_aux (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> Tot a))
:Tot (seq a)
inline_for_extraction val init: #a:Type -> len:nat -> contents: (i:nat { i < len } -> Tot a) -> Tot (seq a)
private val init_aux_ghost (#a:Type) (len:nat) (k:nat{k < len}) (contents:(i:nat { i < len } -> GTot a))
: GTot (seq a)
inline_for_extraction val init_ghost: #a:Type -> len:nat -> contents: (i:nat { i < len } -> GTot a) -> GTot (seq a)
val empty (#a:Type) : Tot (s:(seq a){length s=0})
[@@(deprecated "Seq.empty")]
unfold
let createEmpty (#a:Type)
: Tot (s:(seq a){length s=0})
= empty #a
val lemma_empty (#a:Type) (s:seq a) : Lemma (length s = 0 ==> s == empty #a)
val upd: #a:Type -> s:seq a -> n:nat{n < length s} -> a -> Tot (seq a)
val append: #a:Type -> seq a -> seq a -> Tot (seq a) | false | false | FStar.Seq.Base.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val op_At_Bar : s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Seq.Base.seq a | [] | FStar.Seq.Base.op_At_Bar | {
"file_name": "ulib/FStar.Seq.Base.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> FStar.Seq.Base.seq a | {
"end_col": 60,
"end_line": 56,
"start_col": 48,
"start_line": 56
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.MontArithmetic",
"short_module": "MA"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.SafeAPI",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lbignum = Hacl.Bignum.Definitions.lbignum | let lbignum = | false | null | false | Hacl.Bignum.Definitions.lbignum | {
"checked_file": "Hacl.Bignum32.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Bignum.SafeAPI.fst.checked",
"Hacl.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Convert.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum32.fsti"
} | [
"total"
] | [
"Hacl.Bignum.Definitions.lbignum"
] | [] | module Hacl.Bignum32
open FStar.Mul
module BN = Hacl.Bignum
module BS = Hacl.Bignum.SafeAPI
module MA = Hacl.Bignum.MontArithmetic
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U32 | false | true | Hacl.Bignum32.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lbignum : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0 | [] | Hacl.Bignum32.lbignum | {
"file_name": "code/bignum/Hacl.Bignum32.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0 | {
"end_col": 45,
"end_line": 15,
"start_col": 14,
"start_line": 15
} |
|
Prims.Tot | val t_limbs:Hacl.Bignum.Definitions.limb_t | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.MontArithmetic",
"short_module": "MA"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.SafeAPI",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U32 | val t_limbs:Hacl.Bignum.Definitions.limb_t
let t_limbs:Hacl.Bignum.Definitions.limb_t = | false | null | false | Lib.IntTypes.U32 | {
"checked_file": "Hacl.Bignum32.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Bignum.SafeAPI.fst.checked",
"Hacl.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Convert.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum32.fsti"
} | [
"total"
] | [
"Lib.IntTypes.U32"
] | [] | module Hacl.Bignum32
open FStar.Mul
module BN = Hacl.Bignum
module BS = Hacl.Bignum.SafeAPI
module MA = Hacl.Bignum.MontArithmetic
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | true | Hacl.Bignum32.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t_limbs:Hacl.Bignum.Definitions.limb_t | [] | Hacl.Bignum32.t_limbs | {
"file_name": "code/bignum/Hacl.Bignum32.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Hacl.Bignum.Definitions.limb_t | {
"end_col": 62,
"end_line": 12,
"start_col": 46,
"start_line": 12
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.MontArithmetic",
"short_module": "MA"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.SafeAPI",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pbn_mont_ctx_u32 = MA.pbn_mont_ctx_u32 | let pbn_mont_ctx_u32 = | false | null | false | MA.pbn_mont_ctx_u32 | {
"checked_file": "Hacl.Bignum32.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Bignum.SafeAPI.fst.checked",
"Hacl.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Convert.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum32.fsti"
} | [
"total"
] | [
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_u32"
] | [] | module Hacl.Bignum32
open FStar.Mul
module BN = Hacl.Bignum
module BS = Hacl.Bignum.SafeAPI
module MA = Hacl.Bignum.MontArithmetic
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U32
inline_for_extraction noextract
let lbignum = Hacl.Bignum.Definitions.lbignum | false | true | Hacl.Bignum32.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pbn_mont_ctx_u32 : Type0 | [] | Hacl.Bignum32.pbn_mont_ctx_u32 | {
"file_name": "code/bignum/Hacl.Bignum32.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 42,
"end_line": 17,
"start_col": 23,
"start_line": 17
} |
|
Prims.GTot | val createL_pre (#a: Type0) (init: list a) : GTot Type0 | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let createL_pre (#a: Type0) (init: list a) : GTot Type0 =
alloca_of_list_pre init | val createL_pre (#a: Type0) (init: list a) : GTot Type0
let createL_pre (#a: Type0) (init: list a) : GTot Type0 = | false | null | false | alloca_of_list_pre init | {
"checked_file": "LowStar.BufferCompat.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferCompat.fst"
} | [
"sometrivial"
] | [
"Prims.list",
"LowStar.Monotonic.Buffer.alloca_of_list_pre"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferCompat
include LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module G = FStar.Ghost
module Seq = FStar.Seq
unfold
let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem)
(s:Seq.seq a)
= alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ length b == len
inline_for_extraction
let rfree
(#a: Type)
(b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures (fun h0 _ h1 ->
(not (g_is_null b)) /\
Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\
(HS.get_tip h1) == (HS.get_tip h0) /\
modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b)
))
= free b
inline_for_extraction
let rcreate
(#a: Type)
(r: HS.rid)
(init: a)
(len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b
))
= let b = gcmalloc r init len in
b
inline_for_extraction
let rcreate_mm
(#a: Type)
(r: HS.rid)
(init: a)
(len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
freeable b
))
= malloc r init len
inline_for_extraction
let create
(#a: Type)
(init: a)
(len: U32.t)
: HST.StackInline (buffer a)
(requires (fun h -> U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common (HS.get_tip h) (U32.v len) b h h' (Seq.create (U32.v len) init)
))
= alloca init len | false | false | LowStar.BufferCompat.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val createL_pre (#a: Type0) (init: list a) : GTot Type0 | [] | LowStar.BufferCompat.createL_pre | {
"file_name": "ulib/legacy/LowStar.BufferCompat.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | init: Prims.list a -> Prims.GTot Type0 | {
"end_col": 25,
"end_line": 92,
"start_col": 2,
"start_line": 92
} |
FStar.HyperStack.ST.ST | val rfree (#a: Type) (b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures
(fun h0 _ h1 ->
(not (g_is_null b)) /\
(Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\
(HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b))) | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rfree
(#a: Type)
(b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures (fun h0 _ h1 ->
(not (g_is_null b)) /\
Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\
(HS.get_tip h1) == (HS.get_tip h0) /\
modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b)
))
= free b | val rfree (#a: Type) (b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures
(fun h0 _ h1 ->
(not (g_is_null b)) /\
(Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\
(HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b)))
let rfree (#a: Type) (b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures
(fun h0 _ h1 ->
(not (g_is_null b)) /\
(Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\
(HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b))) = | true | null | false | free b | {
"checked_file": "LowStar.BufferCompat.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferCompat.fst"
} | [] | [
"LowStar.Buffer.buffer",
"LowStar.Monotonic.Buffer.free",
"LowStar.Buffer.trivial_preorder",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.freeable",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Set.equal",
"FStar.Monotonic.HyperHeap.rid",
"FStar.Map.domain",
"FStar.Monotonic.Heap.heap",
"FStar.Monotonic.HyperStack.get_hmap",
"Prims.eq2",
"FStar.Monotonic.HyperStack.get_tip",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"FStar.Monotonic.HyperStack.live_region",
"LowStar.Monotonic.Buffer.frameOf"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferCompat
include LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module G = FStar.Ghost
module Seq = FStar.Seq
unfold
let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem)
(s:Seq.seq a)
= alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ length b == len
inline_for_extraction
let rfree
(#a: Type)
(b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures (fun h0 _ h1 ->
(not (g_is_null b)) /\
Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\
(HS.get_tip h1) == (HS.get_tip h0) /\
modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b) | false | false | LowStar.BufferCompat.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val rfree (#a: Type) (b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures
(fun h0 _ h1 ->
(not (g_is_null b)) /\
(Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\
(HS.get_tip h1) == (HS.get_tip h0) /\ modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b))) | [] | LowStar.BufferCompat.rfree | {
"file_name": "ulib/legacy/LowStar.BufferCompat.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | b: LowStar.Buffer.buffer a -> FStar.HyperStack.ST.ST Prims.unit | {
"end_col": 8,
"end_line": 48,
"start_col": 2,
"start_line": 48
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem)
(s:Seq.seq a)
= alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ length b == len | let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem)
(s: Seq.seq a)
= | false | null | false | alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ length b == len | {
"checked_file": "LowStar.BufferCompat.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferCompat.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperHeap.rid",
"Prims.nat",
"LowStar.Buffer.buffer",
"FStar.Monotonic.HyperStack.mem",
"FStar.Seq.Base.seq",
"Prims.l_and",
"LowStar.Monotonic.Buffer.alloc_post_mem_common",
"LowStar.Buffer.trivial_preorder",
"Prims.eq2",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.length",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferCompat
include LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module G = FStar.Ghost
module Seq = FStar.Seq
unfold
let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem) | false | false | LowStar.BufferCompat.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val rcreate_post_mem_common : r: FStar.Monotonic.HyperHeap.rid ->
len: Prims.nat ->
b: LowStar.Buffer.buffer a ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
s: FStar.Seq.Base.seq a
-> Prims.logical | [] | LowStar.BufferCompat.rcreate_post_mem_common | {
"file_name": "ulib/legacy/LowStar.BufferCompat.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} |
r: FStar.Monotonic.HyperHeap.rid ->
len: Prims.nat ->
b: LowStar.Buffer.buffer a ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
s: FStar.Seq.Base.seq a
-> Prims.logical | {
"end_col": 70,
"end_line": 33,
"start_col": 2,
"start_line": 33
} |
|
FStar.HyperStack.ST.StackInline | val createL (#a: Type0) (init: list a)
: HST.StackInline (buffer a)
(requires (fun h -> createL_pre #a init))
(ensures
(fun h b h' ->
let len = FStar.List.Tot.length init in
rcreate_post_mem_common (HS.get_tip h) len b h h' (Seq.seq_of_list init) /\
length b == normalize_term (List.Tot.length init))) | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let createL
(#a: Type0)
(init: list a)
: HST.StackInline (buffer a)
(requires (fun h -> createL_pre #a init))
(ensures (fun h b h' ->
let len = FStar.List.Tot.length init in
rcreate_post_mem_common (HS.get_tip h) len b h h' (Seq.seq_of_list init) /\
length b == normalize_term (List.Tot.length init)
))
= alloca_of_list init | val createL (#a: Type0) (init: list a)
: HST.StackInline (buffer a)
(requires (fun h -> createL_pre #a init))
(ensures
(fun h b h' ->
let len = FStar.List.Tot.length init in
rcreate_post_mem_common (HS.get_tip h) len b h h' (Seq.seq_of_list init) /\
length b == normalize_term (List.Tot.length init)))
let createL (#a: Type0) (init: list a)
: HST.StackInline (buffer a)
(requires (fun h -> createL_pre #a init))
(ensures
(fun h b h' ->
let len = FStar.List.Tot.length init in
rcreate_post_mem_common (HS.get_tip h) len b h h' (Seq.seq_of_list init) /\
length b == normalize_term (List.Tot.length init))) = | true | null | false | alloca_of_list init | {
"checked_file": "LowStar.BufferCompat.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferCompat.fst"
} | [] | [
"Prims.list",
"LowStar.Buffer.alloca_of_list",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.Pervasives.normalize_term",
"FStar.List.Tot.Base.length",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Buffer.buffer",
"FStar.Monotonic.HyperStack.mem",
"LowStar.BufferCompat.createL_pre",
"LowStar.BufferCompat.rcreate_post_mem_common",
"FStar.Monotonic.HyperStack.get_tip",
"FStar.Seq.Properties.seq_of_list"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferCompat
include LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module G = FStar.Ghost
module Seq = FStar.Seq
unfold
let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem)
(s:Seq.seq a)
= alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ length b == len
inline_for_extraction
let rfree
(#a: Type)
(b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures (fun h0 _ h1 ->
(not (g_is_null b)) /\
Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\
(HS.get_tip h1) == (HS.get_tip h0) /\
modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b)
))
= free b
inline_for_extraction
let rcreate
(#a: Type)
(r: HS.rid)
(init: a)
(len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b
))
= let b = gcmalloc r init len in
b
inline_for_extraction
let rcreate_mm
(#a: Type)
(r: HS.rid)
(init: a)
(len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
freeable b
))
= malloc r init len
inline_for_extraction
let create
(#a: Type)
(init: a)
(len: U32.t)
: HST.StackInline (buffer a)
(requires (fun h -> U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common (HS.get_tip h) (U32.v len) b h h' (Seq.create (U32.v len) init)
))
= alloca init len
unfold let createL_pre (#a: Type0) (init: list a) : GTot Type0 =
alloca_of_list_pre init
let createL
(#a: Type0)
(init: list a)
: HST.StackInline (buffer a)
(requires (fun h -> createL_pre #a init))
(ensures (fun h b h' ->
let len = FStar.List.Tot.length init in
rcreate_post_mem_common (HS.get_tip h) len b h h' (Seq.seq_of_list init) /\
length b == normalize_term (List.Tot.length init) | false | false | LowStar.BufferCompat.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val createL (#a: Type0) (init: list a)
: HST.StackInline (buffer a)
(requires (fun h -> createL_pre #a init))
(ensures
(fun h b h' ->
let len = FStar.List.Tot.length init in
rcreate_post_mem_common (HS.get_tip h) len b h h' (Seq.seq_of_list init) /\
length b == normalize_term (List.Tot.length init))) | [] | LowStar.BufferCompat.createL | {
"file_name": "ulib/legacy/LowStar.BufferCompat.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | init: Prims.list a -> FStar.HyperStack.ST.StackInline (LowStar.Buffer.buffer a) | {
"end_col": 21,
"end_line": 104,
"start_col": 2,
"start_line": 104
} |
FStar.HyperStack.ST.ST | val rcreate (#a: Type) (r: HS.rid) (init: a) (len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures
(fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b)) | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rcreate
(#a: Type)
(r: HS.rid)
(init: a)
(len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b
))
= let b = gcmalloc r init len in
b | val rcreate (#a: Type) (r: HS.rid) (init: a) (len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures
(fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b))
let rcreate (#a: Type) (r: HS.rid) (init: a) (len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures
(fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b)) = | true | null | false | let b = gcmalloc r init len in
b | {
"checked_file": "LowStar.BufferCompat.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferCompat.fst"
} | [] | [
"FStar.Monotonic.HyperHeap.rid",
"FStar.UInt32.t",
"LowStar.Buffer.buffer",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable",
"LowStar.Buffer.gcmalloc",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.is_eternal_region",
"Prims.op_GreaterThan",
"LowStar.BufferCompat.rcreate_post_mem_common",
"FStar.Seq.Base.create"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferCompat
include LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module G = FStar.Ghost
module Seq = FStar.Seq
unfold
let rcreate_post_mem_common
(#a: Type)
(r: HS.rid)
(len: nat)
(b: buffer a)
(h0 h1: HS.mem)
(s:Seq.seq a)
= alloc_post_mem_common b h0 h1 s /\ frameOf b == r /\ length b == len
inline_for_extraction
let rfree
(#a: Type)
(b: buffer a)
: HST.ST unit
(requires (fun h0 -> live h0 b /\ freeable b))
(ensures (fun h0 _ h1 ->
(not (g_is_null b)) /\
Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\
(HS.get_tip h1) == (HS.get_tip h0) /\
modifies (loc_addr_of_buffer b) h0 h1 /\
HS.live_region h1 (frameOf b)
))
= free b
inline_for_extraction
let rcreate
(#a: Type)
(r: HS.rid)
(init: a)
(len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures (fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b | false | false | LowStar.BufferCompat.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val rcreate (#a: Type) (r: HS.rid) (init: a) (len: U32.t)
: HST.ST (buffer a)
(requires (fun h -> HST.is_eternal_region r /\ U32.v len > 0))
(ensures
(fun h b h' ->
rcreate_post_mem_common r (U32.v len) b h h' (Seq.create (U32.v len) init) /\
recallable b)) | [] | LowStar.BufferCompat.rcreate | {
"file_name": "ulib/legacy/LowStar.BufferCompat.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t
-> FStar.HyperStack.ST.ST (LowStar.Buffer.buffer a) | {
"end_col": 3,
"end_line": 63,
"start_col": 1,
"start_line": 62
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.