effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Pervasives.Lemma | val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b ) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_modulo_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b)) | val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
let pow2_modulo_modulo_lemma_1 a b c = | false | null | true | pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b)) | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Math.Lemmas.modulo_modulo_lemma",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
}
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
let pow2_modulo_division_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_division_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
let pow2_modulo_division_lemma_2 a b c =
pow2_le_compat b c;
small_division_lemma_1 (a % pow2 c) (pow2 b)
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b ) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b ) | [] | FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.nat -> c: Prims.nat{c >= b}
-> FStar.Pervasives.Lemma (ensures a % Prims.pow2 c % Prims.pow2 b = a % Prims.pow2 b) | {
"end_col": 47,
"end_line": 867,
"start_col": 2,
"start_line": 866
} |
FStar.Pervasives.Lemma | val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
} | val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p = | false | null | true | calc ( == ) {
((a + b) * c) % p;
( == ) { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
( == ) { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
( == ) { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.modulo_distributivity"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p) | [] | FStar.Math.Lemmas.lemma_mod_plus_mul_distr | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> c: Prims.int -> p: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + b) * c % p = ((a % p + b % p) % p) * (c % p) % p) | {
"end_col": 3,
"end_line": 621,
"start_col": 2,
"start_line": 613
} |
FStar.Pervasives.Lemma | val modulo_sub_lemma (a : int) (b : nat) (c : pos) :
Lemma
(requires (b < c /\ (a - b) % c = 0))
(ensures (b = a % c)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_sub_lemma a b c =
calc (==) {
b;
== { modulo_lemma b c }
b % c;
== { lemma_mod_twice b c }
(b%c) % c;
== { (* hyp *) }
(b%c + (a-b)%c) % c;
== { modulo_distributivity b (a-b) c }
(b+(a-b)) % c;
== {}
a % c;
} | val modulo_sub_lemma (a : int) (b : nat) (c : pos) :
Lemma
(requires (b < c /\ (a - b) % c = 0))
(ensures (b = a % c))
let modulo_sub_lemma a b c = | false | null | true | calc ( == ) {
b;
( == ) { modulo_lemma b c }
b % c;
( == ) { lemma_mod_twice b c }
(b % c) % c;
( == ) { () }
(b % c + (a - b) % c) % c;
( == ) { modulo_distributivity b (a - b) c }
(b + (a - b)) % c;
( == ) { () }
a % c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nat",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_twice",
"FStar.Math.Lemmas.modulo_distributivity"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
}
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
let pow2_modulo_division_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_division_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
let pow2_modulo_division_lemma_2 a b c =
pow2_le_compat b c;
small_division_lemma_1 (a % pow2 c) (pow2 b)
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
let pow2_modulo_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c )
let pow2_modulo_modulo_lemma_2 a b c =
pow2_le_compat b c;
small_modulo_lemma_1 (a % pow2 c) (pow2 b)
val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p))
let modulo_add p a b c =
modulo_distributivity a b p;
modulo_distributivity a c p
val lemma_mod_twice : a:int -> p:pos -> Lemma ((a % p) % p == a % p)
let lemma_mod_twice a p = lemma_mod_mod (a % p) a p
val modulo_sub : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires ((a + b) % p = (a + c) % p))
(ensures (b % p = c % p))
let modulo_sub p a b c =
modulo_add p (-a) (a + b) (a + c)
val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n)
let mod_add_both (a:int) (b:int) (x:int) (n:pos) =
calc (==) {
(a + x) % n;
== { modulo_distributivity a x n }
((a % n) + (x % n)) % n;
== { (* hyp *) }
((b % n) + (x % n)) % n;
== { modulo_distributivity b x n }
(b + x) % n;
}
val lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) : Lemma
(requires b < n /\ c < n /\ (a + b) % n = (a + c) % n)
(ensures b = c)
let lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) =
small_mod b n;
small_mod c n;
mod_add_both (a + b) (a + c) (-a) n
(* Another characterization of the modulo *)
val modulo_sub_lemma (a : int) (b : nat) (c : pos) :
Lemma
(requires (b < c /\ (a - b) % c = 0))
(ensures (b = a % c)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_sub_lemma (a : int) (b : nat) (c : pos) :
Lemma
(requires (b < c /\ (a - b) % c = 0))
(ensures (b = a % c)) | [] | FStar.Math.Lemmas.modulo_sub_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.nat -> c: Prims.pos
-> FStar.Pervasives.Lemma (requires b < c /\ (a - b) % c = 0) (ensures b = a % c) | {
"end_col": 3,
"end_line": 932,
"start_col": 2,
"start_line": 920
} |
FStar.Pervasives.Lemma | val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
} | val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a: int) (b n: pos) = | false | null | true | calc ( == ) {
(a / b) % n;
( == ) { lemma_div_mod a (b * n) }
(((b * n) * (a / (b * n))) / b) % n;
( == ) { paren_mul_right b n (a / (b * n)) }
((b * (n * (a / (b * n)))) / b) % n;
( == ) { cancel_mul_div (n * (a / (b * n))) b }
(n * (a / (b * n))) % n;
( == ) { cancel_mul_mod (a / (b * n)) n }
0;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.cancel_mul_div",
"FStar.Math.Lemmas.cancel_mul_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0) | [] | FStar.Math.Lemmas.mod_mul_div_exact | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> n: Prims.pos
-> FStar.Pervasives.Lemma (requires a % (b * n) == 0) (ensures a / b % n == 0) | {
"end_col": 3,
"end_line": 665,
"start_col": 2,
"start_line": 655
} |
FStar.Pervasives.Lemma | val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c ) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
} | val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c = | false | null | true | calc ( == ) {
(a * pow2 c) % pow2 b;
( == ) { () }
(a * pow2 c) % pow2 (c + (b - c));
( == ) { pow2_plus c (b - c) }
(a * pow2 c) % (pow2 c * pow2 (b - c));
( == ) { modulo_scale_lemma a (pow2 c) (pow2 (b - c)) }
(a % pow2 (b - c)) * pow2 c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.modulo_scale_lemma"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c ) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c ) | [] | FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.nat -> c: Prims.nat{c <= b}
-> FStar.Pervasives.Lemma
(ensures a * Prims.pow2 c % Prims.pow2 b = (a % Prims.pow2 (b - c)) * Prims.pow2 c) | {
"end_col": 3,
"end_line": 849,
"start_col": 2,
"start_line": 841
} |
FStar.Pervasives.Lemma | val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
} | val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a b: int) (n: pos) = | false | null | true | calc ( == ) {
(a - b % n) % n;
( == ) { lemma_mod_plus (a - (b % n)) (- (b / n)) n }
(a - b % n + n * (- (b / n))) % n;
( == ) { neg_mul_right n (b / n) }
(a - b % n - n * (b / n)) % n;
( == ) { lemma_div_mod b n }
(a - b) % n;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_Addition",
"Prims.op_Minus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.squash",
"FStar.Math.Lemmas.neg_mul_right",
"FStar.Math.Lemmas.lemma_div_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n) | [] | FStar.Math.Lemmas.lemma_mod_sub_distr | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a - b % n) % n = (a - b) % n) | {
"end_col": 3,
"end_line": 389,
"start_col": 2,
"start_line": 381
} |
FStar.Pervasives.Lemma | val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_add_both (a:int) (b:int) (x:int) (n:pos) =
calc (==) {
(a + x) % n;
== { modulo_distributivity a x n }
((a % n) + (x % n)) % n;
== { (* hyp *) }
((b % n) + (x % n)) % n;
== { modulo_distributivity b x n }
(b + x) % n;
} | val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n)
let mod_add_both (a b x: int) (n: pos) = | false | null | true | calc ( == ) {
(a + x) % n;
( == ) { modulo_distributivity a x n }
((a % n) + (x % n)) % n;
( == ) { () }
((b % n) + (x % n)) % n;
( == ) { modulo_distributivity b x n }
(b + x) % n;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.modulo_distributivity",
"Prims.squash"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
}
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
let pow2_modulo_division_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_division_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
let pow2_modulo_division_lemma_2 a b c =
pow2_le_compat b c;
small_division_lemma_1 (a % pow2 c) (pow2 b)
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
let pow2_modulo_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c )
let pow2_modulo_modulo_lemma_2 a b c =
pow2_le_compat b c;
small_modulo_lemma_1 (a % pow2 c) (pow2 b)
val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p))
let modulo_add p a b c =
modulo_distributivity a b p;
modulo_distributivity a c p
val lemma_mod_twice : a:int -> p:pos -> Lemma ((a % p) % p == a % p)
let lemma_mod_twice a p = lemma_mod_mod (a % p) a p
val modulo_sub : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires ((a + b) % p = (a + c) % p))
(ensures (b % p = c % p))
let modulo_sub p a b c =
modulo_add p (-a) (a + b) (a + c)
val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n) | [] | FStar.Math.Lemmas.mod_add_both | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> x: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (requires a % n == b % n) (ensures (a + x) % n == (b + x) % n) | {
"end_col": 3,
"end_line": 904,
"start_col": 2,
"start_line": 896
} |
FStar.Pervasives.Lemma | val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
} | val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c = | false | null | true | calc ( == ) {
a * (b + c);
( == ) { () }
(b + c) * a;
( == ) { distributivity_add_left b c a }
b * a + c * a;
( == ) { () }
a * b + a * c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c) | [] | FStar.Math.Lemmas.distributivity_add_right | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma (ensures a * (b + c) = a * b + a * c) | {
"end_col": 3,
"end_line": 89,
"start_col": 2,
"start_line": 81
} |
FStar.Pervasives.Lemma | val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_le_compat n m =
if m < n then pow2_lt_compat n m | val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m = | false | null | true | if m < n then pow2_lt_compat n m | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.op_LessThan",
"FStar.Math.Lemmas.pow2_lt_compat",
"Prims.bool",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n)) | [] | FStar.Math.Lemmas.pow2_le_compat | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | n: Prims.nat -> m: Prims.nat
-> FStar.Pervasives.Lemma (requires m <= n) (ensures Prims.pow2 m <= Prims.pow2 n) | {
"end_col": 34,
"end_line": 245,
"start_col": 2,
"start_line": 245
} |
FStar.Pervasives.Lemma | val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_double_mult n = pow2_double_sum n | val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = | false | null | true | pow2_double_sum n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.pow2_double_sum",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = () | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1)) | [] | FStar.Math.Lemmas.pow2_double_mult | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | n: Prims.nat -> FStar.Pervasives.Lemma (ensures 2 * Prims.pow2 n = Prims.pow2 (n + 1)) | {
"end_col": 42,
"end_line": 229,
"start_col": 25,
"start_line": 229
} |
FStar.Pervasives.Lemma | val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n | val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n = | false | null | true | lemma_mod_plus a (- 1) n;
lemma_div_plus a (- 1) n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_div_plus",
"Prims.op_Minus",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_plus"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1) | [] | FStar.Math.Lemmas.sub_div_mod_1 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a - n) % n == a % n /\ (a - n) / n == a / n - 1) | {
"end_col": 27,
"end_line": 355,
"start_col": 4,
"start_line": 354
} |
FStar.Pervasives.Lemma | val lemma_div_mod_plus (a k: int) (n: pos)
: Lemma ((a + k * n) / n = a / n + k /\ (a + k * n) % n = a % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n | val lemma_div_mod_plus (a k: int) (n: pos)
: Lemma ((a + k * n) / n = a / n + k /\ (a + k * n) % n = a % n)
let lemma_div_mod_plus (a k: int) (n: pos)
: Lemma ((a + k * n) / n = a / n + k /\ (a + k * n) % n = a % n) = | false | null | true | lemma_div_plus a k n;
lemma_mod_plus a k n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.unit",
"FStar.Math.Lemmas.lemma_div_plus",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.op_Division",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\ | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div_mod_plus (a k: int) (n: pos)
: Lemma ((a + k * n) / n = a / n + k /\ (a + k * n) % n = a % n) | [] | FStar.Math.Lemmas.lemma_div_mod_plus | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> k: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + k * n) / n = a / n + k /\ (a + k * n) % n = a % n) | {
"end_col": 24,
"end_line": 345,
"start_col": 4,
"start_line": 344
} |
FStar.Pervasives.Lemma | val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n | val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a: int) (n: pos) = | false | null | true | small_mod 0 n;
lemma_mod_plus 0 a n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.unit",
"FStar.Math.Lemmas.small_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0) | [] | FStar.Math.Lemmas.cancel_mul_mod | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures a * n % n == 0) | {
"end_col": 22,
"end_line": 367,
"start_col": 2,
"start_line": 366
} |
FStar.Pervasives.Lemma | val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
} | val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c = | false | null | true | calc ( == ) {
(a - b) * c;
( == ) { () }
(a + (- b)) * c;
( == ) { distributivity_add_left a (- b) c }
a * c + (- b) * c;
( == ) { neg_mul_left b c }
a * c - b * c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"Prims.op_Minus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.neg_mul_left"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c) | [] | FStar.Math.Lemmas.distributivity_sub_left | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma (ensures (a - b) * c = a * c - b * c) | {
"end_col": 3,
"end_line": 153,
"start_col": 2,
"start_line": 145
} |
FStar.Pervasives.Lemma | val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c | val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c = | false | null | true | distributivity_sub_right a b c | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"FStar.Math.Lemmas.distributivity_sub_right",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c)) | [] | FStar.Math.Lemmas.lemma_mul_sub_distr | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma (ensures a * b - a * c = a * (b - c)) | {
"end_col": 32,
"end_line": 445,
"start_col": 2,
"start_line": 445
} |
FStar.Pervasives.Lemma | val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
} | val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c = | false | null | true | calc ( == ) {
a * (b - c);
( == ) { () }
a * (b + (- c));
( == ) { distributivity_add_right a b (- c) }
a * b + a * (- c);
( == ) { neg_mul_right a c }
a * b - a * c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"Prims.op_Minus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_right",
"FStar.Math.Lemmas.neg_mul_right"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c)) | [] | FStar.Math.Lemmas.distributivity_sub_right | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma (ensures a * (b - c) = a * b - a * c) | {
"end_col": 3,
"end_line": 167,
"start_col": 2,
"start_line": 159
} |
FStar.Pervasives.Lemma | val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_exact_r (a:int) (n:pos) = lemma_div_exact a n | val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a: int) (n: pos) = | false | null | true | lemma_div_exact a n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_div_exact",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n)) | [] | FStar.Math.Lemmas.div_exact_r | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (requires a % n = 0) (ensures a = (a / n) * n) | {
"end_col": 53,
"end_line": 455,
"start_col": 34,
"start_line": 455
} |
FStar.Pervasives.Lemma | val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p | val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p = | false | null | true | lemma_mod_plus_distr_l b a p | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p) | [] | FStar.Math.Lemmas.lemma_mod_plus_distr_r | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> p: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + b) % p = (a + b % p) % p) | {
"end_col": 30,
"end_line": 490,
"start_col": 2,
"start_line": 490
} |
FStar.Pervasives.Lemma | val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
} | val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a b: int) (n: pos) = | false | null | true | calc ( == ) {
(a * b) % n;
( == ) { swap_mul a b }
(b * a) % n;
( == ) { lemma_mod_mul_distr_l b a n }
((b % n) * a) % n;
( == ) { swap_mul a (b % n) }
(a * (b % n)) % n;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.swap_mul",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n) | [] | FStar.Math.Lemmas.lemma_mod_mul_distr_r | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures a * b % n = a * (b % n) % n) | {
"end_col": 3,
"end_line": 435,
"start_col": 2,
"start_line": 427
} |
FStar.Pervasives.Lemma | val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p | val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p = | false | null | true | lemma_mod_lt b p;
modulo_lemma (b % p) p | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.op_Modulus",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_lt"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p)) | [] | FStar.Math.Lemmas.lemma_mod_mod | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> p: Prims.pos
-> FStar.Pervasives.Lemma (requires a = b % p) (ensures a % p = b % p) | {
"end_col": 24,
"end_line": 497,
"start_col": 2,
"start_line": 496
} |
FStar.Pervasives.Lemma | val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
} | val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p = | false | null | true | calc ( == ) {
(a % p) + ((a - (a % p)) / p) * p;
( == ) { lemma_mod_spec a p }
(a % p) + (a / p) * p;
( == ) { lemma_div_mod a p }
a;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Addition",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_spec",
"Prims.squash",
"FStar.Math.Lemmas.lemma_div_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p) | [] | FStar.Math.Lemmas.lemma_mod_spec2 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> p: Prims.pos
-> FStar.Pervasives.Lemma
(ensures
(let q = (a - a % p) / p in
a = a % p + q * p)) | {
"end_col": 3,
"end_line": 478,
"start_col": 2,
"start_line": 472
} |
FStar.Pervasives.Lemma | val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n | val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a: int) (n: nonzero) = | false | null | true | cancel_mul_div a n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nonzero",
"FStar.Math.Lemmas.cancel_mul_div",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a) | [] | FStar.Math.Lemmas.multiple_division_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.nonzero -> FStar.Pervasives.Lemma (ensures a * n / n = a) | {
"end_col": 68,
"end_line": 564,
"start_col": 50,
"start_line": 564
} |
FStar.Pervasives.Lemma | val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p | val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p = | false | null | true | let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.op_Addition",
"Prims.op_Modulus",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_spec2",
"Prims.op_Division",
"Prims.op_Subtraction"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p) | [] | FStar.Math.Lemmas.lemma_mod_plus_distr_l | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> p: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + b) % p = (a % p + b) % p) | {
"end_col": 32,
"end_line": 485,
"start_col": 34,
"start_line": 482
} |
FStar.Pervasives.Lemma | val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n | val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a k: int) (n: pos) = | false | null | true | calc ( == ) {
n * ((a + k * n) / n - a / n);
( == ) { distributivity_sub_right n ((a + k * n) / n) (a / n) }
n * ((a + k * n) / n) - n * (a / n);
( == ) { (lemma_div_mod (a + k * n) n;
lemma_div_mod a n) }
(a + k * n - (a + k * n) % n) - (a - a % n);
( == ) { () }
k * n - (a + k * n) % n + a % n;
( == ) { lemma_mod_plus a k n }
k * n;
};
lemma_cancel_mul ((a + k * n) / n - a / n) k n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_cancel_mul",
"Prims.op_Subtraction",
"Prims.op_Division",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Modulus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.distributivity_sub_right",
"Prims.squash",
"FStar.Math.Lemmas.lemma_div_mod",
"FStar.Math.Lemmas.lemma_mod_plus"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k) | [] | FStar.Math.Lemmas.lemma_div_plus | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> k: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + k * n) / n = a / n + k) | {
"end_col": 40,
"end_line": 340,
"start_col": 2,
"start_line": 329
} |
FStar.Pervasives.Lemma | val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
} | val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b = | false | null | true | calc ( == ) {
(- a) % b;
( == ) { lemma_mod_plus (- a) 1 b }
((- a) + 1 * b) % b;
( == ) { () }
(b - a) % b;
( == ) { small_mod (b - a) b }
b - a;
( == ) { small_mod a b }
b - a % b;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Minus",
"Prims.op_Subtraction",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.squash",
"FStar.Math.Lemmas.small_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b)) | [] | FStar.Math.Lemmas.lemma_mod_sub_1 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.pos -> b: Prims.pos{a < b} -> FStar.Pervasives.Lemma (ensures (- a) % b = b - a % b) | {
"end_col": 3,
"end_line": 406,
"start_col": 2,
"start_line": 396
} |
FStar.Pervasives.Lemma | val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b | val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m = | false | null | true | division_propriety a b;
multiplication_order_lemma (a / b + 1) m b | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.multiplication_order_lemma",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.unit",
"FStar.Math.Lemmas.division_propriety"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1) | [] | FStar.Math.Lemmas.division_definition_lemma_2 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> m: Prims.int{m * b <= a}
-> FStar.Pervasives.Lemma (ensures m < a / b + 1) | {
"end_col": 44,
"end_line": 553,
"start_col": 2,
"start_line": 552
} |
FStar.Pervasives.Lemma | val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
() | val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a k: int) (n: pos) = | false | null | true | calc ( == ) {
(a + k * n) % n - a % n;
( == ) { (lemma_div_mod a n;
lemma_div_mod (a + k * n) n) }
((a + k * n) - n * ((a + k * n) / n)) - (a - n * (a / n));
( == ) { () }
n * k + n * (a / n) - n * ((a + k * n) / n);
( == ) { (distributivity_add_right n k (a / n);
distributivity_sub_right n (k + a / n) ((a + k * n) / n)) }
n * (k + a / n - (a + k * n) / n);
};
lt_multiple_is_equal ((a + k * n) % n) (a % n) (k + a / n - (a + k * n) / n) n;
() | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"Prims.unit",
"FStar.Math.Lemmas.lt_multiple_is_equal",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.op_Division",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_sub_right",
"FStar.Math.Lemmas.distributivity_add_right"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n) | [] | FStar.Math.Lemmas.lemma_mod_plus | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> k: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + k * n) % n = a % n) | {
"end_col": 4,
"end_line": 325,
"start_col": 2,
"start_line": 314
} |
FStar.Pervasives.Lemma | val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
} | val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n = | false | null | true | calc ( == ) {
(a * b) % n;
( == ) { lemma_div_mod a n }
((n * (a / n) + a % n) * b) % n;
( == ) { distributivity_add_left (n * (a / n)) (a % n) b }
((n * (a / n)) * b + (a % n) * b) % n;
( == ) { (paren_mul_right n (a / n) b;
swap_mul ((a / n) * b) n) }
((a % n) * b + ((a / n) * b) * n) % n;
( == ) { lemma_mod_plus ((a % n) * b) ((a / n) * b) n }
((a % n) * b) % n;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"Prims.op_Division",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.swap_mul",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.lemma_mod_plus"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n) | [] | FStar.Math.Lemmas.lemma_mod_mul_distr_l | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures a * b % n = (a % n) * b % n) | {
"end_col": 3,
"end_line": 423,
"start_col": 2,
"start_line": 413
} |
FStar.Pervasives.Lemma | val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n ) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n) | val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = | false | null | true | division_definition (a + n * b) b (a / b + n) | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.division_definition",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int -> | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n ) | [] | FStar.Math.Lemmas.division_addition_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> n: Prims.int
-> FStar.Pervasives.Lemma (ensures (a + n * b) / b = a / b + n) | {
"end_col": 81,
"end_line": 573,
"start_col": 36,
"start_line": 573
} |
FStar.Pervasives.Lemma | val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n | val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a: int) (n: pos) = | false | null | true | cancel_mul_mod a n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.cancel_mul_mod",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0) | [] | FStar.Math.Lemmas.multiple_modulo_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.pos -> FStar.Pervasives.Lemma (ensures a * n % n = 0) | {
"end_col": 62,
"end_line": 568,
"start_col": 44,
"start_line": 568
} |
FStar.Pervasives.Lemma | val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n | val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a: int) (n: pos) (b: int) = | false | null | true | neg_mul_left b n;
lemma_mod_plus a (- b) n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.op_Minus",
"Prims.unit",
"FStar.Math.Lemmas.neg_mul_left"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n) | [] | FStar.Math.Lemmas.lemma_mod_sub | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.pos -> b: Prims.int
-> FStar.Pervasives.Lemma (ensures (a - b * n) % n = a % n) | {
"end_col": 25,
"end_line": 631,
"start_col": 2,
"start_line": 630
} |
FStar.Pervasives.Lemma | val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
} | val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c = | false | null | true | calc ( == ) {
(a + b) % c;
( == ) { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
( == ) { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c) | [] | FStar.Math.Lemmas.modulo_distributivity | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a + b) % c == (a % c + b % c) % c) | {
"end_col": 3,
"end_line": 584,
"start_col": 2,
"start_line": 578
} |
FStar.Pervasives.Lemma | val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1)) | val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a: int) (m: pos)
: Lemma (requires a % pow2 m == 0) (ensures (a / 2) % pow2 (m - 1) == 0) = | false | null | true | mod_mul_div_exact a 2 (pow2 (m - 1)) | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.mod_mul_div_exact",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.squash",
"Prims.op_Division",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0) | [] | FStar.Math.Lemmas.mod_pow2_div2 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> m: Prims.pos
-> FStar.Pervasives.Lemma (requires a % Prims.pow2 m == 0)
(ensures a / 2 % Prims.pow2 (m - 1) == 0) | {
"end_col": 38,
"end_line": 675,
"start_col": 2,
"start_line": 675
} |
FStar.Pervasives.Lemma | val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
() | val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
let lemma_mod_mult_zero a b c = | false | null | true | lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
() | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"Prims.unit",
"FStar.Math.Lemmas.nat_over_pos_is_nat",
"Prims.op_Division",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.lemma_div_lt_cancel",
"FStar.Math.Lemmas.lemma_mod_lt"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c = | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0) | [] | FStar.Math.Lemmas.lemma_mod_mult_zero | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures a % (b * c) / b / c == 0) | {
"end_col": 4,
"end_line": 705,
"start_col": 2,
"start_line": 698
} |
FStar.Pervasives.Lemma | val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c) | val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c = | false | null | true | pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c) | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.multiple_division_lemma",
"Prims.pow2",
"Prims.unit",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.pow2_plus"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c)) | [] | FStar.Math.Lemmas.pow2_multiplication_division_lemma_2 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.nat -> c: Prims.nat{c <= b}
-> FStar.Pervasives.Lemma (ensures a * Prims.pow2 c / Prims.pow2 b = a / Prims.pow2 (b - c)) | {
"end_col": 36,
"end_line": 827,
"start_col": 2,
"start_line": 825
} |
FStar.Pervasives.Lemma | val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
} | val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a: int) (n q: pos) = | false | null | true | calc ( == ) {
a % n;
( == ) { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
( == ) { () }
((n * q) * (a / (n * q))) % n;
( == ) { (paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q)))) }
((q * (a / (n * q))) * n) % n;
( == ) { multiple_modulo_lemma (q * (a / (n * q))) n }
0;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.swap_mul",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.multiple_modulo_lemma"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0) | [] | FStar.Math.Lemmas.mod_mult_exact | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> n: Prims.pos -> q: Prims.pos
-> FStar.Pervasives.Lemma (requires a % (n * q) == 0) (ensures a % n == 0) | {
"end_col": 3,
"end_line": 649,
"start_col": 2,
"start_line": 638
} |
FStar.Pervasives.Lemma | val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 ) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b) | val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c = | false | null | true | pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b) | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.Math.Lemmas.multiple_modulo_lemma",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_left",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.pow2_plus"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 ) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 ) | [] | FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.nat -> c: Prims.nat{c >= b}
-> FStar.Pervasives.Lemma (ensures a * Prims.pow2 c % Prims.pow2 b = 0) | {
"end_col": 51,
"end_line": 835,
"start_col": 2,
"start_line": 832
} |
FStar.Pervasives.Lemma | val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
} | val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
let cancel_fraction a b c = | false | null | true | calc ( == ) {
(a * c) / (b * c);
( == ) { swap_mul b c }
(a * c) / (c * b);
( == ) { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
( == ) { cancel_mul_div a c }
a / b;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.swap_mul",
"Prims.squash",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.cancel_mul_div"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b) | [] | FStar.Math.Lemmas.cancel_fraction | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures a * c / (b * c) == a / b) | {
"end_col": 3,
"end_line": 735,
"start_col": 2,
"start_line": 727
} |
FStar.Pervasives.Lemma | val lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) : Lemma
(requires b < n /\ c < n /\ (a + b) % n = (a + c) % n)
(ensures b = c) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) =
small_mod b n;
small_mod c n;
mod_add_both (a + b) (a + c) (-a) n | val lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) : Lemma
(requires b < n /\ c < n /\ (a + b) % n = (a + c) % n)
(ensures b = c)
let lemma_mod_plus_injective (n: pos) (a: int) (b c: nat) = | false | null | true | small_mod b n;
small_mod c n;
mod_add_both (a + b) (a + c) (- a) n | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"Prims.nat",
"FStar.Math.Lemmas.mod_add_both",
"Prims.op_Addition",
"Prims.op_Minus",
"Prims.unit",
"FStar.Math.Lemmas.small_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
}
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
let pow2_modulo_division_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_division_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
let pow2_modulo_division_lemma_2 a b c =
pow2_le_compat b c;
small_division_lemma_1 (a % pow2 c) (pow2 b)
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
let pow2_modulo_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c )
let pow2_modulo_modulo_lemma_2 a b c =
pow2_le_compat b c;
small_modulo_lemma_1 (a % pow2 c) (pow2 b)
val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p))
let modulo_add p a b c =
modulo_distributivity a b p;
modulo_distributivity a c p
val lemma_mod_twice : a:int -> p:pos -> Lemma ((a % p) % p == a % p)
let lemma_mod_twice a p = lemma_mod_mod (a % p) a p
val modulo_sub : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires ((a + b) % p = (a + c) % p))
(ensures (b % p = c % p))
let modulo_sub p a b c =
modulo_add p (-a) (a + b) (a + c)
val mod_add_both (a:int) (b:int) (x:int) (n:pos) : Lemma
(requires a % n == b % n)
(ensures (a + x) % n == (b + x) % n)
let mod_add_both (a:int) (b:int) (x:int) (n:pos) =
calc (==) {
(a + x) % n;
== { modulo_distributivity a x n }
((a % n) + (x % n)) % n;
== { (* hyp *) }
((b % n) + (x % n)) % n;
== { modulo_distributivity b x n }
(b + x) % n;
}
val lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) : Lemma
(requires b < n /\ c < n /\ (a + b) % n = (a + c) % n)
(ensures b = c) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mod_plus_injective (n:pos) (a:int) (b:nat) (c:nat) : Lemma
(requires b < n /\ c < n /\ (a + b) % n = (a + c) % n)
(ensures b = c) | [] | FStar.Math.Lemmas.lemma_mod_plus_injective | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | n: Prims.pos -> a: Prims.int -> b: Prims.nat -> c: Prims.nat
-> FStar.Pervasives.Lemma (requires b < n /\ c < n /\ (a + b) % n = (a + c) % n) (ensures b = c) | {
"end_col": 37,
"end_line": 912,
"start_col": 2,
"start_line": 910
} |
FStar.Pervasives.Lemma | val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c ) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let pow2_modulo_modulo_lemma_2 a b c =
pow2_le_compat b c;
small_modulo_lemma_1 (a % pow2 c) (pow2 b) | val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c )
let pow2_modulo_modulo_lemma_2 a b c = | false | null | true | pow2_le_compat b c;
small_modulo_lemma_1 (a % pow2 c) (pow2 b) | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.small_modulo_lemma_1",
"Prims.op_Modulus",
"Prims.pow2",
"Prims.unit",
"FStar.Math.Lemmas.pow2_le_compat"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
}
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
let pow2_modulo_division_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_division_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
let pow2_modulo_division_lemma_2 a b c =
pow2_le_compat b c;
small_division_lemma_1 (a % pow2 c) (pow2 b)
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
let pow2_modulo_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c ) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c ) | [] | FStar.Math.Lemmas.pow2_modulo_modulo_lemma_2 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.nat -> c: Prims.nat{c <= b}
-> FStar.Pervasives.Lemma (ensures a % Prims.pow2 c % Prims.pow2 b = a % Prims.pow2 c) | {
"end_col": 44,
"end_line": 873,
"start_col": 2,
"start_line": 872
} |
FStar.Pervasives.Lemma | val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_add p a b c =
modulo_distributivity a b p;
modulo_distributivity a c p | val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p))
let modulo_add p a b c = | false | null | true | modulo_distributivity a b p;
modulo_distributivity a c p | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"FStar.Math.Lemmas.modulo_distributivity",
"Prims.unit"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
}
val pow2_multiplication_division_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) / pow2 b = a * pow2 (c - b))
let pow2_multiplication_division_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_division_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) / pow2 b = a / pow2 (b - c))
let pow2_multiplication_division_lemma_2 a b c =
pow2_plus c (b - c);
division_multiplication_lemma (a * pow2 c) (pow2 c) (pow2 (b - c));
multiple_division_lemma a (pow2 c)
val pow2_multiplication_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a * pow2 c) % pow2 b = 0 )
let pow2_multiplication_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
paren_mul_right a (pow2 (c - b)) (pow2 b);
paren_mul_left a (pow2 (c - b)) (pow2 b);
multiple_modulo_lemma (a * pow2 (c - b)) (pow2 b)
val pow2_multiplication_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a * pow2 c) % pow2 b = (a % pow2 (b - c)) * pow2 c )
let pow2_multiplication_modulo_lemma_2 a b c =
calc (==) {
(a * pow2 c) % pow2 b;
== {}
(a * pow2 c) % pow2 (c + (b-c));
== { pow2_plus c (b-c) }
(a * pow2 c) % (pow2 c * pow2 (b-c));
== { modulo_scale_lemma a (pow2 c) (pow2 (b-c)) }
(a % pow2 (b - c)) * pow2 c;
}
val pow2_modulo_division_lemma_1: a:nat -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) / pow2 b = (a / pow2 b) % (pow2 (c - b)) )
let pow2_modulo_division_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_division_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_division_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) / pow2 b = 0 )
let pow2_modulo_division_lemma_2 a b c =
pow2_le_compat b c;
small_division_lemma_1 (a % pow2 c) (pow2 b)
val pow2_modulo_modulo_lemma_1: a:int -> b:nat -> c:nat{c >= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 b )
let pow2_modulo_modulo_lemma_1 a b c =
pow2_plus (c - b) b;
modulo_modulo_lemma a (pow2 b) (pow2 (c - b))
val pow2_modulo_modulo_lemma_2: a:int -> b:nat -> c:nat{c <= b} ->
Lemma ( (a % pow2 c) % pow2 b = a % pow2 c )
let pow2_modulo_modulo_lemma_2 a b c =
pow2_le_compat b c;
small_modulo_lemma_1 (a % pow2 c) (pow2 b)
val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_add : p:pos -> a:int -> b:int -> c:int -> Lemma
(requires (b % p = c % p))
(ensures ((a + b) % p = (a + c) % p)) | [] | FStar.Math.Lemmas.modulo_add | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | p: Prims.pos -> a: Prims.int -> b: Prims.int -> c: Prims.int
-> FStar.Pervasives.Lemma (requires b % p = c % p) (ensures (a + b) % p = (a + c) % p) | {
"end_col": 29,
"end_line": 880,
"start_col": 2,
"start_line": 879
} |
FStar.Pervasives.Lemma | val modulo_division_lemma_0 (a: nat) (b c: pos)
: Lemma (a / (b * c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
() | val modulo_division_lemma_0 (a: nat) (b c: pos)
: Lemma (a / (b * c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
let modulo_division_lemma_0 (a: nat) (b c: pos)
: Lemma (a / (b * c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c)) = | false | null | true | slash_decr_axiom a (b * c);
calc ( == ) {
(a / (b * c)) * (b * c);
( == ) { swap_mul b c }
(a / (b * c)) * (c * b);
( == ) { paren_mul_right (a / (b * c)) c b }
((a / (b * c)) * c) * b;
};
cut ((a / (b * c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b * c);
division_sub_lemma a b ((a / (b * c)) * c);
() | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.pos",
"Prims.unit",
"FStar.Math.Lemmas.division_sub_lemma",
"FStar.Mul.op_Star",
"Prims.op_Division",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.cut",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.swap_mul",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lib.slash_decr_axiom",
"Prims.l_True",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"FStar.Pervasives.pattern"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_division_lemma_0 (a: nat) (b c: pos)
: Lemma (a / (b * c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c)) | [] | FStar.Math.Lemmas.modulo_division_lemma_0 | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.nat -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma
(ensures a / (b * c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - (a / (b * c)) * c) | {
"end_col": 6,
"end_line": 769,
"start_col": 4,
"start_line": 758
} |
FStar.Pervasives.Lemma | val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
} | val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c = | false | null | true | calc ( == ) {
(a * b) % (b * c);
( == ) { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
( == ) { cancel_fraction a c b }
a * b - (b * c) * (a / c);
( == ) { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
( == ) { (swap_mul b (c * (a / c));
distributivity_sub_left a (c * (a / c)) b) }
(a - c * (a / c)) * b;
( == ) { lemma_div_mod a c }
(a % c) * b;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"Prims.op_Division",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.cancel_fraction",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.swap_mul"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b) | [] | FStar.Math.Lemmas.modulo_scale_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures a * b % (b * c) == (a % c) * b) | {
"end_col": 3,
"end_line": 751,
"start_col": 2,
"start_line": 739
} |
FStar.Pervasives.Lemma | val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
} | val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a: int) (b c: pos) = | false | null | true | calc ( == ) {
a / b / c;
( == ) { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
( == ) { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
( == ) { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
( == ) { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
( == ) { lemma_mod_mult_zero a b c }
a / (b * c);
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"Prims.op_Modulus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.lemma_div_plus",
"FStar.Math.Lemmas.lemma_mod_mult_zero"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c) | [] | FStar.Math.Lemmas.division_multiplication_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures a / (b * c) = a / b / c) | {
"end_col": 3,
"end_line": 723,
"start_col": 2,
"start_line": 711
} |
FStar.Pervasives.Lemma | val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
} | val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c = | false | null | true | calc ( == ) {
(a % (b * c)) / b;
( == ) { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
( == ) { (paren_mul_right b c ((a / (b * c)));
neg_mul_right b (c * (a / (b * c)))) }
(a + b * (- (c * (a / (b * c))))) / b;
( == ) { lemma_div_plus a (- (c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
( == ) { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
( == ) { lemma_div_mod (a / b) c }
(a / b) % c;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Division",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Prims.op_Minus",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.neg_mul_right",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.lemma_div_plus",
"FStar.Math.Lemmas.division_multiplication_lemma"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c) | [] | FStar.Math.Lemmas.modulo_division_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.nat -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures a % (b * c) / b = a / b % c) | {
"end_col": 3,
"end_line": 787,
"start_col": 2,
"start_line": 775
} |
FStar.Pervasives.Lemma | val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d)) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
} | val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d = | false | null | true | calc ( ==> ) {
(a <= b) <: Type0;
( ==> ) { (lemma_div_mod a d;
lemma_div_mod b d) }
d * (a / d) + a % d <= d * (b / d) + b % d;
( ==> ) { () }
d * (a / d) - d * (b / d) <= b % d - a % d;
( ==> ) { () }
d * (a / d - b / d) <= b % d - a % d;
( ==> ) { () }
d * (a / d - b / d) < d;
( ==> ) { () }
a / d - b / d <= 0;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.logical",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Calc.calc_push_impl",
"Prims.squash",
"FStar.Math.Lemmas.lemma_div_mod"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d)) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d)) | [] | FStar.Math.Lemmas.lemma_div_le | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.int -> d: Prims.pos
-> FStar.Pervasives.Lemma (requires a <= b) (ensures a / d <= b / d) | {
"end_col": 3,
"end_line": 602,
"start_col": 2,
"start_line": 590
} |
FStar.Pervasives.Lemma | val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b) | [
{
"abbrev": false,
"full_module": "FStar.Math.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let modulo_modulo_lemma (a:int) (b:pos) (c:pos) =
pos_times_pos_is_pos b c;
calc (==) {
(a % (b * c)) % b;
== { calc (==) {
a % (b * c);
== { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
== { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
}}
(a - b * (c * (a / (b * c)))) % b;
== { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
== { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (-c * (a / (b * c))))) % b;
== { () }
(a + (-c * (a / (b * c))) * b) % b;
== { lemma_mod_plus a (-c * (a / (b * c))) b}
a % b;
} | val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b)
let modulo_modulo_lemma (a: int) (b c: pos) = | false | null | true | pos_times_pos_is_pos b c;
calc ( == ) {
(a % (b * c)) % b;
( == ) { calc ( == ) {
a % (b * c);
( == ) { lemma_div_mod a (b * c) }
a - (b * c) * (a / (b * c));
( == ) { paren_mul_right b c (a / (b * c)) }
a - b * (c * (a / (b * c)));
} }
(a - b * (c * (a / (b * c)))) % b;
( == ) { () }
(a + (- (b * (c * (a / (b * c)))))) % b;
( == ) { neg_mul_right b (c * (a / (b * c))) }
(a + (b * (- c * (a / (b * c))))) % b;
( == ) { () }
(a + (- c * (a / (b * c))) * b) % b;
( == ) { lemma_mod_plus a (- c * (a / (b * c))) b }
a % b;
} | {
"checked_file": "FStar.Math.Lemmas.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Math.Lemmas.fst"
} | [
"lemma"
] | [
"Prims.int",
"Prims.pos",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"Prims.op_Minus",
"Prims.op_Division",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_div_mod",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.neg_mul_right",
"FStar.Math.Lemmas.lemma_mod_plus",
"FStar.Math.Lemmas.pos_times_pos_is_pos"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Math.Lemmas
open FStar.Mul
open FStar.Math.Lib
#push-options "--fuel 0 --ifuel 0"
(* Lemma: definition of Euclidean division *)
val euclidean_div_axiom: a:int -> b:pos -> Lemma
(a - b * (a / b) >= 0 /\ a - b * (a / b) < b)
let euclidean_div_axiom a b = ()
val lemma_eucl_div_bound: a:int -> b:int -> q:int -> Lemma
(requires (a < q))
(ensures (a + q * b < q * (b+1)))
let lemma_eucl_div_bound a b q = ()
val lemma_mult_le_left: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (a * b <= a * c))
let lemma_mult_le_left a b c = ()
val lemma_mult_le_right: a:nat -> b:int -> c:int -> Lemma
(requires (b <= c))
(ensures (b * a <= c * a))
let lemma_mult_le_right a b c = ()
val lemma_mult_lt_left: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (a * b < a * c))
let lemma_mult_lt_left a b c = ()
val lemma_mult_lt_right: a:pos -> b:int -> c:int -> Lemma
(requires (b < c))
(ensures (b * a < c * a))
let lemma_mult_lt_right a b c = ()
let lemma_mult_lt_sqr (n:nat) (m:nat) (k:nat{n < k && m < k})
: Lemma (n * m < k * k) =
calc (<=) {
n * m;
<= { lemma_mult_le_left n m (k - 1) }
n * (k - 1);
<= { lemma_mult_le_right (k - 1) n (k - 1) }
(k - 1) * (k - 1);
<= {}
k*k - 1;
}
(* Lemma: multiplication on integers is commutative *)
val swap_mul: a:int -> b:int -> Lemma (a * b = b * a)
let swap_mul a b = ()
val lemma_cancel_mul (a b : int) (n : pos) : Lemma (requires (a * n = b * n)) (ensures (a = b))
let lemma_cancel_mul a b n = ()
(* Lemma: multiplication is right distributive over addition *)
val distributivity_add_left: a:int -> b:int -> c:int -> Lemma
((a + b) * c = a * c + b * c)
let distributivity_add_left a b c = ()
(* Lemma: multiplication is left distributive over addition *)
val distributivity_add_right: a:int -> b:int -> c:int -> Lemma
(a * (b + c) = a * b + a * c)
let distributivity_add_right a b c =
calc (==) {
a * (b + c);
== {}
(b + c) * a;
== { distributivity_add_left b c a }
b * a + c * a;
== {}
a * b + a * c;
}
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
(* GM: This is really just an identity since the LHS is associated to the left *)
val paren_mul_left: a:int -> b:int -> c:int -> Lemma
(a * b * c = (a * b) * c)
let paren_mul_left a b c = ()
(* Lemma: multiplication is associative, hence parenthesizing is meaningless *)
val paren_mul_right: a:int -> b:int -> c:int -> Lemma
(a * b * c = a * (b * c))
let paren_mul_right a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_left: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c)
let paren_add_left a b c = ()
(* Lemma: addition is associative, hence parenthesizing is meaningless *)
val paren_add_right: a:int -> b:int -> c:int -> Lemma
(a + b + c = a + (b + c))
let paren_add_right a b c = ()
val addition_is_associative: a:int -> b:int -> c:int -> Lemma
(a + b + c = (a + b) + c /\ a + b + c = a + (b + c))
let addition_is_associative a b c = ()
val subtraction_is_distributive: a:int -> b:int -> c:int -> Lemma
(a - b + c = (a - b) + c /\
a - b - c = a - (b + c) /\
a - b - c = (a - b) - c /\
a + (-b - c) = a - b - c /\
a - (b - c) = a - b + c)
let subtraction_is_distributive a b c = ()
val swap_add_plus_minus: a:int -> b:int -> c:int -> Lemma
(a + b - c = (a - c) + b)
let swap_add_plus_minus a b c = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_left: a:int -> b:int -> Lemma (-(a * b) = (-a) * b)
let neg_mul_left a b = ()
(* Lemma: minus applies to the whole term *)
val neg_mul_right: a:int -> b:int -> Lemma (-(a * b) = a * (-b))
let neg_mul_right a b = ()
val swap_neg_mul: a:int -> b:int -> Lemma ((-a) * b = a * (-b))
let swap_neg_mul a b =
neg_mul_left a b;
neg_mul_right a b
(* Lemma: multiplication is left distributive over subtraction *)
val distributivity_sub_left: a:int -> b:int -> c:int ->
Lemma ((a - b) * c = a * c - b * c)
let distributivity_sub_left a b c =
calc (==) {
(a - b) * c;
== {}
(a + (-b)) * c;
== { distributivity_add_left a (-b) c }
a * c + (-b) * c;
== { neg_mul_left b c }
a * c - b * c;
}
(* Lemma: multiplication is right distributive over subtraction *)
val distributivity_sub_right: a:int -> b:int -> c:int ->
Lemma ((a * (b - c) = a * b - a * c))
let distributivity_sub_right a b c =
calc (==) {
a * (b - c);
== {}
a * (b + (-c));
== { distributivity_add_right a b (-c) }
a * b + a * (-c);
== { neg_mul_right a c }
a * b - a * c;
}
(* Lemma: multiplication precedence on addition *)
val mul_binds_tighter: a:int -> b:int -> c:int -> Lemma (a + (b * c) = a + b * c)
let mul_binds_tighter a b c = ()
val lemma_abs_mul : a:int -> b:int -> Lemma (abs a * abs b = abs (a * b))
let lemma_abs_mul a b = ()
val lemma_abs_bound : a:int -> b:nat -> Lemma (abs a < b <==> -b < a /\ a < b)
let lemma_abs_bound a b = ()
(* Lemma: multiplication keeps symmetric bounds :
b > 0 && d > 0 && -b < a < b && -d < c < d ==> - b * d < a * c < b * d *)
val mul_ineq1: a:int -> b:nat -> c:int -> d:nat -> Lemma
(requires (-b < a /\ a < b /\
-d < c /\ c < d))
(ensures (-(b * d) < a * c /\ a * c < b * d))
let mul_ineq1 a b c d =
if a = 0 || c = 0 then ()
else begin
lemma_abs_bound a b;
lemma_abs_bound c d;
lemma_abs_mul a c;
lemma_mult_lt_left (abs a) (abs c) d;
lemma_mult_lt_right d (abs a) b;
lemma_abs_bound (a * c) (b * d);
()
end
(* Zero is neutral for addition *)
let add_zero_left_is_same (n : int) : Lemma(0 + n = n) = ()
let add_zero_right_is_same (n : int) : Lemma(n + 0 = n) = ()
(* One is neutral for multiplication *)
let mul_one_left_is_same (n : int) : Lemma(1 * n = n) = ()
let mul_one_right_is_same (n : int) : Lemma(n * 1 = n) = ()
(* Multiplying by zero gives zero *)
let mul_zero_left_is_zero (n : int) : Lemma(0 * n = 0) = ()
let mul_zero_right_is_zero (n : int) : Lemma(n * 0 = 0) = ()
val nat_times_nat_is_nat: a:nat -> b:nat -> Lemma (a * b >= 0)
let nat_times_nat_is_nat a b = ()
val pos_times_pos_is_pos: a:pos -> b:pos -> Lemma (a * b > 0)
let pos_times_pos_is_pos a b = ()
val nat_over_pos_is_nat: a:nat -> b:pos -> Lemma (a / b >= 0)
let nat_over_pos_is_nat a b = ()
val nat_plus_nat_equal_zero_lemma: a:nat -> b:nat{a + b = 0} -> Lemma(a = 0 /\ b = 0)
let nat_plus_nat_equal_zero_lemma a b = ()
val int_times_int_equal_zero_lemma: a:int -> b:int{a * b = 0} -> Lemma(a = 0 \/ b = 0)
let int_times_int_equal_zero_lemma a b = ()
#push-options "--fuel 1"
val pow2_double_sum: n:nat -> Lemma (pow2 n + pow2 n = pow2 (n + 1))
let pow2_double_sum n = ()
val pow2_double_mult: n:nat -> Lemma (2 * pow2 n = pow2 (n + 1))
let pow2_double_mult n = pow2_double_sum n
val pow2_lt_compat: n:nat -> m:nat -> Lemma
(requires (m < n))
(ensures (pow2 m < pow2 n))
(decreases m)
let rec pow2_lt_compat n m =
match m with
| 0 -> ()
| _ -> pow2_lt_compat (n-1) (m-1)
#pop-options
val pow2_le_compat: n:nat -> m:nat -> Lemma
(requires (m <= n))
(ensures (pow2 m <= pow2 n))
let pow2_le_compat n m =
if m < n then pow2_lt_compat n m
#push-options "--fuel 1"
val pow2_plus: n:nat -> m:nat -> Lemma
(ensures (pow2 n * pow2 m = pow2 (n + m)))
(decreases n)
let rec pow2_plus n m =
match n with
| 0 -> ()
| _ -> pow2_plus (n - 1) m
#pop-options
(* Lemma : definition of the exponential property of pow2 *)
val pow2_minus: n:nat -> m:nat{ n >= m } -> Lemma
((pow2 n) / (pow2 m) = pow2 (n - m))
let pow2_minus n m =
pow2_plus (n - m) m;
slash_star_axiom (pow2 (n - m)) (pow2 m) (pow2 n)
(* Lemma: loss of precision in euclidean division *)
val multiply_fractions (a:int) (n:nonzero) : Lemma (n * ( a / n ) <= a)
let multiply_fractions a n = ()
(** Same as `small_mod` *)
val modulo_lemma: a:nat -> b:pos -> Lemma (requires (a < b)) (ensures (a % b = a))
let modulo_lemma a b = ()
(** Same as `lemma_div_def` in Math.Lib *)
val lemma_div_mod: a:int -> p:nonzero -> Lemma (a = p * (a / p) + a % p)
let lemma_div_mod a p = ()
val lemma_mod_lt: a:int -> p:pos -> Lemma (0 <= a % p /\ a % p < p /\ (a >= 0 ==> a % p <= a))
let lemma_mod_lt a p = ()
val lemma_div_lt_nat: a:int -> n:nat -> m:nat{m <= n} ->
Lemma (requires (a < pow2 n))
(ensures (a / pow2 m < pow2 (n-m)))
let lemma_div_lt_nat a n m =
lemma_div_mod a (pow2 m);
assert(a = pow2 m * (a / pow2 m) + a % pow2 m);
pow2_plus m (n-m);
assert(pow2 n = pow2 m * pow2 (n - m))
val lemma_div_lt (a:int) (n:nat) (m:nat) : Lemma
(requires m <= n /\ a < pow2 n)
(ensures a / pow2 m < pow2 (n-m))
let lemma_div_lt a n m =
if a >= 0 then lemma_div_lt_nat a n m
val bounded_multiple_is_zero (x:int) (n:pos) : Lemma
(requires -n < x * n /\ x * n < n)
(ensures x == 0)
let bounded_multiple_is_zero (x:int) (n:pos) = ()
val small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0)
let small_div (a:nat) (n:pos) : Lemma (requires a < n) (ensures a / n == 0) = ()
val small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a)
let small_mod (a:nat) (n:pos) : Lemma (requires a < n) (ensures a % n == a) = ()
val lt_multiple_is_equal (a:nat) (b:nat) (x:int) (n:nonzero) : Lemma
(requires a < n /\ b < n /\ a == b + x * n)
(ensures a == b /\ x == 0)
let lt_multiple_is_equal a b x n =
assert (0 * n == 0);
bounded_multiple_is_zero x n
val lemma_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) % n = a % n)
let lemma_mod_plus (a:int) (k:int) (n:pos) =
calc (==) {
(a+k*n)%n - a%n;
== { lemma_div_mod a n; lemma_div_mod (a+k*n) n }
((a + k*n) - n*((a + k*n)/n)) - (a - n*(a/n));
== {}
n*k + n*(a/n) - n*((a + k*n)/n);
== { distributivity_add_right n k (a/n);
distributivity_sub_right n (k + a/n) ((a + k*n)/n) }
n * (k + a/n - (a+k*n)/n);
};
lt_multiple_is_equal ((a+k*n)%n) (a%n) (k + a/n - (a+k*n)/n) n;
()
val lemma_div_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k)
let lemma_div_plus (a:int) (k:int) (n:pos) =
calc (==) {
n * ((a+k*n)/n - a/n);
== { distributivity_sub_right n ((a+k*n)/n) (a/n) }
n * ((a+k*n)/n) - n*(a/n);
== { lemma_div_mod (a+k*n) n; lemma_div_mod a n }
(a + k*n - (a+k*n)%n) - (a - a%n);
== {}
k*n - (a+k*n)%n + a%n;
== { lemma_mod_plus a k n }
k*n;
};
lemma_cancel_mul ((a+k*n)/n - a/n) k n
let lemma_div_mod_plus (a:int) (k:int) (n:pos) : Lemma ((a + k * n) / n = a / n + k /\
(a + k * n) % n = a % n) =
lemma_div_plus a k n;
lemma_mod_plus a k n
val add_div_mod_1 (a:int) (n:pos) : Lemma ((a + n) % n == a % n /\ (a + n) / n == a / n + 1)
let add_div_mod_1 a n =
lemma_mod_plus a 1 n;
lemma_div_plus a 1 n
val sub_div_mod_1 (a:int) (n:pos) : Lemma ((a - n) % n == a % n /\ (a - n) / n == a / n - 1)
let sub_div_mod_1 a n =
lemma_mod_plus a (-1) n;
lemma_div_plus a (-1) n
#push-options "--smtencoding.elim_box true --smtencoding.nl_arith_repr native"
val cancel_mul_div (a:int) (n:nonzero) : Lemma ((a * n) / n == a)
let cancel_mul_div (a:int) (n:nonzero) = ()
#pop-options
val cancel_mul_mod (a:int) (n:pos) : Lemma ((a * n) % n == 0)
let cancel_mul_mod (a:int) (n:pos) =
small_mod 0 n;
lemma_mod_plus 0 a n
val lemma_mod_add_distr (a:int) (b:int) (n:pos) : Lemma ((a + b % n) % n = (a + b) % n)
let lemma_mod_add_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a + b%n) % n;
== { lemma_mod_plus (a + (b % n)) (b / n) n }
(a + b%n + n * (b/n)) % n;
== { lemma_div_mod b n }
(a + b) % n;
}
val lemma_mod_sub_distr (a:int) (b:int) (n:pos) : Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr (a:int) (b:int) (n:pos) =
calc (==) {
(a - b%n) % n;
== { lemma_mod_plus (a - (b % n)) (-(b / n)) n }
(a - b%n + n * (-(b/n))) % n;
== { neg_mul_right n (b/n) }
(a - b%n - n * (b/n)) % n;
== { lemma_div_mod b n }
(a - b) % n;
}
val lemma_mod_sub_0: a:pos -> Lemma ((-1) % a = a - 1)
let lemma_mod_sub_0 a = ()
val lemma_mod_sub_1: a:pos -> b:pos{a < b} -> Lemma ((-a) % b = b - (a%b))
let lemma_mod_sub_1 a b =
calc (==) {
(-a) % b;
== { lemma_mod_plus (-a) 1 b }
((-a) + 1*b) % b;
== {}
(b - a) % b;
== { small_mod (b-a) b }
b - a;
== { small_mod a b }
b - a%b;
}
val lemma_mod_mul_distr_l (a:int) (b:int) (n:pos) : Lemma
(requires True)
(ensures (a * b) % n = ((a % n) * b) % n)
let lemma_mod_mul_distr_l a b n =
calc (==) {
(a * b) % n;
== { lemma_div_mod a n }
((n * (a/n) + a%n) * b) % n;
== { distributivity_add_left (n * (a/n)) (a%n) b }
(n * (a/n) * b + (a%n) * b) % n;
== { paren_mul_right n (a/n) b; swap_mul ((a/n) * b) n }
((a%n) * b + ((a/n) * b) * n) % n;
== { lemma_mod_plus ((a%n) * b) ((a/n) * b) n }
((a%n) * b) % n;
}
val lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) : Lemma ((a * b) % n = (a * (b % n)) % n)
let lemma_mod_mul_distr_r (a:int) (b:int) (n:pos) =
calc (==) {
(a * b) % n;
== { swap_mul a b }
(b * a) % n;
== { lemma_mod_mul_distr_l b a n }
(b%n * a) % n;
== { swap_mul a (b%n) }
(a * (b%n)) % n;
}
val lemma_mod_injective: p:pos -> a:nat -> b:nat -> Lemma
(requires (a < p /\ b < p /\ a % p = b % p))
(ensures (a = b))
let lemma_mod_injective p a b = ()
val lemma_mul_sub_distr: a:int -> b:int -> c:int -> Lemma
(a * b - a * c = a * (b - c))
let lemma_mul_sub_distr a b c =
distributivity_sub_right a b c
val lemma_div_exact: a:int -> p:pos -> Lemma
(requires (a % p = 0))
(ensures (a = p * (a / p)))
let lemma_div_exact a p = ()
val div_exact_r (a:int) (n:pos) : Lemma
(requires (a % n = 0))
(ensures (a = (a / n) * n))
let div_exact_r (a:int) (n:pos) = lemma_div_exact a n
val lemma_mod_spec: a:int -> p:pos -> Lemma
(a / p = (a - (a % p)) / p)
let lemma_mod_spec a p =
calc (==) {
(a - a%p)/p;
== { lemma_div_mod a p }
(p*(a/p))/p;
== { cancel_mul_div (a/p) p }
a/p;
}
val lemma_mod_spec2: a:int -> p:pos -> Lemma
(let q:int = (a - (a % p)) / p in a = (a % p) + q * p)
let lemma_mod_spec2 a p =
calc (==) {
(a % p) + ((a - (a % p)) / p) * p;
== { lemma_mod_spec a p }
(a % p) + (a / p) * p;
== { lemma_div_mod a p }
a;
}
val lemma_mod_plus_distr_l: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = ((a % p) + b) % p)
let lemma_mod_plus_distr_l a b p =
let q = (a - (a % p)) / p in
lemma_mod_spec2 a p;
lemma_mod_plus (a % p + b) q p
val lemma_mod_plus_distr_r: a:int -> b:int -> p:pos -> Lemma
((a + b) % p = (a + (b % p)) % p)
let lemma_mod_plus_distr_r a b p =
lemma_mod_plus_distr_l b a p
val lemma_mod_mod: a:int -> b:int -> p:pos -> Lemma
(requires (a = b % p))
(ensures (a % p = b % p))
let lemma_mod_mod a b p =
lemma_mod_lt b p;
modulo_lemma (b % p) p
(* * Lemmas about multiplication, division and modulo. **)
(* * This part focuses on the situation where **)
(* * dividend: nat divisor: pos **)
(* * TODO: add triggers for certain lemmas. **)
(* Lemma: Definition of euclidean division *)
val euclidean_division_definition: a:int -> b:nonzero ->
Lemma (a = (a / b) * b + a % b)
let euclidean_division_definition a b = ()
(* Lemma: Propriety about modulo *)
val modulo_range_lemma: a:int -> b:pos ->
Lemma (a % b >= 0 && a % b < b)
let modulo_range_lemma a b = ()
val small_modulo_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a % b = a)
let small_modulo_lemma_1 a b = ()
val small_modulo_lemma_2: a:int -> b:pos ->
Lemma (requires a % b = a) (ensures a < b)
let small_modulo_lemma_2 a b = ()
val small_division_lemma_1: a:nat -> b:nonzero ->
Lemma (requires a < b) (ensures a / b = 0)
let small_division_lemma_1 a b = ()
val small_division_lemma_2 (a:int) (n:pos) : Lemma
(requires a / n = 0)
(ensures 0 <= a /\ a < n)
let small_division_lemma_2 (a:int) (n:pos) = lemma_div_mod a n
(* Lemma: Multiplication by a positive integer preserves order *)
val multiplication_order_lemma: a:int -> b:int -> p:pos ->
Lemma (a >= b <==> a * p >= b * p)
let multiplication_order_lemma a b p = ()
(* Lemma: Propriety about multiplication after division *)
val division_propriety: a:int -> b:pos ->
Lemma (a - b < (a / b) * b && (a / b) * b <= a)
let division_propriety a b = ()
(* Internal lemmas for proving the definition of division *)
val division_definition_lemma_1: a:int -> b:pos -> m:int{a - b < m * b} ->
Lemma (m > a / b - 1)
let division_definition_lemma_1 a b m =
if a / b - 1 < 0 then () else begin
division_propriety a b;
multiplication_order_lemma m (a / b - 1) b
end
val division_definition_lemma_2: a:int -> b:pos -> m:int{m * b <= a} ->
Lemma (m < a / b + 1)
let division_definition_lemma_2 a b m =
division_propriety a b;
multiplication_order_lemma (a / b + 1) m b
(* Lemma: Definition of division *)
val division_definition: a:int -> b:pos -> m:int{a - b < m * b && m * b <= a} ->
Lemma (m = a / b)
let division_definition a b m =
division_definition_lemma_1 a b m;
division_definition_lemma_2 a b m
(* Lemma: (a * b) / b = a; identical to `cancel_mul_div` above *)
val multiple_division_lemma (a:int) (n:nonzero) : Lemma ((a * n) / n = a)
let multiple_division_lemma (a:int) (n:nonzero) = cancel_mul_div a n
(* Lemma: (a * b) % b = 0 *)
val multiple_modulo_lemma (a:int) (n:pos) : Lemma ((a * n) % n = 0)
let multiple_modulo_lemma (a:int) (n:pos) = cancel_mul_mod a n
(* Lemma: Division distributivity under special condition *)
val division_addition_lemma: a:int -> b:pos -> n:int ->
Lemma ( (a + n * b) / b = a / b + n )
let division_addition_lemma a b n = division_definition (a + n * b) b (a / b + n)
(* Lemma: Modulo distributivity *)
val modulo_distributivity: a:int -> b:int -> c:pos -> Lemma ((a + b) % c == (a % c + b % c) % c)
let modulo_distributivity a b c =
calc (==) {
(a + b) % c;
== { lemma_mod_plus_distr_l a b c }
((a % c) + b) % c;
== { lemma_mod_plus_distr_r (a % c) b c }
((a % c) + (b % c)) % c;
}
val lemma_div_le: a:int -> b:int -> d:pos ->
Lemma (requires (a <= b))
(ensures (a / d <= b / d))
let lemma_div_le a b d =
calc (==>) {
(a <= b) <: Type0;
==> { lemma_div_mod a d; lemma_div_mod b d }
d * (a/d) + a%d <= d * (b/d) + b%d;
==> {}
d * (a/d) - d * (b/d) <= b%d - a%d;
==> {}
d * (a/d - b/d) <= b%d - a%d;
==> { (* a%d >= 0, and b%d < d*) }
d * (a/d - b/d) < d;
==> {}
a/d - b/d <= 0;
}
(* Lemma: Division distributivity under special condition *)
val division_sub_lemma (a:int) (n:pos) (b:nat) : Lemma ((a - b * n) / n = a / n - b)
let division_sub_lemma (a:int) (n:pos) (b:nat) =
neg_mul_left b n;
lemma_div_plus a (-b) n
val lemma_mod_plus_mul_distr: a:int -> b:int -> c:int -> p:pos -> Lemma
(((a + b) * c) % p = ((((a % p) + (b % p)) % p) * (c % p)) % p)
let lemma_mod_plus_mul_distr a b c p =
calc (==) {
((a + b) * c) % p;
== { lemma_mod_mul_distr_l (a + b) c p }
(((a + b) % p) * c) % p;
== { lemma_mod_mul_distr_r ((a + b) % p) c p }
(((a + b) % p) * (c % p)) % p;
== { modulo_distributivity a b p }
((((a % p) + (b % p)) % p) * (c % p)) % p;
}
(* Lemma: Modulo distributivity under special condition *)
val modulo_addition_lemma (a:int) (n:pos) (b:int) : Lemma ((a + b * n) % n = a % n)
let modulo_addition_lemma (a:int) (n:pos) (b:int) = lemma_mod_plus a b n
(* Lemma: Modulo distributivity under special condition *)
val lemma_mod_sub (a:int) (n:pos) (b:int) : Lemma (ensures (a - b * n) % n = a % n)
let lemma_mod_sub (a:int) (n:pos) (b:int) =
neg_mul_left b n;
lemma_mod_plus a (-b) n
val mod_mult_exact (a:int) (n:pos) (q:pos) : Lemma
(requires (a % (n * q) == 0))
(ensures a % n == 0)
let mod_mult_exact (a:int) (n:pos) (q:pos) =
calc (==) {
a % n;
== { lemma_div_mod a (n * q) }
((n * q) * (a / (n * q)) + a % (n * q)) % n;
== { (* hyp *) }
((n * q) * (a / (n * q))) % n;
== { paren_mul_right n q (a / (n * q));
swap_mul n (q * (a / (n * q))) }
((q * (a / (n * q))) * n) % n;
== { multiple_modulo_lemma (q * (a / (n*q))) n }
0;
}
val mod_mul_div_exact (a:int) (b:pos) (n:pos) : Lemma
(requires (a % (b * n) == 0))
(ensures (a / b) % n == 0)
let mod_mul_div_exact (a:int) (b:pos) (n:pos) =
calc (==) {
(a / b) % n;
== { lemma_div_mod a (b * n) (* + hyp *) }
(((b*n)*(a / (b*n))) / b) % n;
== { paren_mul_right b n (a / (b*n)) }
((b*(n*(a / (b*n)))) / b) % n;
== { cancel_mul_div (n * (a / (b * n))) b }
(n*(a / (b*n))) % n;
== { cancel_mul_mod (a / (b*n)) n }
0;
}
#push-options "--fuel 1"
val mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
let mod_pow2_div2 (a:int) (m:pos) : Lemma
(requires a % pow2 m == 0)
(ensures (a / 2) % pow2 (m - 1) == 0)
=
mod_mul_div_exact a 2 (pow2 (m - 1))
#pop-options
private val lemma_div_lt_cancel (a : int) (b : pos) (n : int) :
Lemma (requires (a < b * n))
(ensures (a / b < n))
private let lemma_div_lt_cancel a b n =
(* by contradiction *)
if a / b >= n then begin
calc (>=) {
a;
>= { slash_decr_axiom a b }
(a / b) * b;
>= {}
n * b;
};
assert False
end
private val lemma_mod_mult_zero (a : int) (b : pos) (c : pos) : Lemma ((a % (b * c)) / b / c == 0)
private let lemma_mod_mult_zero a b c =
(* < 1 *)
lemma_mod_lt a (b * c);
lemma_div_lt_cancel (a % (b * c)) b c;
lemma_div_lt_cancel ((a % (b * c)) / b) c 1;
(* >= 0 *)
nat_over_pos_is_nat (a % (b * c)) b;
nat_over_pos_is_nat ((a % (b * c)) / b) c;
()
(* Lemma: Divided by a product is equivalent to being divided one by one *)
val division_multiplication_lemma (a:int) (b:pos) (c:pos) : Lemma
(a / (b * c) = (a / b) / c)
let division_multiplication_lemma (a:int) (b:pos) (c:pos) =
calc (==) {
a / b / c;
== { lemma_div_mod a (b * c) }
((b * c) * (a / (b * c)) + a % (b * c)) / b / c;
== { paren_mul_right b c (a / (b * c)) }
(b * (c * (a / (b * c))) + a % (b * c)) / b / c;
== { lemma_div_plus (a % (b * c)) (c * (a / (b * c))) b }
(c * (a / (b * c)) + ((a % (b * c)) / b)) / c;
== { lemma_div_plus ((a % (b * c)) / b) (a / (b * c)) c }
(a / (b * c)) + (a % (b * c)) / b / c;
== { lemma_mod_mult_zero a b c }
a / (b * c);
}
private val cancel_fraction (a:int) (b:pos) (c:pos) : Lemma ((a * c) / (b * c) == a / b)
private let cancel_fraction a b c =
calc (==) {
(a * c) / (b * c);
== { swap_mul b c }
(a * c) / (c * b);
== { division_multiplication_lemma (a * c) c b }
((a * c) / c) / b;
== { cancel_mul_div a c }
a / b;
}
val modulo_scale_lemma : a:int -> b:pos -> c:pos -> Lemma ((a * b) % (b * c) == (a % c) * b)
let modulo_scale_lemma a b c =
calc (==) {
(a * b) % (b * c);
== { lemma_div_mod (a * b) (b * c) }
a * b - (b * c) * ((a * b) / (b * c));
== { cancel_fraction a c b }
a * b - (b * c) * (a / c);
== { paren_mul_right b c (a / c) }
a * b - b * (c * (a / c));
== { swap_mul b (c * (a / c)); distributivity_sub_left a (c * (a / c)) b }
(a - c * (a / c)) * b;
== { lemma_div_mod a c }
(a % c) * b;
}
let lemma_mul_pos_pos_is_pos (x:pos) (y:pos) : Lemma (x*y > 0) = ()
let lemma_mul_nat_pos_is_nat (x:nat) (y:pos) : Lemma (x*y >= 0) = ()
let modulo_division_lemma_0 (a:nat) (b:pos) (c:pos) : Lemma
(a / (b*c) <= a /\ (a - (a / (b * c)) * (b * c)) / b = a / b - ((a / (b * c)) * c))
= slash_decr_axiom a (b*c);
calc (==) {
(a / (b*c)) * (b * c);
== { swap_mul b c }
(a / (b*c)) * (c * b);
== { paren_mul_right (a / (b*c)) c b }
((a / (b*c)) * c) * b;
};
cut ((a / (b*c)) * (b * c) = ((a / (b * c)) * c) * b);
lemma_div_mod a (b*c);
division_sub_lemma a b ((a / (b*c)) * c);
()
val modulo_division_lemma: a:nat -> b:pos -> c:pos ->
Lemma ((a % (b * c)) / b = (a / b) % c)
let modulo_division_lemma a b c =
calc (==) {
(a % (b * c)) / b;
== { lemma_div_mod a (b * c) }
(a - (b * c) * (a / (b * c))) / b;
== { paren_mul_right b c ((a / (b * c))); neg_mul_right b (c * (a / (b * c))) }
(a + b * (-(c * (a / (b * c))))) / b;
== { lemma_div_plus a (-(c * (a / (b * c)))) b }
(a / b) - c * (a / (b * c));
== { division_multiplication_lemma a b c }
(a / b) - c * ((a / b) / c);
== { lemma_div_mod (a/b) c }
(a / b) % c;
}
val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b) | false | false | FStar.Math.Lemmas.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val modulo_modulo_lemma (a:int) (b:pos) (c:pos) : Lemma
((a % (b * c)) % b = a % b) | [] | FStar.Math.Lemmas.modulo_modulo_lemma | {
"file_name": "ulib/FStar.Math.Lemmas.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: Prims.int -> b: Prims.pos -> c: Prims.pos
-> FStar.Pervasives.Lemma (ensures a % (b * c) % b = a % b) | {
"end_col": 3,
"end_line": 812,
"start_col": 2,
"start_line": 793
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let codes = va_codes | let codes = | false | null | false | va_codes | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_codes"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val codes : Type0 | [] | Vale.X64.QuickCodes.codes | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 27,
"end_line": 15,
"start_col": 19,
"start_line": 15
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eval = eval_code | let eval = | false | null | false | eval_code | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.eval_code"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eval : c: Vale.X64.Decls.va_code ->
s0: Vale.X64.Decls.va_state ->
f0: Vale.X64.Decls.va_fuel ->
sN: Vale.X64.Decls.va_state
-> Vale.Def.Prop_s.prop0 | [] | Vale.X64.QuickCodes.eval | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
c: Vale.X64.Decls.va_code ->
s0: Vale.X64.Decls.va_state ->
f0: Vale.X64.Decls.va_fuel ->
sN: Vale.X64.Decls.va_state
-> Vale.Def.Prop_s.prop0 | {
"end_col": 27,
"end_line": 17,
"start_col": 18,
"start_line": 17
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let code = va_code | let code = | false | null | false | va_code | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val code : Type0 | [] | Vale.X64.QuickCodes.code | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 25,
"end_line": 14,
"start_col": 18,
"start_line": 14
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fuel = va_fuel | let fuel = | false | null | false | va_fuel | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_fuel"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fuel : Type0 | [] | Vale.X64.QuickCodes.fuel | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 25,
"end_line": 16,
"start_col": 18,
"start_line": 16
} |
|
Prims.Tot | val if_code (b: bool) (c1 c2: code) : code | [
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2 | val if_code (b: bool) (c1 c2: code) : code
let if_code (b: bool) (c1 c2: code) : code = | false | null | false | if b then c1 else c2 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Prims.bool",
"Vale.X64.QuickCodes.code"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val if_code (b: bool) (c1 c2: code) : code | [] | Vale.X64.QuickCodes.if_code | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | b: Prims.bool -> c1: Vale.X64.QuickCodes.code -> c2: Vale.X64.QuickCodes.code
-> Vale.X64.QuickCodes.code | {
"end_col": 70,
"end_line": 50,
"start_col": 50,
"start_line": 50
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_range1 = mk_range "" 0 0 0 0 | let va_range1 = | false | null | false | mk_range "" 0 0 0 0 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"FStar.Range.mk_range"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_range1 : FStar.Range.range | [] | Vale.X64.QuickCodes.va_range1 | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | FStar.Range.range | {
"end_col": 35,
"end_line": 104,
"start_col": 16,
"start_line": 104
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_Seq_t (a:Type0) = va_state -> a -> Type0 | let wp_Seq_t (a: Type0) = | false | null | false | va_state -> a -> Type0 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_state"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_Seq_t : a: Type0 -> Type | [] | Vale.X64.QuickCodes.wp_Seq_t | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> Type | {
"end_col": 47,
"end_line": 99,
"start_col": 25,
"start_line": 99
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_Bind_t (a:Type0) = va_state -> a -> Type0 | let wp_Bind_t (a: Type0) = | false | null | false | va_state -> a -> Type0 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_state"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_Bind_t : a: Type0 -> Type | [] | Vale.X64.QuickCodes.wp_Bind_t | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Type0 -> Type | {
"end_col": 48,
"end_line": 100,
"start_col": 26,
"start_line": 100
} |
|
Prims.Tot | val va_QBind
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: (va_state -> b -> GTot (quickCodes a cs)))
: quickCodes a (c :: cs) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs | val va_QBind
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: (va_state -> b -> GTot (quickCodes a cs)))
: quickCodes a (c :: cs)
let va_QBind
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: (va_state -> b -> GTot (quickCodes a cs)))
: quickCodes a (c :: cs) = | false | null | false | QBind r msg qc qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QBind",
"Prims.Cons",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_QBind
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: (va_state -> b -> GTot (quickCodes a cs)))
: quickCodes a (c :: cs) | [] | Vale.X64.QuickCodes.va_QBind | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
qc: Vale.X64.QuickCode.quickCode b c ->
qcs: (_: Vale.X64.Decls.va_state -> _: b -> Prims.GTot (Vale.X64.QuickCodes.quickCodes a cs))
-> Vale.X64.QuickCodes.quickCodes a (c :: cs) | {
"end_col": 206,
"end_line": 72,
"start_col": 188,
"start_line": 72
} |
Prims.GTot | val labeled_wrap (r: range) (msg: string) (p: Type0) : GTot Type0 | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p | val labeled_wrap (r: range) (msg: string) (p: Type0) : GTot Type0
let labeled_wrap (r: range) (msg: string) (p: Type0) : GTot Type0 = | false | null | false | labeled r msg p | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"sometrivial"
] | [
"FStar.Range.range",
"Prims.string",
"FStar.Range.labeled"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val labeled_wrap (r: range) (msg: string) (p: Type0) : GTot Type0 | [] | Vale.X64.QuickCodes.labeled_wrap | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: FStar.Range.range -> msg: Prims.string -> p: Type0 -> Prims.GTot Type0 | {
"end_col": 80,
"end_line": 20,
"start_col": 65,
"start_line": 20
} |
Prims.Tot | val wp_proc (#a: Type0) (c: code) (qc: quickCode a c) (s0: va_state) (k: (va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k | val wp_proc (#a: Type0) (c: code) (qc: quickCode a c) (s0: va_state) (k: (va_state -> a -> Type0))
: Type0
let wp_proc (#a: Type0) (c: code) (qc: quickCode a c) (s0: va_state) (k: (va_state -> a -> Type0))
: Type0 = | false | null | false | match qc with | QProc _ _ wp _ -> wp s0 k | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Vale.X64.Decls.va_code",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCode.quickProc_wp",
"Vale.X64.QuickCode.t_proof"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_proc (#a: Type0) (c: code) (qc: quickCode a c) (s0: va_state) (k: (va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_proc | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
c: Vale.X64.QuickCodes.code ->
qc: Vale.X64.QuickCode.quickCode a c ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 29,
"end_line": 97,
"start_col": 2,
"start_line": 96
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let block = va_Block | let block = | false | null | false | va_Block | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_Block"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val block : block: Vale.X64.Decls.va_codes -> Vale.X64.Decls.va_code | [] | Vale.X64.QuickCodes.block | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | block: Vale.X64.Decls.va_codes -> Vale.X64.Decls.va_code | {
"end_col": 27,
"end_line": 168,
"start_col": 19,
"start_line": 168
} |
|
Prims.GTot | val precedes_wrap (#a: Type) (x y: a) : GTot Type0 | [
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y | val precedes_wrap (#a: Type) (x y: a) : GTot Type0
let precedes_wrap (#a: Type) (x y: a) : GTot Type0 = | false | null | false | precedes x y | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"sometrivial"
] | [
"Prims.precedes"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val precedes_wrap (#a: Type) (x y: a) : GTot Type0 | [] | Vale.X64.QuickCodes.precedes_wrap | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: a -> y: a -> Prims.GTot Type0 | {
"end_col": 63,
"end_line": 35,
"start_col": 51,
"start_line": 35
} |
Prims.Tot | val wp_While
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k) | val wp_While
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0
let wp_While
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 = | false | null | false | inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
(forall (s1: va_state) (g1: a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCode.Mod_flags",
"Prims.l_Forall",
"Prims.l_imp",
"Vale.X64.QuickCodes.wp_While_body"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_While
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_While | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Vale.X64.QuickCodes.cmp ->
qc: (_: a -> Vale.X64.QuickCode.quickCode a c) ->
mods: Vale.X64.QuickCode.mods_t ->
inv: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
dec: (_: Vale.X64.Decls.va_state -> _: a -> d) ->
g0: a ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 86,
"end_line": 287,
"start_col": 2,
"start_line": 285
} |
Prims.Tot | val wp_InlineIf
(#a: Type)
(#c1 #c2: code)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k) | val wp_InlineIf
(#a: Type)
(#c1 #c2: code)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0
let wp_InlineIf
(#a: Type)
(#c1 #c2: code)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 = | false | null | false | (b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Prims.bool",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.QuickCode.__proj__QProc__item__wp",
"Prims.op_Negation"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 = | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_InlineIf
(#a: Type)
(#c1 #c2: code)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_InlineIf | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Prims.bool ->
qc1: Vale.X64.QuickCode.quickCode a c1 ->
qc2: Vale.X64.QuickCode.quickCode a c2 ->
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 63,
"end_line": 191,
"start_col": 2,
"start_line": 190
} |
Prims.Tot | val va_QSeq
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: quickCodes a cs)
: quickCodes a (c :: cs) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs | val va_QSeq
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: quickCodes a cs)
: quickCodes a (c :: cs)
let va_QSeq
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: quickCodes a cs)
: quickCodes a (c :: cs) = | false | null | false | QSeq r msg qc qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QSeq",
"Prims.Cons",
"Vale.X64.Decls.va_code"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_QSeq
(#a: Type0)
(#b: Type)
(#c: code)
(#cs: codes)
(r: range)
(msg: string)
(qc: quickCode b c)
(qcs: quickCodes a cs)
: quickCodes a (c :: cs) | [] | Vale.X64.QuickCodes.va_QSeq | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
qc: Vale.X64.QuickCode.quickCode b c ->
qcs: Vale.X64.QuickCodes.quickCodes a cs
-> Vale.X64.QuickCodes.quickCodes a (c :: cs) | {
"end_col": 180,
"end_line": 75,
"start_col": 163,
"start_line": 75
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let k_AssertBy (p:Type0) (_:va_state) () = p | let k_AssertBy (p: Type0) (_: va_state) () = | false | null | false | p | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_state",
"Prims.unit"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0 | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val k_AssertBy : p: Type0 -> _: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0 | [] | Vale.X64.QuickCodes.k_AssertBy | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Type0 -> _: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0 | {
"end_col": 44,
"end_line": 101,
"start_col": 43,
"start_line": 101
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p) | let tAssertLemma (p: Type0) = | false | null | false | unit -> Lemma (requires p) (ensures p) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tAssertLemma : p: Type0 -> Type0 | [] | Vale.X64.QuickCodes.tAssertLemma | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Type0 -> Type0 | {
"end_col": 67,
"end_line": 308,
"start_col": 29,
"start_line": 308
} |
|
Prims.Tot | val wp_If
(#a: Type)
(#c1 #c2: code)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k)) | val wp_If
(#a: Type)
(#c1 #c2: code)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0
let wp_If
(#a: Type)
(#c1 #c2: code)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 = | false | null | false | valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
(eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k)) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Prims.l_and",
"Vale.X64.QuickCodes.valid_cmp",
"Prims.b2t",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCode.Mod_flags",
"Prims.l_imp",
"Vale.X64.QuickCodes.eval_cmp",
"Vale.X64.QuickCodes.mods_contains",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.QuickCode.__proj__QProc__item__wp",
"Prims.op_Negation",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_flags",
"Vale.X64.Decls.havoc_flags"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 = | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_If
(#a: Type)
(#c1 #c2: code)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_If | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Vale.X64.QuickCodes.cmp ->
qc1: Vale.X64.QuickCode.quickCode a c1 ->
qc2: Vale.X64.QuickCode.quickCode a c2 ->
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 80,
"end_line": 248,
"start_col": 2,
"start_line": 245
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p) | let tAssumeLemma (p: Type0) = | false | null | false | unit -> Lemma (requires True) (ensures p) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tAssumeLemma : p: Type0 -> Type0 | [] | Vale.X64.QuickCodes.tAssumeLemma | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Type0 -> Type0 | {
"end_col": 70,
"end_line": 315,
"start_col": 29,
"start_line": 315
} |
|
Prims.Tot | val normal_steps:list string | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let normal_steps : list string =
[
`%Mkvale_state?.vs_ok;
`%Mkvale_state?.vs_regs;
`%Mkvale_state?.vs_flags;
`%Mkvale_state?.vs_heap;
`%Mkvale_state?.vs_stack;
`%Mkvale_state?.vs_stackTaint;
`%Mkvale_full_heap?.vf_layout;
`%Mkvale_full_heap?.vf_heap;
`%Mkvale_full_heap?.vf_heaplets;
`%QProc?.wp;
`%QProc?.mods;
`%OConst?;
`%OReg?;
`%OMem?;
`%OStack?;
`%FStar.FunctionalExtensionality.on_dom;
] | val normal_steps:list string
let normal_steps:list string = | false | null | false | [
`%Mkvale_state?.vs_ok; `%Mkvale_state?.vs_regs; `%Mkvale_state?.vs_flags; `%Mkvale_state?.vs_heap;
`%Mkvale_state?.vs_stack; `%Mkvale_state?.vs_stackTaint; `%Mkvale_full_heap?.vf_layout;
`%Mkvale_full_heap?.vf_heap; `%Mkvale_full_heap?.vf_heaplets; `%QProc?.wp; `%QProc?.mods;
`%OConst?; `%OReg?; `%OMem?; `%OStack?; `%FStar.FunctionalExtensionality.on_dom
] | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Prims.Cons",
"Prims.string",
"Prims.Nil"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr]
let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files
[@va_qattr]
let state_match (s0:va_state) (s1:va_state) : Type0 =
s0.vs_ok == s1.vs_ok /\
all_regs_match s0.vs_regs s1.vs_regs /\
s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\
s0.vs_stack == s1.vs_stack /\
s0.vs_stackTaint == s1.vs_stackTaint
val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1)
[@va_qattr]
let va_state_match (s0:va_state) (s1:va_state) : Pure Type0
(requires True)
(ensures fun b -> b ==> state_eq s0 s1)
=
FStar.Classical.move_requires (lemma_state_match s0) s1;
state_match s0 s1
[@va_qattr]
unfold let wp_sound_code_pre (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) : Type0 =
forall
(ok:bool)
(regs:Regs.t)
(flags:Flags.t)
//(mem:vale_full_heap) // splitting mem into its components makes the VCs slightly cleaner:
(mem_layout:vale_heap_layout)
(mem_heap:vale_heap)
(mem_heaplets:vale_heaplets)
(stack:vale_stack)
(stackTaint:memtaint)
.
let mem = {
vf_layout = mem_layout;
vf_heap = mem_heap;
vf_heaplets = mem_heaplets;
} in
let s0' = {
vs_ok = ok;
vs_regs = regs;
vs_flags = flags;
vs_heap = mem;
vs_stack = stack;
vs_stackTaint = stackTaint
} in
s0 == s0' ==> QProc?.wp qc (state_eta s0') (k (state_eta s0'))
unfold let wp_sound_code_post (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) ((sN:va_state), (fN:fuel), (gN:a)) : Type0 =
eval c s0 fN sN /\
update_state_mods qc.mods sN s0 == sN /\
state_inv sN /\
k s0 sN gN | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val normal_steps:list string | [] | Vale.X64.QuickCodes.normal_steps | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.list Prims.string | {
"end_col": 3,
"end_line": 439,
"start_col": 2,
"start_line": 422
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p) | let tAssertSquashLemma (p: Type0) = | false | null | false | unit -> Ghost (squash p) (requires p) (ensures fun () -> p) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Prims.unit",
"Prims.squash"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val tAssertSquashLemma : p: Type0 -> Type0 | [] | Vale.X64.QuickCodes.tAssertSquashLemma | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | p: Type0 -> Type0 | {
"end_col": 94,
"end_line": 322,
"start_col": 35,
"start_line": 322
} |
|
Prims.Tot | val va_qAssert (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs | val va_qAssert (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs
let va_qAssert (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs = | false | null | false | QLemma r msg e (fun () -> e) (qAssertLemma e) qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QLemma",
"Prims.unit",
"Vale.X64.QuickCodes.qAssertLemma"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qAssert (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs | [] | Vale.X64.QuickCodes.va_qAssert | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: FStar.Range.range -> msg: Prims.string -> e: Type0 -> qcs: Vale.X64.QuickCodes.quickCodes a cs
-> Vale.X64.QuickCodes.quickCodes a cs | {
"end_col": 51,
"end_line": 313,
"start_col": 2,
"start_line": 313
} |
Prims.Tot | val wp_While_body
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g1: a)
(s1: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1)) | val wp_While_body
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g1: a)
(s1: va_state)
(k: (va_state -> a -> Type0))
: Type0
let wp_While_body
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g1: a)
(s1: va_state)
(k: (va_state -> a -> Type0))
: Type0 = | false | null | false | valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
(eval_cmp s1 b ==>
mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1)) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Prims.l_and",
"Vale.X64.QuickCodes.valid_cmp",
"Prims.l_imp",
"Prims.b2t",
"Vale.X64.QuickCodes.eval_cmp",
"Vale.X64.QuickCodes.mods_contains",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.QuickCode.__proj__QProc__item__wp",
"Vale.X64.QuickCodes.wp_While_inv",
"Prims.op_Negation",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_flags",
"Vale.X64.Decls.havoc_flags"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_While_body
(#a #d: Type)
(#c: code)
(b: cmp)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g1: a)
(s1: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_While_body | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Vale.X64.QuickCodes.cmp ->
qc: (_: a -> Vale.X64.QuickCode.quickCode a c) ->
mods: Vale.X64.QuickCode.mods_t ->
inv: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
dec: (_: Vale.X64.Decls.va_state -> _: a -> d) ->
g1: a ->
s1: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 39,
"end_line": 278,
"start_col": 2,
"start_line": 275
} |
Prims.Tot | val wp_While_inv
(#a #d: Type)
(#c: code)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(s1: va_state)
(g1: a)
(s2: va_state)
(g2: a)
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1 | val wp_While_inv
(#a #d: Type)
(#c: code)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(s1: va_state)
(g1: a)
(s2: va_state)
(g2: a)
: Type0
let wp_While_inv
(#a #d: Type)
(#c: code)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(s1: va_state)
(g1: a)
(s2: va_state)
(g2: a)
: Type0 = | false | null | false | s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.State.__proj__Mkvale_state__item__vs_ok",
"Vale.X64.QuickCodes.mods_contains",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Prims.precedes"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_While_inv
(#a #d: Type)
(#c: code)
(qc: (a -> quickCode a c))
(mods: mods_t)
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(s1: va_state)
(g1: a)
(s2: va_state)
(g2: a)
: Type0 | [] | Vale.X64.QuickCodes.wp_While_inv | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
qc: (_: a -> Vale.X64.QuickCode.quickCode a c) ->
mods: Vale.X64.QuickCode.mods_t ->
inv: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
dec: (_: Vale.X64.Decls.va_state -> _: a -> d) ->
s1: Vale.X64.Decls.va_state ->
g1: a ->
s2: Vale.X64.Decls.va_state ->
g2: a
-> Type0 | {
"end_col": 84,
"end_line": 268,
"start_col": 2,
"start_line": 268
} |
Prims.Tot | val normal (x: Type0) : Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let normal (x:Type0) : Type0 = norm [nbe; iota; zeta; simplify; primops; delta_attr [`%va_qattr]; delta_only normal_steps] x | val normal (x: Type0) : Type0
let normal (x: Type0) : Type0 = | false | null | false | norm [nbe; iota; zeta; simplify; primops; delta_attr [`%va_qattr]; delta_only normal_steps] x | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"FStar.Pervasives.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.nbe",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.simplify",
"FStar.Pervasives.primops",
"FStar.Pervasives.delta_attr",
"Prims.string",
"Prims.Nil",
"FStar.Pervasives.delta_only",
"Vale.X64.QuickCodes.normal_steps"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr]
let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files
[@va_qattr]
let state_match (s0:va_state) (s1:va_state) : Type0 =
s0.vs_ok == s1.vs_ok /\
all_regs_match s0.vs_regs s1.vs_regs /\
s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\
s0.vs_stack == s1.vs_stack /\
s0.vs_stackTaint == s1.vs_stackTaint
val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1)
[@va_qattr]
let va_state_match (s0:va_state) (s1:va_state) : Pure Type0
(requires True)
(ensures fun b -> b ==> state_eq s0 s1)
=
FStar.Classical.move_requires (lemma_state_match s0) s1;
state_match s0 s1
[@va_qattr]
unfold let wp_sound_code_pre (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) : Type0 =
forall
(ok:bool)
(regs:Regs.t)
(flags:Flags.t)
//(mem:vale_full_heap) // splitting mem into its components makes the VCs slightly cleaner:
(mem_layout:vale_heap_layout)
(mem_heap:vale_heap)
(mem_heaplets:vale_heaplets)
(stack:vale_stack)
(stackTaint:memtaint)
.
let mem = {
vf_layout = mem_layout;
vf_heap = mem_heap;
vf_heaplets = mem_heaplets;
} in
let s0' = {
vs_ok = ok;
vs_regs = regs;
vs_flags = flags;
vs_heap = mem;
vs_stack = stack;
vs_stackTaint = stackTaint
} in
s0 == s0' ==> QProc?.wp qc (state_eta s0') (k (state_eta s0'))
unfold let wp_sound_code_post (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) ((sN:va_state), (fN:fuel), (gN:a)) : Type0 =
eval c s0 fN sN /\
update_state_mods qc.mods sN s0 == sN /\
state_inv sN /\
k s0 sN gN
unfold let normal_steps : list string =
[
`%Mkvale_state?.vs_ok;
`%Mkvale_state?.vs_regs;
`%Mkvale_state?.vs_flags;
`%Mkvale_state?.vs_heap;
`%Mkvale_state?.vs_stack;
`%Mkvale_state?.vs_stackTaint;
`%Mkvale_full_heap?.vf_layout;
`%Mkvale_full_heap?.vf_heap;
`%Mkvale_full_heap?.vf_heaplets;
`%QProc?.wp;
`%QProc?.mods;
`%OConst?;
`%OReg?;
`%OMem?;
`%OStack?;
`%FStar.FunctionalExtensionality.on_dom;
] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val normal (x: Type0) : Type0 | [] | Vale.X64.QuickCodes.normal | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Type0 -> Type0 | {
"end_col": 131,
"end_line": 441,
"start_col": 38,
"start_line": 441
} |
Prims.Tot | val va_qAssume (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs | val va_qAssume (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs
let va_qAssume (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs = | false | null | false | QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QLemma",
"Prims.l_True",
"Prims.unit",
"Vale.X64.QuickCodes.qAssumeLemma"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qAssume (#a: Type) (#cs: codes) (r: range) (msg: string) (e: Type0) (qcs: quickCodes a cs)
: quickCodes a cs | [] | Vale.X64.QuickCodes.va_qAssume | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: FStar.Range.range -> msg: Prims.string -> e: Type0 -> qcs: Vale.X64.QuickCodes.quickCodes a cs
-> Vale.X64.QuickCodes.quickCodes a cs | {
"end_col": 54,
"end_line": 320,
"start_col": 2,
"start_line": 320
} |
Prims.Tot | val va_qAssertBy
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(p: Type0)
(qcsBy: quickCodes unit [])
(qcsTail: quickCodes a cs)
: quickCodes a cs | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail | val va_qAssertBy
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(p: Type0)
(qcsBy: quickCodes unit [])
(qcsTail: quickCodes a cs)
: quickCodes a cs
let va_qAssertBy
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(p: Type0)
(qcsBy: quickCodes unit [])
(qcsTail: quickCodes a cs)
: quickCodes a cs = | false | null | false | QAssertBy r msg p qcsBy qcsTail | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCodes.quickCodes",
"Prims.unit",
"Prims.Nil",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.QuickCodes.QAssertBy"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qAssertBy
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(p: Type0)
(qcsBy: quickCodes unit [])
(qcsTail: quickCodes a cs)
: quickCodes a cs | [] | Vale.X64.QuickCodes.va_qAssertBy | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
p: Type0 ->
qcsBy: Vale.X64.QuickCodes.quickCodes Prims.unit [] ->
qcsTail: Vale.X64.QuickCodes.quickCodes a cs
-> Vale.X64.QuickCodes.quickCodes a cs | {
"end_col": 33,
"end_line": 341,
"start_col": 2,
"start_line": 341
} |
Prims.Tot | val state_match (s0 s1: va_state) : Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let state_match (s0:va_state) (s1:va_state) : Type0 =
s0.vs_ok == s1.vs_ok /\
all_regs_match s0.vs_regs s1.vs_regs /\
s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\
s0.vs_stack == s1.vs_stack /\
s0.vs_stackTaint == s1.vs_stackTaint | val state_match (s0 s1: va_state) : Type0
let state_match (s0 s1: va_state) : Type0 = | false | null | false | s0.vs_ok == s1.vs_ok /\ all_regs_match s0.vs_regs s1.vs_regs /\ s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\ s0.vs_stack == s1.vs_stack /\ s0.vs_stackTaint == s1.vs_stackTaint | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Decls.va_state",
"Prims.l_and",
"Prims.eq2",
"Prims.bool",
"Vale.X64.State.__proj__Mkvale_state__item__vs_ok",
"Vale.X64.QuickCodes.all_regs_match",
"Vale.X64.State.__proj__Mkvale_state__item__vs_regs",
"Vale.X64.Flags.t",
"Vale.X64.State.__proj__Mkvale_state__item__vs_flags",
"Vale.X64.Memory.vale_full_heap",
"Vale.X64.State.__proj__Mkvale_state__item__vs_heap",
"Vale.X64.Stack_i.vale_stack",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stack",
"Vale.X64.Memory.memtaint",
"Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr]
let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files
[@va_qattr] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val state_match (s0 s1: va_state) : Type0 | [] | Vale.X64.QuickCodes.state_match | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s0: Vale.X64.Decls.va_state -> s1: Vale.X64.Decls.va_state -> Type0 | {
"end_col": 38,
"end_line": 373,
"start_col": 2,
"start_line": 368
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_sound_code_post (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) ((sN:va_state), (fN:fuel), (gN:a)) : Type0 =
eval c s0 fN sN /\
update_state_mods qc.mods sN s0 == sN /\
state_inv sN /\
k s0 sN gN | let wp_sound_code_post
(#a: Type0)
(#c: code)
(qc: quickCode a c)
(s0: va_state)
(k: (s0': va_state{s0 == s0'} -> va_state -> a -> Type0))
((sN: va_state), (fN: fuel), (gN: a))
: Type0 = | false | null | false | eval c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k s0 sN gN | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Prims.eq2",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_fuel",
"Prims.l_and",
"Vale.X64.QuickCodes.eval",
"Vale.X64.QuickCode.update_state_mods",
"Vale.X64.QuickCode.__proj__QProc__item__mods",
"Vale.X64.Decls.state_inv"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr]
let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files
[@va_qattr]
let state_match (s0:va_state) (s1:va_state) : Type0 =
s0.vs_ok == s1.vs_ok /\
all_regs_match s0.vs_regs s1.vs_regs /\
s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\
s0.vs_stack == s1.vs_stack /\
s0.vs_stackTaint == s1.vs_stackTaint
val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1)
[@va_qattr]
let va_state_match (s0:va_state) (s1:va_state) : Pure Type0
(requires True)
(ensures fun b -> b ==> state_eq s0 s1)
=
FStar.Classical.move_requires (lemma_state_match s0) s1;
state_match s0 s1
[@va_qattr]
unfold let wp_sound_code_pre (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) : Type0 =
forall
(ok:bool)
(regs:Regs.t)
(flags:Flags.t)
//(mem:vale_full_heap) // splitting mem into its components makes the VCs slightly cleaner:
(mem_layout:vale_heap_layout)
(mem_heap:vale_heap)
(mem_heaplets:vale_heaplets)
(stack:vale_stack)
(stackTaint:memtaint)
.
let mem = {
vf_layout = mem_layout;
vf_heap = mem_heap;
vf_heaplets = mem_heaplets;
} in
let s0' = {
vs_ok = ok;
vs_regs = regs;
vs_flags = flags;
vs_heap = mem;
vs_stack = stack;
vs_stackTaint = stackTaint
} in
s0 == s0' ==> QProc?.wp qc (state_eta s0') (k (state_eta s0')) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_sound_code_post : qc: Vale.X64.QuickCode.quickCode a c ->
s0: Vale.X64.Decls.va_state ->
k: (s0': Vale.X64.Decls.va_state{s0 == s0'} -> _: Vale.X64.Decls.va_state -> _: a -> Type0) ->
_: ((Vale.X64.State.vale_state * Vale.X64.Decls.va_fuel) * a)
-> Type0 | [] | Vale.X64.QuickCodes.wp_sound_code_post | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
qc: Vale.X64.QuickCode.quickCode a c ->
s0: Vale.X64.Decls.va_state ->
k: (s0': Vale.X64.Decls.va_state{s0 == s0'} -> _: Vale.X64.Decls.va_state -> _: a -> Type0) ->
_: ((Vale.X64.State.vale_state * Vale.X64.Decls.va_fuel) * a)
-> Type0 | {
"end_col": 12,
"end_line": 419,
"start_col": 2,
"start_line": 416
} |
|
Prims.Tot | val va_QEmpty (#a: Type0) (v: a) : quickCodes a [] | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v | val va_QEmpty (#a: Type0) (v: a) : quickCodes a []
let va_QEmpty (#a: Type0) (v: a) : quickCodes a [] = | false | null | false | QEmpty v | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.QEmpty",
"Vale.X64.QuickCodes.quickCodes",
"Prims.Nil",
"Vale.X64.Machine_s.precode",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_QEmpty (#a: Type0) (v: a) : quickCodes a [] | [] | Vale.X64.QuickCodes.va_QEmpty | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | v: a -> Vale.X64.QuickCodes.quickCodes a [] | {
"end_col": 78,
"end_line": 73,
"start_col": 70,
"start_line": 73
} |
Prims.Tot | val wp_block
(#a: Type)
(#cs: codes)
(qcs: (va_state -> GTot (quickCodes a cs)))
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0 | val wp_block
(#a: Type)
(#cs: codes)
(qcs: (va_state -> GTot (quickCodes a cs)))
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0
let wp_block
(#a: Type)
(#cs: codes)
(qcs: (va_state -> GTot (quickCodes a cs)))
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 = | false | null | false | wp cs (qcs s0) mods k s0 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCodes.wp"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_block
(#a: Type)
(#cs: codes)
(qcs: (va_state -> GTot (quickCodes a cs)))
(mods: mods_t)
(s0: va_state)
(k: (va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_block | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
qcs: (_: Vale.X64.Decls.va_state -> Prims.GTot (Vale.X64.QuickCodes.quickCodes a cs)) ->
mods: Vale.X64.QuickCode.mods_t ->
s0: Vale.X64.Decls.va_state ->
k: (_: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 26,
"end_line": 172,
"start_col": 2,
"start_line": 172
} |
Prims.Tot | val va_qAssertSquash
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(e: Type0)
(qcs: (squash e -> GTot (quickCodes a cs)))
: quickCodes a ((Block []) :: cs) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs | val va_qAssertSquash
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(e: Type0)
(qcs: (squash e -> GTot (quickCodes a cs)))
: quickCodes a ((Block []) :: cs)
let va_qAssertSquash
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(e: Type0)
(qcs: (squash e -> GTot (quickCodes a cs)))
: quickCodes a ((Block []) :: cs) = | false | null | false | QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Prims.squash",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QGhost",
"Prims.unit",
"Vale.X64.QuickCodes.qAssertSquashLemma",
"Prims.Cons",
"Vale.X64.Decls.va_code",
"Vale.X64.Machine_s.Block",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Prims.Nil",
"Vale.X64.Machine_s.precode"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs)) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qAssertSquash
(#a: Type)
(#cs: codes)
(r: range)
(msg: string)
(e: Type0)
(qcs: (squash e -> GTot (quickCodes a cs)))
: quickCodes a ((Block []) :: cs) | [] | Vale.X64.QuickCodes.va_qAssertSquash | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
e: Type0 ->
qcs: (_: Prims.squash e -> Prims.GTot (Vale.X64.QuickCodes.quickCodes a cs))
-> Vale.X64.QuickCodes.quickCodes a (Vale.X64.Machine_s.Block [] :: cs) | {
"end_col": 68,
"end_line": 329,
"start_col": 2,
"start_line": 329
} |
Prims.Ghost | val label (r: range) (msg: string) (p: Type0)
: Ghost Type (requires True) (ensures fun q -> q <==> p) | [
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p | val label (r: range) (msg: string) (p: Type0)
: Ghost Type (requires True) (ensures fun q -> q <==> p)
let label (r: range) (msg: string) (p: Type0)
: Ghost Type (requires True) (ensures fun q -> q <==> p) = | false | null | false | assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [] | [
"FStar.Range.range",
"Prims.string",
"Vale.X64.QuickCodes.labeled_wrap",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.l_iff",
"Prims.l_True"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val label (r: range) (msg: string) (p: Type0)
: Ghost Type (requires True) (ensures fun q -> q <==> p) | [] | Vale.X64.QuickCodes.label | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r: FStar.Range.range -> msg: Prims.string -> p: Type0 -> Prims.Ghost Type0 | {
"end_col": 22,
"end_line": 27,
"start_col": 2,
"start_line": 26
} |
Prims.Tot | val mods_contains1 (allowed: mods_t) (found: mod_t) : bool | [
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found | val mods_contains1 (allowed: mods_t) (found: mod_t) : bool
let rec mods_contains1 (allowed: mods_t) (found: mod_t) : bool = | false | null | false | match allowed with
| [] -> mod_eq Mod_None found
| h :: t -> mod_eq h found || mods_contains1 t found | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.mod_eq",
"Vale.X64.QuickCode.Mod_None",
"Prims.list",
"Prims.op_BarBar",
"Vale.X64.QuickCodes.mods_contains1",
"Prims.bool"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mods_contains1 (allowed: mods_t) (found: mod_t) : bool | [
"recursion"
] | Vale.X64.QuickCodes.mods_contains1 | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | allowed: Vale.X64.QuickCode.mods_t -> found: Vale.X64.QuickCode.mod_t -> Prims.bool | {
"end_col": 52,
"end_line": 41,
"start_col": 2,
"start_line": 39
} |
Prims.Tot | val mods_contains (allowed found: mods_t) : bool | [
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t | val mods_contains (allowed found: mods_t) : bool
let rec mods_contains (allowed found: mods_t) : bool = | false | null | false | match found with
| [] -> true
| h :: t -> mods_contains1 allowed h && mods_contains allowed t | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCode.mod_t",
"Prims.list",
"Prims.op_AmpAmp",
"Vale.X64.QuickCodes.mods_contains1",
"Vale.X64.QuickCodes.mods_contains",
"Prims.bool"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mods_contains (allowed found: mods_t) : bool | [
"recursion"
] | Vale.X64.QuickCodes.mods_contains | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | allowed: Vale.X64.QuickCode.mods_t -> found: Vale.X64.QuickCode.mods_t -> Prims.bool | {
"end_col": 63,
"end_line": 47,
"start_col": 2,
"start_line": 45
} |
Prims.Tot | val qblock (#a: Type) (#cs: codes) (mods: mods_t) (qcs: (va_state -> GTot (quickCodes a cs)))
: quickCode a (block cs) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods) | val qblock (#a: Type) (#cs: codes) (mods: mods_t) (qcs: (va_state -> GTot (quickCodes a cs)))
: quickCode a (block cs)
let qblock (#a: Type) (#cs: codes) (mods: mods_t) (qcs: (va_state -> GTot (quickCodes a cs)))
: quickCode a (block cs) = | false | null | false | QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCode.QProc",
"Vale.X64.QuickCodes.block",
"Vale.X64.QuickCodes.wp_block",
"Vale.X64.QuickCodes.qblock_proof",
"Vale.X64.QuickCode.quickCode"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qblock (#a: Type) (#cs: codes) (mods: mods_t) (qcs: (va_state -> GTot (quickCodes a cs)))
: quickCode a (block cs) | [] | Vale.X64.QuickCodes.qblock | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
qcs: (_: Vale.X64.Decls.va_state -> Prims.GTot (Vale.X64.QuickCodes.quickCodes a cs))
-> Vale.X64.QuickCode.quickCode a (Vale.X64.QuickCodes.block cs) | {
"end_col": 67,
"end_line": 183,
"start_col": 2,
"start_line": 183
} |
Prims.Tot | val va_qInlineIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (if_code b c1 c2) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods) | val va_qInlineIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (if_code b c1 c2)
let va_qInlineIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (if_code b c1 c2) = | false | null | false | QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.mods_t",
"Prims.bool",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.QProc",
"Vale.X64.QuickCodes.if_code",
"Vale.X64.QuickCodes.wp_InlineIf",
"Vale.X64.QuickCodes.qInlineIf_proof"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qInlineIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: bool)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (if_code b c1 c2) | [] | Vale.X64.QuickCodes.va_qInlineIf | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
b: Prims.bool ->
qc1: Vale.X64.QuickCode.quickCode a c1 ->
qc2: Vale.X64.QuickCode.quickCode a c2
-> Vale.X64.QuickCode.quickCode a (Vale.X64.QuickCodes.if_code b c1 c2) | {
"end_col": 92,
"end_line": 202,
"start_col": 2,
"start_line": 202
} |
Prims.Tot | val va_QLemma
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: Type0)
(post: (squash pre -> Type0))
(l: (unit -> Lemma (requires pre) (ensures post ())))
(qcs: quickCodes a cs)
: quickCodes a cs | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs | val va_QLemma
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: Type0)
(post: (squash pre -> Type0))
(l: (unit -> Lemma (requires pre) (ensures post ())))
(qcs: quickCodes a cs)
: quickCodes a cs
let va_QLemma
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: Type0)
(post: (squash pre -> Type0))
(l: (unit -> Lemma (requires pre) (ensures post ())))
(qcs: quickCodes a cs)
: quickCodes a cs = | false | null | false | QLemma r msg pre post l qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"FStar.Range.range",
"Prims.string",
"Prims.squash",
"Prims.unit",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QLemma"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_QLemma
(#a: Type0)
(#cs: codes)
(r: range)
(msg: string)
(pre: Type0)
(post: (squash pre -> Type0))
(l: (unit -> Lemma (requires pre) (ensures post ())))
(qcs: quickCodes a cs)
: quickCodes a cs | [] | Vale.X64.QuickCodes.va_QLemma | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
pre: Type0 ->
post: (_: Prims.squash pre -> Type0) ->
l: (_: Prims.unit -> FStar.Pervasives.Lemma (requires pre) (ensures post ())) ->
qcs: Vale.X64.QuickCodes.quickCodes a cs
-> Vale.X64.QuickCodes.quickCodes a cs | {
"end_col": 240,
"end_line": 74,
"start_col": 213,
"start_line": 74
} |
Prims.Tot | val va_qPURE
(#cs: codes)
(#pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(#a: Type0)
(r: range)
(msg: string)
($l:
(unit
-> PURE unit
(intro_pure_wp_monotonicity pre;
pre)))
(qcs: quickCodes a cs)
: quickCodes a cs | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs | val va_qPURE
(#cs: codes)
(#pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(#a: Type0)
(r: range)
(msg: string)
($l:
(unit
-> PURE unit
(intro_pure_wp_monotonicity pre;
pre)))
(qcs: quickCodes a cs)
: quickCodes a cs
let va_qPURE
(#cs: codes)
(#pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(#a: Type0)
(r: range)
(msg: string)
($l:
(unit
-> PURE unit
(intro_pure_wp_monotonicity pre;
pre)))
(qcs: quickCodes a cs)
: quickCodes a cs = | false | null | false | QPURE r msg pre l qcs | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.codes",
"Prims.unit",
"FStar.Monotonic.Pure.is_monotonic",
"FStar.Range.range",
"Prims.string",
"FStar.Monotonic.Pure.intro_pure_wp_monotonicity",
"Vale.X64.QuickCodes.quickCodes",
"Vale.X64.QuickCodes.QPURE"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qPURE
(#cs: codes)
(#pre: ((unit -> GTot Type0) -> GTot Type0){is_monotonic pre})
(#a: Type0)
(r: range)
(msg: string)
($l:
(unit
-> PURE unit
(intro_pure_wp_monotonicity pre;
pre)))
(qcs: quickCodes a cs)
: quickCodes a cs | [] | Vale.X64.QuickCodes.va_qPURE | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r: FStar.Range.range ->
msg: Prims.string ->
$l: (_: Prims.unit -> Prims.PURE Prims.unit) ->
qcs: Vale.X64.QuickCodes.quickCodes a cs
-> Vale.X64.QuickCodes.quickCodes a cs | {
"end_col": 23,
"end_line": 82,
"start_col": 2,
"start_line": 82
} |
Prims.Tot | val all_regs_match (r0 r1: Regs.t) : Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files | val all_regs_match (r0 r1: Regs.t) : Type0
let all_regs_match (r0 r1: Regs.t) : Type0 = | false | null | false | regs_match r0 r1 n_reg_files | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Regs.t",
"Vale.X64.QuickCodes.regs_match",
"Vale.X64.Machine_s.n_reg_files"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val all_regs_match (r0 r1: Regs.t) : Type0 | [] | Vale.X64.QuickCodes.all_regs_match | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r0: Vale.X64.Regs.t -> r1: Vale.X64.Regs.t -> Type0 | {
"end_col": 30,
"end_line": 364,
"start_col": 2,
"start_line": 364
} |
Prims.Tot | val va_qIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (IfElse (cmp_to_ocmp b) c1 c2) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods) | val va_qIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (IfElse (cmp_to_ocmp b) c1 c2)
let va_qIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (IfElse (cmp_to_ocmp b) c1 c2) = | false | null | false | QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.QuickCode.QProc",
"Vale.X64.Machine_s.IfElse",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.QuickCodes.cmp_to_ocmp",
"Vale.X64.QuickCodes.wp_If",
"Vale.X64.QuickCodes.qIf_proof"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qIf
(#a: Type)
(#c1 #c2: code)
(mods: mods_t)
(b: cmp)
(qc1: quickCode a c1)
(qc2: quickCode a c2)
: quickCode a (IfElse (cmp_to_ocmp b) c1 c2) | [] | Vale.X64.QuickCodes.va_qIf | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
b: Vale.X64.QuickCodes.cmp ->
qc1: Vale.X64.QuickCode.quickCode a c1 ->
qc2: Vale.X64.QuickCode.quickCode a c2
-> Vale.X64.QuickCode.quickCode a
(Vale.X64.Machine_s.IfElse (Vale.X64.QuickCodes.cmp_to_ocmp b) c1 c2) | {
"end_col": 93,
"end_line": 259,
"start_col": 2,
"start_line": 259
} |
Prims.Tot | val va_qWhile
(#a #d: Type)
(#c: code)
(mods: mods_t)
(b: cmp)
(qc: (a -> quickCode a c))
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
: quickCode a (While (cmp_to_ocmp b) c) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0) | val va_qWhile
(#a #d: Type)
(#c: code)
(mods: mods_t)
(b: cmp)
(qc: (a -> quickCode a c))
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
: quickCode a (While (cmp_to_ocmp b) c)
let va_qWhile
(#a #d: Type)
(#c: code)
(mods: mods_t)
(b: cmp)
(qc: (a -> quickCode a c))
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
: quickCode a (While (cmp_to_ocmp b) c) = | false | null | false | QProc (While (cmp_to_ocmp b) c)
mods
(wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.mods_t",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCode.QProc",
"Vale.X64.Machine_s.While",
"Vale.X64.Decls.ins",
"Vale.X64.Decls.ocmp",
"Vale.X64.QuickCodes.cmp_to_ocmp",
"Vale.X64.QuickCodes.wp_While",
"Vale.X64.QuickCodes.qWhile_proof"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_qWhile
(#a #d: Type)
(#c: code)
(mods: mods_t)
(b: cmp)
(qc: (a -> quickCode a c))
(inv: (va_state -> a -> Type0))
(dec: (va_state -> a -> d))
(g0: a)
: quickCode a (While (cmp_to_ocmp b) c) | [] | Vale.X64.QuickCodes.va_qWhile | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
mods: Vale.X64.QuickCode.mods_t ->
b: Vale.X64.QuickCodes.cmp ->
qc: (_: a -> Vale.X64.QuickCode.quickCode a c) ->
inv: (_: Vale.X64.Decls.va_state -> _: a -> Type0) ->
dec: (_: Vale.X64.Decls.va_state -> _: a -> d) ->
g0: a
-> Vale.X64.QuickCode.quickCode a (Vale.X64.Machine_s.While (Vale.X64.QuickCodes.cmp_to_ocmp b) c) | {
"end_col": 39,
"end_line": 304,
"start_col": 2,
"start_line": 303
} |
Prims.Tot | val wp_sound_code_pre
(#a: Type0)
(#c: code)
(qc: quickCode a c)
(s0: va_state)
(k: (s0': va_state{s0 == s0'} -> va_state -> a -> Type0))
: Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let wp_sound_code_pre (#a:Type0) (#c:code) (qc:quickCode a c) (s0:va_state) (k:(s0':va_state{s0 == s0'}) -> va_state -> a -> Type0) : Type0 =
forall
(ok:bool)
(regs:Regs.t)
(flags:Flags.t)
//(mem:vale_full_heap) // splitting mem into its components makes the VCs slightly cleaner:
(mem_layout:vale_heap_layout)
(mem_heap:vale_heap)
(mem_heaplets:vale_heaplets)
(stack:vale_stack)
(stackTaint:memtaint)
.
let mem = {
vf_layout = mem_layout;
vf_heap = mem_heap;
vf_heaplets = mem_heaplets;
} in
let s0' = {
vs_ok = ok;
vs_regs = regs;
vs_flags = flags;
vs_heap = mem;
vs_stack = stack;
vs_stackTaint = stackTaint
} in
s0 == s0' ==> QProc?.wp qc (state_eta s0') (k (state_eta s0')) | val wp_sound_code_pre
(#a: Type0)
(#c: code)
(qc: quickCode a c)
(s0: va_state)
(k: (s0': va_state{s0 == s0'} -> va_state -> a -> Type0))
: Type0
let wp_sound_code_pre
(#a: Type0)
(#c: code)
(qc: quickCode a c)
(s0: va_state)
(k: (s0': va_state{s0 == s0'} -> va_state -> a -> Type0))
: Type0 = | false | null | false | forall (ok: bool)
(regs: Regs.t)
(flags: Flags.t)
(mem_layout: vale_heap_layout)
(mem_heap: vale_heap)
(mem_heaplets: vale_heaplets)
(stack: vale_stack)
(stackTaint: memtaint).
let mem = { vf_layout = mem_layout; vf_heap = mem_heap; vf_heaplets = mem_heaplets } in
let s0' =
{
vs_ok = ok;
vs_regs = regs;
vs_flags = flags;
vs_heap = mem;
vs_stack = stack;
vs_stackTaint = stackTaint
}
in
s0 == s0' ==> QProc?.wp qc (state_eta s0') (k (state_eta s0')) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.code",
"Vale.X64.QuickCode.quickCode",
"Vale.X64.Decls.va_state",
"Prims.eq2",
"Prims.l_Forall",
"Prims.bool",
"Vale.X64.Regs.t",
"Vale.X64.Flags.t",
"Vale.Arch.HeapImpl.vale_heap_layout",
"Vale.X64.Decls.vale_heap",
"Vale.Arch.HeapImpl.vale_heaplets",
"Vale.X64.Stack_i.vale_stack",
"Vale.X64.Memory.memtaint",
"Prims.l_imp",
"Vale.X64.State.vale_state",
"Vale.X64.QuickCode.__proj__QProc__item__wp",
"Vale.X64.State.state_eta",
"Vale.X64.State.Mkvale_state",
"Vale.Arch.HeapImpl.vale_full_heap",
"Vale.Arch.HeapImpl.Mkvale_full_heap"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr]
let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files
[@va_qattr]
let state_match (s0:va_state) (s1:va_state) : Type0 =
s0.vs_ok == s1.vs_ok /\
all_regs_match s0.vs_regs s1.vs_regs /\
s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\
s0.vs_stack == s1.vs_stack /\
s0.vs_stackTaint == s1.vs_stackTaint
val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1)
[@va_qattr]
let va_state_match (s0:va_state) (s1:va_state) : Pure Type0
(requires True)
(ensures fun b -> b ==> state_eq s0 s1)
=
FStar.Classical.move_requires (lemma_state_match s0) s1;
state_match s0 s1
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val wp_sound_code_pre
(#a: Type0)
(#c: code)
(qc: quickCode a c)
(s0: va_state)
(k: (s0': va_state{s0 == s0'} -> va_state -> a -> Type0))
: Type0 | [] | Vale.X64.QuickCodes.wp_sound_code_pre | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
qc: Vale.X64.QuickCode.quickCode a c ->
s0: Vale.X64.Decls.va_state ->
k: (s0': Vale.X64.Decls.va_state{s0 == s0'} -> _: Vale.X64.Decls.va_state -> _: a -> Type0)
-> Type0 | {
"end_col": 66,
"end_line": 413,
"start_col": 2,
"start_line": 389
} |
Prims.Tot | val regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf}) : Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1) | val regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf}) : Type0
let rec regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf}) : Type0 = | false | null | false | if k = 0
then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Regs.t",
"Vale.X64.Machine_s.reg_file_id",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Vale.X64.Machine_s.n_regs",
"Prims.op_Equality",
"Prims.int",
"Prims.l_True",
"Prims.bool",
"Prims.l_and",
"Prims.eq2",
"Vale.X64.Machine_s.t_reg",
"Vale.X64.Regs.sel",
"Vale.X64.QuickCodes.regs_match_file",
"Prims.op_Subtraction",
"Vale.X64.Machine_s.reg",
"Vale.X64.Machine_s.Reg"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val regs_match_file (r0 r1: Regs.t) (rf: reg_file_id) (k: nat{k <= n_regs rf}) : Type0 | [
"recursion"
] | Vale.X64.QuickCodes.regs_match_file | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
r0: Vale.X64.Regs.t ->
r1: Vale.X64.Regs.t ->
rf: Vale.X64.Machine_s.reg_file_id ->
k: Prims.nat{k <= Vale.X64.Machine_s.n_regs rf}
-> Type0 | {
"end_col": 70,
"end_line": 355,
"start_col": 2,
"start_line": 352
} |
Prims.Tot | val regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files}) : Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1) | val regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files}) : Type0
let rec regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files}) : Type0 = | false | null | false | if k = 0 then True else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1) | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.Regs.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Vale.X64.Machine_s.n_reg_files",
"Prims.op_Equality",
"Prims.int",
"Prims.l_True",
"Prims.bool",
"Prims.l_and",
"Vale.X64.QuickCodes.regs_match_file",
"Prims.op_Subtraction",
"Vale.X64.Machine_s.n_regs",
"Vale.X64.QuickCodes.regs_match"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val regs_match (r0 r1: Regs.t) (k: nat{k <= n_reg_files}) : Type0 | [
"recursion"
] | Vale.X64.QuickCodes.regs_match | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | r0: Vale.X64.Regs.t -> r1: Vale.X64.Regs.t -> k: Prims.nat{k <= Vale.X64.Machine_s.n_reg_files}
-> Type0 | {
"end_col": 81,
"end_line": 360,
"start_col": 2,
"start_line": 359
} |
Prims.Pure | val va_state_match (s0 s1: va_state)
: Pure Type0 (requires True) (ensures fun b -> b ==> state_eq s0 s1) | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let va_state_match (s0:va_state) (s1:va_state) : Pure Type0
(requires True)
(ensures fun b -> b ==> state_eq s0 s1)
=
FStar.Classical.move_requires (lemma_state_match s0) s1;
state_match s0 s1 | val va_state_match (s0 s1: va_state)
: Pure Type0 (requires True) (ensures fun b -> b ==> state_eq s0 s1)
let va_state_match (s0 s1: va_state)
: Pure Type0 (requires True) (ensures fun b -> b ==> state_eq s0 s1) = | false | null | false | FStar.Classical.move_requires (lemma_state_match s0) s1;
state_match s0 s1 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [] | [
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.state_match",
"Prims.unit",
"FStar.Classical.move_requires",
"Vale.X64.State.state_eq",
"Vale.X64.QuickCodes.lemma_state_match",
"Prims.l_True",
"Prims.l_imp"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr]
let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2
[@va_qattr]
let wp_If (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
valid_cmp b s0 /\ mods_contains1 mods Mod_flags /\
(let s1 = va_upd_flags havoc_flags s0 in
( eval_cmp s0 b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s1 k) /\
(not (eval_cmp s0 b) ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s1 k))
val qIf_proof (#a:Type) (#c1:code) (#c2:code) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_If b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (IfElse (cmp_to_ocmp b) c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:cmp) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (IfElse (cmp_to_ocmp b) c1 c2) =
QProc (IfElse (cmp_to_ocmp b) c1 c2) mods (wp_If b qc1 qc2 mods) (qIf_proof b qc1 qc2 mods)
///// While
[@va_qattr]
let wp_While_inv
(#a #d:Type) (#c:code) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (s1:va_state) (g1:a) (s2:va_state) (g2:a)
: Type0 =
s2.vs_ok /\ inv s2 g2 /\ mods_contains mods (qc g2).mods /\ dec s2 g2 << dec s1 g1
[@va_qattr]
let wp_While_body
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g1:a) (s1:va_state) (k:va_state -> a -> Type0)
: Type0 =
valid_cmp b s1 /\
(let s1' = va_upd_flags havoc_flags s1 in
( eval_cmp s1 b ==> mods_contains mods (qc g1).mods /\ QProc?.wp (qc g1) s1' (wp_While_inv qc mods inv dec s1 g1)) /\
(not (eval_cmp s1 b) ==> k s1' g1))
[@va_qattr]
let wp_While
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Type0 =
inv s0 g0 /\ mods_contains mods (qc g0).mods /\ mods_contains1 mods Mod_flags /\
// REVIEW: we could get a better WP with forall (...state components...) instead of forall (s1:va_state)
(forall (s1:va_state) (g1:a). inv s1 g1 ==> wp_While_body b qc mods inv dec g1 s1 k)
val qWhile_proof
(#a #d:Type) (#c:code) (b:cmp) (qc:a -> quickCode a c) (mods:mods_t) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_While b qc mods inv dec g0 s0 k)
(ensures fun (sM, f0, g) ->
eval_code (While (cmp_to_ocmp b) c) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qWhile
(#a #d:Type) (#c:code) (mods:mods_t) (b:cmp) (qc:a -> quickCode a c) (inv:va_state -> a -> Type0)
(dec:va_state -> a -> d) (g0:a)
: quickCode a (While (cmp_to_ocmp b) c) =
QProc (While (cmp_to_ocmp b) c) mods (wp_While b qc mods inv dec g0)
(qWhile_proof b qc mods inv dec g0)
///// Assert, Assume, AssertBy
let tAssertLemma (p:Type0) = unit -> Lemma (requires p) (ensures p)
val qAssertLemma (p:Type0) : tAssertLemma p
[@va_qattr]
let va_qAssert (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg e (fun () -> e) (qAssertLemma e) qcs
let tAssumeLemma (p:Type0) = unit -> Lemma (requires True) (ensures p)
val qAssumeLemma (p:Type0) : tAssumeLemma p
[@va_qattr]
let va_qAssume (#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:quickCodes a cs) : quickCodes a cs =
QLemma r msg True (fun () -> e) (qAssumeLemma e) qcs
let tAssertSquashLemma (p:Type0) = unit -> Ghost (squash p) (requires p) (ensures fun () -> p)
val qAssertSquashLemma (p:Type0) : tAssertSquashLemma p
[@va_qattr]
let va_qAssertSquash
(#a:Type) (#cs:codes) (r:range) (msg:string) (e:Type0) (qcs:squash e -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QGhost (squash e) r msg e (fun () -> e) (qAssertSquashLemma e) qcs
//let tAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) =
// unit -> Lemma (requires t_require s0 /\ wp [] qcs mods (fun _ _ -> p) s0) (ensures p)
//val qAssertByLemma (#a:Type) (p:Type0) (qcs:quickCodes a []) (mods:mods_t) (s0:state) : tAssertByLemma p qcs mods s0
//
//[@va_qattr]
//let va_qAssertBy (#a:Type) (#cs:codes) (mods:mods_t) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (s0:state) (qcsTail:quickCodes a cs) : quickCodes a cs =
// QLemma r msg (t_require s0 /\ wp [] qcsBy mods (fun _ _ -> p) s0) (fun () -> p) (qAssertByLemma p qcsBy mods s0) qcsTail
[@va_qattr]
let va_qAssertBy (#a:Type) (#cs:codes) (r:range) (msg:string) (p:Type0) (qcsBy:quickCodes unit []) (qcsTail:quickCodes a cs) : quickCodes a cs =
QAssertBy r msg p qcsBy qcsTail
///// Code
val wp_sound_code (#a:Type0) (c:code) (qc:quickCode a c) (k:va_state -> a -> Type0) (s0:va_state) :
Ghost (va_state & fuel & a)
(requires t_require s0 /\ QProc?.wp qc s0 k)
(ensures fun (sN, fN, gN) -> eval_code c s0 fN sN /\ update_state_mods qc.mods sN s0 == sN /\ state_inv sN /\ k sN gN)
[@va_qattr]
let rec regs_match_file (r0:Regs.t) (r1:Regs.t) (rf:reg_file_id) (k:nat{k <= n_regs rf}) : Type0 =
if k = 0 then True
else
let r = Reg rf (k - 1) in
Regs.sel r r0 == Regs.sel r r1 /\ regs_match_file r0 r1 rf (k - 1)
[@va_qattr]
let rec regs_match (r0:Regs.t) (r1:Regs.t) (k:nat{k <= n_reg_files}) : Type0 =
if k = 0 then True
else regs_match_file r0 r1 (k - 1) (n_regs (k - 1)) /\ regs_match r0 r1 (k - 1)
[@va_qattr]
let all_regs_match (r0:Regs.t) (r1:Regs.t) : Type0 =
regs_match r0 r1 n_reg_files
[@va_qattr]
let state_match (s0:va_state) (s1:va_state) : Type0 =
s0.vs_ok == s1.vs_ok /\
all_regs_match s0.vs_regs s1.vs_regs /\
s0.vs_flags == s1.vs_flags /\
s0.vs_heap == s1.vs_heap /\
s0.vs_stack == s1.vs_stack /\
s0.vs_stackTaint == s1.vs_stackTaint
val lemma_state_match (s0:va_state) (s1:va_state) : Lemma
(requires state_match s0 s1)
(ensures state_eq s0 s1)
[@va_qattr]
let va_state_match (s0:va_state) (s1:va_state) : Pure Type0
(requires True)
(ensures fun b -> b ==> state_eq s0 s1) | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val va_state_match (s0 s1: va_state)
: Pure Type0 (requires True) (ensures fun b -> b ==> state_eq s0 s1) | [] | Vale.X64.QuickCodes.va_state_match | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s0: Vale.X64.Decls.va_state -> s1: Vale.X64.Decls.va_state -> Prims.Pure Type0 | {
"end_col": 19,
"end_line": 385,
"start_col": 2,
"start_line": 384
} |
Prims.Tot | val cmp_to_ocmp (c: cmp) : ocmp | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2 | val cmp_to_ocmp (c: cmp) : ocmp
let cmp_to_ocmp (c: cmp) : ocmp = | false | null | false | match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.cmp",
"Vale.X64.Machine_s.operand64",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_BarBar",
"Vale.X64.Machine_s.uu___is_OMem",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.uu___is_OStack",
"Vale.X64.Decls.va_cmp_eq",
"Vale.X64.Decls.va_cmp_ne",
"Vale.X64.Decls.va_cmp_le",
"Vale.X64.Decls.va_cmp_ge",
"Vale.X64.Decls.va_cmp_lt",
"Vale.X64.Decls.va_cmp_gt",
"Vale.X64.Decls.ocmp"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cmp_to_ocmp (c: cmp) : ocmp | [] | Vale.X64.QuickCodes.cmp_to_ocmp | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | c: Vale.X64.QuickCodes.cmp -> Vale.X64.Decls.ocmp | {
"end_col": 35,
"end_line": 220,
"start_col": 2,
"start_line": 214
} |
Prims.Tot | val valid_cmp (c: cmp) (s: va_state) : Type0 | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s | val valid_cmp (c: cmp) (s: va_state) : Type0
let valid_cmp (c: cmp) (s: va_state) : Type0 = | false | null | false | match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"total"
] | [
"Vale.X64.QuickCodes.cmp",
"Vale.X64.Decls.va_state",
"Vale.X64.Machine_s.operand64",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_BarBar",
"Vale.X64.Machine_s.uu___is_OMem",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.uu___is_OStack",
"Prims.l_and",
"Vale.X64.Decls.valid_operand"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr] | false | true | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val valid_cmp (c: cmp) (s: va_state) : Type0 | [] | Vale.X64.QuickCodes.valid_cmp | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | c: Vale.X64.QuickCodes.cmp -> s: Vale.X64.Decls.va_state -> Type0 | {
"end_col": 60,
"end_line": 230,
"start_col": 2,
"start_line": 224
} |
Prims.GTot | val eval_cmp (s: va_state) (c: cmp) : GTot bool | [
{
"abbrev": false,
"full_module": "FStar.Monotonic.Pure",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Lib.Map16",
"short_module": "Map16"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Stack_i",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let eval_cmp (s:va_state) (c:cmp) : GTot bool =
match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2 | val eval_cmp (s: va_state) (c: cmp) : GTot bool
let eval_cmp (s: va_state) (c: cmp) : GTot bool = | false | null | false | match c with
| Cmp_eq o1 o2 -> va_eval_opr64 s o1 = va_eval_opr64 s o2
| Cmp_ne o1 o2 -> va_eval_opr64 s o1 <> va_eval_opr64 s o2
| Cmp_le o1 o2 -> va_eval_opr64 s o1 <= va_eval_opr64 s o2
| Cmp_ge o1 o2 -> va_eval_opr64 s o1 >= va_eval_opr64 s o2
| Cmp_lt o1 o2 -> va_eval_opr64 s o1 < va_eval_opr64 s o2
| Cmp_gt o1 o2 -> va_eval_opr64 s o1 > va_eval_opr64 s o2 | {
"checked_file": "Vale.X64.QuickCodes.fsti.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.Stack_i.fsti.checked",
"Vale.X64.Regs.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Def.Prop_s.fst.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"prims.fst.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.X64.QuickCodes.fsti"
} | [
"sometrivial"
] | [
"Vale.X64.Decls.va_state",
"Vale.X64.QuickCodes.cmp",
"Vale.X64.Machine_s.operand64",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_BarBar",
"Vale.X64.Machine_s.uu___is_OMem",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.uu___is_OStack",
"Prims.op_Equality",
"Vale.Def.Types_s.nat64",
"Vale.X64.Decls.va_eval_opr64",
"Prims.op_disEquality",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.op_GreaterThan",
"Prims.bool"
] | [] | module Vale.X64.QuickCodes
// Optimized weakest precondition generation for 'quick' procedures
open FStar.Mul
open FStar.Range
open Vale.Def.Prop_s
open Vale.Arch.HeapImpl
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.Stack_i
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.QuickCode
unfold let code = va_code
unfold let codes = va_codes
unfold let fuel = va_fuel
unfold let eval = eval_code
[@va_qattr "opaque_to_smt"]
let labeled_wrap (r:range) (msg:string) (p:Type0) : GTot Type0 = labeled r msg p
// REVIEW: when used inside a function definition, 'labeled' can show up in an SMT query
// as an uninterpreted function. Make a wrapper around labeled that is interpreted:
[@va_qattr "opaque_to_smt"]
let label (r:range) (msg:string) (p:Type0) : Ghost Type (requires True) (ensures fun q -> q <==> p) =
assert_norm (labeled_wrap r msg p <==> p);
labeled_wrap r msg p
val lemma_label_bool (r:range) (msg:string) (b:bool) : Lemma
(requires label r msg b)
(ensures b)
[SMTPat (label r msg b)]
// wrap "precedes" and LexCons to avoid issues with label (precedes ...)
let precedes_wrap (#a:Type) (x y:a) : GTot Type0 = precedes x y
[@va_qattr]
let rec mods_contains1 (allowed:mods_t) (found:mod_t) : bool =
match allowed with
| [] -> mod_eq Mod_None found
| h::t -> mod_eq h found || mods_contains1 t found
[@va_qattr]
let rec mods_contains (allowed:mods_t) (found:mods_t) : bool =
match found with
| [] -> true
| h::t -> mods_contains1 allowed h && mods_contains allowed t
[@va_qattr]
let if_code (b:bool) (c1:code) (c2:code) : code = if b then c1 else c2
open FStar.Monotonic.Pure
noeq type quickCodes (a:Type0) : codes -> Type =
| QEmpty: a -> quickCodes a []
| QSeq: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> quickCodes a cs -> quickCodes a (c::cs)
| QBind: #b:Type -> #c:code -> #cs:codes -> r:range -> msg:string ->
quickCode b c -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a (c::cs)
| QGetState: #cs:codes -> (va_state -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QPURE: #cs:codes -> r:range -> msg:string -> pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre} ->
(unit -> PURE unit (as_pure_wp pre)) -> quickCodes a cs -> quickCodes a cs
//| QBindPURE: #cs:codes -> b:Type -> r:range -> msg:string -> pre:((b -> GTot Type0) -> GTot Type0) ->
// (unit -> PURE b pre) -> (va_state -> b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QLemma: #cs:codes -> r:range -> msg:string -> pre:Type0 -> post:(squash pre -> Type0) ->
(unit -> Lemma (requires pre) (ensures post ())) -> quickCodes a cs -> quickCodes a cs
| QGhost: #cs:codes -> b:Type -> r:range -> msg:string -> pre:Type0 -> post:(b -> Type0) ->
(unit -> Ghost b (requires pre) (ensures post)) -> (b -> GTot (quickCodes a cs)) -> quickCodes a ((Block [])::cs)
| QAssertBy: #cs:codes -> r:range -> msg:string -> p:Type0 ->
quickCodes unit [] -> quickCodes a cs -> quickCodes a cs
[@va_qattr] unfold let va_QBind (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:va_state -> b -> GTot (quickCodes a cs)) : quickCodes a (c::cs) = QBind r msg qc qcs
[@va_qattr] unfold let va_QEmpty (#a:Type0) (v:a) : quickCodes a [] = QEmpty v
[@va_qattr] unfold let va_QLemma (#a:Type0) (#cs:codes) (r:range) (msg:string) (pre:Type0) (post:(squash pre -> Type0)) (l:unit -> Lemma (requires pre) (ensures post ())) (qcs:quickCodes a cs) : quickCodes a cs = QLemma r msg pre post l qcs
[@va_qattr] unfold let va_QSeq (#a:Type0) (#b:Type) (#c:code) (#cs:codes) (r:range) (msg:string) (qc:quickCode b c) (qcs:quickCodes a cs) : quickCodes a (c::cs) = QSeq r msg qc qcs
[@va_qattr]
let va_qPURE
(#cs:codes) (#pre:((unit -> GTot Type0) -> GTot Type0){is_monotonic pre}) (#a:Type0) (r:range) (msg:string)
($l:unit -> PURE unit (intro_pure_wp_monotonicity pre; pre)) (qcs:quickCodes a cs)
: quickCodes a cs =
QPURE r msg pre l qcs
(* REVIEW: this might be useful, but inference of pre doesn't work as well as for va_qPURE
(need to provide pre explicitly; as a result, no need to put $ on l)
[@va_qattr]
let va_qBindPURE
(#a #b:Type0) (#cs:codes) (pre:(b -> GTot Type0) -> GTot Type0) (r:range) (msg:string)
(l:unit -> PURE b pre) (qcs:va_state -> b -> GTot (quickCodes a cs))
: quickCodes a ((Block [])::cs) =
QBindPURE b r msg pre l qcs
*)
[@va_qattr]
let wp_proc (#a:Type0) (c:code) (qc:quickCode a c) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
match qc with
| QProc _ _ wp _ -> wp s0 k
let wp_Seq_t (a:Type0) = va_state -> a -> Type0
let wp_Bind_t (a:Type0) = va_state -> a -> Type0
let k_AssertBy (p:Type0) (_:va_state) () = p
[@va_qattr]
let va_range1 = mk_range "" 0 0 0 0
val empty_list_is_small (#a:Type) (x:list a) : Lemma
([] #a == x \/ [] #a << x)
[@va_qattr]
let rec wp (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state) :
Tot Type0 (decreases %[cs; 0; qcs])
=
match qcs with
| QEmpty g -> k s0 g
| QSeq r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Seq cs qcs mods k))
| QBind r msg qc qcs ->
let c::cs = cs in
label r msg (mods_contains mods qc.mods /\ wp_proc c qc s0 (wp_Bind cs qcs mods k))
| QGetState f ->
let c::cs = cs in
wp cs (f s0) mods k s0
| QPURE r msg pre l qcs ->
// REVIEW: rather than just applying 'pre' directly to k,
// we define this in a roundabout way so that:
// - it works even if 'pre' isn't known to be monotonic
// - F*'s error reporting uses 'guard_free' to process labels inside (wp cs qcs mods k s0)
(forall (p:unit -> GTot Type0).//{:pattern (pre p)}
(forall (u:unit).{:pattern (guard_free (p u))} wp cs qcs mods k s0 ==> p ())
==>
label r msg (pre p))
(*
| QBindPURE b r msg pre l qcs ->
let c::cs = cs in
(forall (p:b -> GTot Type0).//{:pattern (pre p)}
(forall (g:b).{:pattern (guard_free (p g))} wp cs (qcs s0 g) mods k s0 ==> p g)
==>
label r msg (pre p))
*)
| QLemma r msg pre post l qcs ->
label r msg pre /\ (post () ==> wp cs qcs mods k s0)
| QGhost b r msg pre post l qcs ->
let c::cs = cs in
label r msg pre /\ (forall (g:b). post g ==> wp cs (qcs g) mods k s0)
| QAssertBy r msg p qcsBy qcs ->
empty_list_is_small cs;
wp [] qcsBy mods (k_AssertBy p) s0 /\ (p ==> wp cs qcs mods k s0)
// Hoist lambdas out of main definition to avoid issues with function equality
and wp_Seq (#a:Type0) (#b:Type0) (cs:codes) (qcs:quickCodes b cs) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Seq_t a) (decreases %[cs; 1; qcs])
=
let f s0 _ = wp cs qcs mods k s0 in f
and wp_Bind (#a:Type0) (#b:Type0) (cs:codes) (qcs:va_state -> a -> GTot (quickCodes b cs)) (mods:mods_t) (k:va_state -> b -> Type0) :
Tot (wp_Bind_t a) (decreases %[cs; 1; qcs])
=
let f s0 g = wp cs (qcs s0 g) mods k s0 in f
val wp_sound (#a:Type0) (cs:codes) (qcs:quickCodes a cs) (mods:mods_t) (k:va_state -> a -> Type0) (s0:va_state)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp cs qcs mods k s0)
(ensures fun (sN, fN, gN) ->
eval (Block cs) s0 fN sN /\ update_state_mods mods sN s0 == sN /\ state_inv sN /\ k sN gN
)
///// Block
unfold let block = va_Block
[@va_qattr]
let wp_block (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
wp cs (qcs s0) mods k s0
val qblock_proof (#a:Type) (#cs:codes) (qcs:va_state -> GTot (quickCodes a cs)) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_block qcs mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (block cs) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let qblock (#a:Type) (#cs:codes) (mods:mods_t) (qcs:va_state -> GTot (quickCodes a cs)) : quickCode a (block cs) =
QProc (block cs) mods (wp_block qcs mods) (qblock_proof qcs mods)
///// If, InlineIf
[@va_qattr]
let wp_InlineIf (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0) : Type0 =
// REVIEW: this duplicates k
( b ==> mods_contains mods qc1.mods /\ QProc?.wp qc1 s0 k) /\
(not b ==> mods_contains mods qc2.mods /\ QProc?.wp qc2 s0 k)
val qInlineIf_proof (#a:Type) (#c1:code) (#c2:code) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) (mods:mods_t) (s0:va_state) (k:va_state -> a -> Type0)
: Ghost (va_state & va_fuel & a)
(requires t_require s0 /\ wp_InlineIf b qc1 qc2 mods s0 k)
(ensures fun (sM, f0, g) ->
eval_code (if_code b c1 c2) s0 f0 sM /\ update_state_mods mods sM s0 == sM /\ state_inv sM /\ k sM g
)
[@"opaque_to_smt" va_qattr]
let va_qInlineIf (#a:Type) (#c1:code) (#c2:code) (mods:mods_t) (b:bool) (qc1:quickCode a c1) (qc2:quickCode a c2) : quickCode a (if_code b c1 c2) =
QProc (if_code b c1 c2) mods (wp_InlineIf b qc1 qc2 mods) (qInlineIf_proof b qc1 qc2 mods)
noeq type cmp =
| Cmp_eq : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ne : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_le : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_ge : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_lt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
| Cmp_gt : o1:operand64{not (OMem? o1 || OStack? o1)} -> o2:operand64{not (OMem? o2 || OStack? o2)} -> cmp
[@va_qattr]
let cmp_to_ocmp (c:cmp) : ocmp =
match c with
| Cmp_eq o1 o2 -> va_cmp_eq o1 o2
| Cmp_ne o1 o2 -> va_cmp_ne o1 o2
| Cmp_le o1 o2 -> va_cmp_le o1 o2
| Cmp_ge o1 o2 -> va_cmp_ge o1 o2
| Cmp_lt o1 o2 -> va_cmp_lt o1 o2
| Cmp_gt o1 o2 -> va_cmp_gt o1 o2
[@va_qattr]
let valid_cmp (c:cmp) (s:va_state) : Type0 =
match c with
| Cmp_eq o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ne o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_le o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_ge o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_lt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
| Cmp_gt o1 o2 -> valid_operand o1 s /\ valid_operand o2 s
[@va_qattr] | false | false | Vale.X64.QuickCodes.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val eval_cmp (s: va_state) (c: cmp) : GTot bool | [] | Vale.X64.QuickCodes.eval_cmp | {
"file_name": "vale/code/arch/x64/Vale.X64.QuickCodes.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | s: Vale.X64.Decls.va_state -> c: Vale.X64.QuickCodes.cmp -> Prims.GTot Prims.bool | {
"end_col": 60,
"end_line": 240,
"start_col": 2,
"start_line": 234
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCTR",
"short_module": "GC"
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint64 = UInt64.t | let uint64 = | false | null | false | UInt64.t | {
"checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCTR.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCTR.fst"
} | [
"total"
] | [
"FStar.UInt64.t"
] | [] | module Vale.Stdcalls.X64.GCTR
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
open Vale.AES.AES_s
module GC = Vale.AES.X64.GCTR | false | true | Vale.Stdcalls.X64.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint64 : Prims.eqtype | [] | Vale.Stdcalls.X64.GCTR.uint64 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.eqtype | {
"end_col": 21,
"end_line": 27,
"start_col": 13,
"start_line": 27
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCTR",
"short_module": "GC"
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq | let t128_mod = | false | null | false | TD_Buffer TUInt8 TUInt128 default_bq | {
"checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCTR.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCTR.fst"
} | [
"total"
] | [
"Vale.Interop.Base.TD_Buffer",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Interop.Base.default_bq"
] | [] | module Vale.Stdcalls.X64.GCTR
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
open Vale.AES.AES_s
module GC = Vale.AES.X64.GCTR
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt8 TUInt128 | false | true | Vale.Stdcalls.X64.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val t128_mod : Vale.Interop.Base.td | [] | Vale.Stdcalls.X64.GCTR.t128_mod | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Vale.Interop.Base.td | {
"end_col": 51,
"end_line": 38,
"start_col": 15,
"start_line": 38
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCTR",
"short_module": "GC"
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let b128 = buf_t TUInt8 TUInt128 | let b128 = | false | null | false | buf_t TUInt8 TUInt128 | {
"checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCTR.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCTR.fst"
} | [
"total"
] | [
"Vale.Interop.Base.buf_t",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128"
] | [] | module Vale.Stdcalls.X64.GCTR
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
open Vale.AES.AES_s
module GC = Vale.AES.X64.GCTR
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x | false | true | Vale.Stdcalls.X64.GCTR.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val b128 : Type0 | [] | Vale.Stdcalls.X64.GCTR.b128 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Type0 | {
"end_col": 32,
"end_line": 36,
"start_col": 11,
"start_line": 36
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.